{"created":"2024-04-18T07:30:40.172963+00:00","id":2000178,"links":{},"metadata":{"_buckets":{"deposit":"95c93549-3b0e-480b-b31e-e6fb37dca68e"},"_deposit":{"created_by":12,"id":"2000178","owner":"12","owners":[12],"pid":{"revision_id":0,"type":"depid","value":"2000178"},"status":"published"},"_oai":{"id":"oai:obihiro.repo.nii.ac.jp:02000178","sets":["6:8"]},"author_link":[],"control_number":"2000178","item_3_alternative_title_1":{"attribute_name":"その他(別言語等)のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"アズキ(Vigna angularis)の草型および収量性に関与する農業形質の量的形質遺伝子座の解析","subitem_alternative_title_language":"ja"}]},"item_3_date_granted_12":{"attribute_name":"学位授与年月日","attribute_value_mlt":[{"subitem_dategranted":"2024-03-19"}]},"item_3_degree_grantor_10":{"attribute_name":"学位授与機関","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_language":"ja","subitem_degreegrantor_name":"帯広畜産大学"}],"subitem_degreegrantor_identifier":[{"subitem_degreegrantor_identifier_name":"10105","subitem_degreegrantor_identifier_scheme":"kakenhi"}]}]},"item_3_degree_name_9":{"attribute_name":"学位名","attribute_value_mlt":[{"subitem_degreename":"博士(農学)","subitem_degreename_language":"ja"},{"subitem_degreename":"Doctor of Agriculture","subitem_degreename_language":"en"}]},"item_3_description_11":{"attribute_name":"学位授与年度","attribute_value_mlt":[{"subitem_description":"2023","subitem_description_language":"ja","subitem_description_type":"Other"}]},"item_3_description_18":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_language":"ja","subitem_description_type":"Other"}]},"item_3_description_7":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"The Tokachi region of Hokkaido is the primary adzuki bean (Vigna angularis) producer in Japan. However, sustainable production is affected by limitations in genetic knowledge related to plant architecture and yield, and machine harvesting efficiency. This study aimed to gain insights into the genetic mechanisms underlying key traits for enhanced adzuki bean production. The primary objectives encompassed: (i) elucidating genetic control of epicotyl length to improve mechanization efficiency; (ii) identifying genetic loci associated with plant height traits for ideal plant architecture; and (iii) clarifying genetic mechanisms underlying maturity and yield-related traits in adzuki bean. Mapping populations were generated using the breeding line ‘Toiku161’ and the cultivar ‘Chihayahime’ for subsequent quantitative trait loci (QTL) analyses.\nChapter 2 focused on the genetic control of epicotyl length (ECL) by analyzing recombinant inbred lines using QTL-seq. Four significant QTLs on chromosomes 2, 7, 10, and 11 were identified that contribute to increased ECL. Two of these QTLs, qECL7.1 and qECL10.1, were validated using insertion/deletion (InDel) markers. The chromosomal location of qECL7.1 was fine-mapped to a 418 kb region using a substitution mapping method with InDel, cleaved amplified polymorphic sequence (CAPS), derived cleaved amplified polymorphic sequence (dCAPS), and single nucleotide polymorphism (SNP) molecular markers. This region harbors 35 candidate genes possibly influencing ECL. The identified genetic loci offer valuable insights for breeding adzuki bean genotypes with enhanced epicotyl length, a critical trait for mechanical weed control and harvesting efficiency.\nChapter 3 mapped the genetic loci affecting plant height (PH) and its related traits, including ECL, stem internode length below node 7 (STIL7), stem internode length above node 8 (STIL8), and the total number of nodes (NN). Over 39 QTLs were related to these traits. Some QTLs showed stability by being detected consistently across the three years, including qPH2 and qSTIL8.2 on chromosome 2, qPH4 and qSTIL8.4 on chromosome 4, and qSTIL7.7 and qECL7.1 on chromosome 7. Remarkably, on chromosomes 2 and 4, a QTL affecting STIL8, an upper stem trait, co-localized with a QTL influencing PH. Likewise, on chromosome 7, a QTL affecting STIL7, a lower stem trait, co-localized with a QTL influencing ECL. This suggests the prospect of controlling the upper and lower stem parts independently to achieve enhanced plant height without compromising overall plant architectural integrity.\nChapter 4 analyzed genetic mechanisms for maturity and yield traits, including flowering (FLD), maturity (MAD), reproductive period (RP), total pod number (PDTN), Grain weight (GW), and number of grains per pod (NGP). A total of 36 QTLs were detected and a stable QTL for flowering qFLD2 was found on chromosome 2 across the three-year study period. Flowering and maturity traits were generally located on either different chromosome or chromosomal positions. This suggests independent genetic regulation of flowering and maturity times, presenting prospects for developing early-maturity varieties to minimize yield losses by frost. The study findings showed co-localization between plant architecture (PH, STIL, FLD, MAD) and yield (PDTN, GW) traits, especially on chromosomes 2 and 4. The QTL network further evaluated causal relationships between plant height and yield traits, revealing 16 QTLs with direct and indirect effects on 11 traits. These QTL-to-trait interactions were distinctively grouped into 3: stem length and yield; seed weight, and seed quantity. Two important QTL hubs were identified within chromosomes 4 and 7. The identified pleiotropic and polygenic effects in the QTL-to-trait interactions provide useful insights into the understanding of regulatory mechanisms governing plant height and yield traits.\nIn conclusion, the QTL, candidate genes, co-dominant markers, QTL-to-trait interactions, and QTL hubs identified in this study are invaluable aspects in the molecular-assisted breeding for ideal key traits including plant height, epicotyl length, maturity, and yield. This understanding is crucial to the development of genotypes with improved mechanized compatibility and increased yields thereby contributing to sustainable production of adzuki bean in Tokachi. Further studies are, however, recommended particularly on fine-mapping of remaining key traits and candidate gene identification for more impactful application in adzuki bean breeding programs.","subitem_description_language":"en","subitem_description_type":"Abstract"},{"subitem_description":"北海道の十勝地域は,日本におけるアズキの主要な生産地であり,今後も持続的にアズキを生産することが求められている.しかしながら現状において,アズキの草型や収量性に関する遺伝的な知見は少なく,効率的な栽培に関わる機械作業適性をもつ植物体の育成が困難な状況である.本研究では,アズキの効率的な生産を可能とする農業形質の遺伝的メカニズムの知見を得るために,(i) 機械作業効率向上に重要な上胚軸長の遺伝的制御を明らかにすること,(ii) 理想的な草型を得るために草丈および草型関連形質の遺伝子座を特定すること,(iii) アズキの収量関連形質の遺伝的メカニズムを明らかにすることを目的とした.そこで,育種系統である「十育161 号」と栽培品種の「ちはやひめ」を交雑して得られた後代系統をマッピング集として用い,量的形質遺伝子座 (QTL) 解析を実施した.\n第2 章では,上胚軸長(ECL)の遺伝的制御を明らかにするために,組換え自殖系統を供試してQTL-seq 解析を行った.その結果,第2,第7,第10 および第11 番染色体上に上胚軸長の増加に寄与する4 つのQTL が座乗することを確認した.挿入・欠失(InDel)マーカーで作製した連鎖地図を用いてこれらQTL を再検証したところ, 2 つのQTL(qECL7.1 とqECL10.1)のみが大きな効果をもつことが明らかとなった.第7 染色体に検出したqECL7.1 の座乗領域を絞り込むために,新たなDNA マーカーを開発し置換マッピングを行った結果,418 kb の領域(35の推定遺伝子)にqECL7. 1 をファインマッピングした.これらの結果は,アズキの機械除草や機械収穫にとって重要な特性である上胚軸長の効率的な選抜に役立つと考えられる.\n第3 章では,草丈(PH)および草丈に影響を与えるECL,下位節の節間長(STIL7),上位節の節間長(SIL8)および主茎の総節数(NN)についてQTL 解析を行い,計39 のQTL を検出した.これらQTL のうち,第2 染色体のqPH2 とqSTIL8.2,第4 染色体のqPH4 とqSTIL8.4,そして第7 染色体のqSTIL7.7 とqECL7.1 は,同一領域に3 年間を通じて安定的に座乗した.以上の結果から,草丈の構成要素である胚軸長・下位節の節間長と上位節の節間長は異なる遺伝メカニズムを有しており,独立して草丈を制御していることを明らかにした.\n第4 章では,開花期(FLD),成熟期(MAD),登熟期間(RP),総莢数(PDTN),100粒重(GW)および一莢内粒数(NGP)のQTL 解析により,これらの特性に関連する計30 のQTL を検出した.第2 染色体上に特定したqFLD2 は,3 ヵ年安定して検出された.また,FLDとMAD のQTL が異なる遺伝子座として検出されたため,開花期と成熟期を独立的に制御できると考えられた.また,第2,第4 染色体上に検出した草型関連形質と収量関連形質は同一領域に共局在していた.草型関連形質と収量関連形質との間の因果関係を調査するためにQTL ネットワーク解析を行った.その結果,QTL と形質間の相互作用において,第4 染色体と第7 染色体の2 つのQTL が草丈と収量性を調節するうえで重要であることが明らかとなった.\nこの研究の成果から得られた各種QTL,候補遺伝子,QTLに連鎖するDNAマーカー,QTLと形質間の相互作用に関する情報は,マーカー支援選抜を通して理想的な特性(上胚軸長,草丈,開花期と成熟期,収量)をもつ品種の早期開発につながると考えられる.また,省力的なアズキ栽培に必要な機械作業適性の向上や収量性の増加に寄与し,持続可能なアズキの生産を可能とするだろう.今後の研究において,重要形質のファインマッピングと候補遺伝子の特定を進めることにより,アズキの育種プログラムにおいてより効果的な成果が期待される.","subitem_description_language":"ja","subitem_description_type":"Abstract"}]},"item_3_description_8":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"博士学位論文","subitem_description_language":"ja","subitem_description_type":"Other"},{"subitem_description":"大学院畜産学研究科 畜産科学専攻","subitem_description_language":"ja","subitem_description_type":"Other"},{"subitem_description":"Doctoral Program of Animal Science and Agriculture","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_3_dissertation_number_13":{"attribute_name":"学位授与番号","attribute_value_mlt":[{"subitem_dissertationnumber":"甲第141号"}]},"item_3_publisher_5":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"帯広畜産大学","subitem_publisher_language":"ja"}]},"item_3_rights_14":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"KACHAPILA Modester Takondwa","subitem_rights_language":"en"}]},"item_3_subject_20":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"615","subitem_subject_language":"ja","subitem_subject_scheme":"NDC"}]},"item_3_version_type_19":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"KACHAPILA, Modester Takondwa","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2024-04-18"}],"filename":"3. KACHAPILA.pdf","filesize":[{"value":"3.5 MB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"label":"全文 Full text","objectType":"fulltext","url":"https://obihiro.repo.nii.ac.jp/record/2000178/files/3. KACHAPILA.pdf"},"version_id":"2ccaee05-dbc2-4c4d-ab6b-e45536117780"},{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2024-04-18"}],"filename":"3. Abstract(KACHAPILA).pdf","filesize":[{"value":"132 KB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"label":"全文の要旨 Abstract","url":"https://obihiro.repo.nii.ac.jp/record/2000178/files/3. Abstract(KACHAPILA).pdf"},"version_id":"16e25986-c629-404b-a2b5-80e8fac692e3"},{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2024-04-18"}],"filename":"3. Evaluation(KACHAPILA).pdf","filesize":[{"value":"147 KB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"label":"審査の要旨 Evaluation","url":"https://obihiro.repo.nii.ac.jp/record/2000178/files/3. Evaluation(KACHAPILA).pdf"},"version_id":"3021898a-394a-4079-9d89-27f9f4462fd3"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"doctoral thesis","resourceuri":"http://purl.org/coar/resource_type/c_db06"}]},"item_title":"Analyzing quantitative trait loci of agronomic traits for plant architecture and yield in adzuki bean (Vigna angularis).","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Analyzing quantitative trait loci of agronomic traits for plant architecture and yield in adzuki bean (Vigna angularis).","subitem_title_language":"en"}]},"item_type_id":"3","owner":"12","path":["8"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2024-04-18"},"publish_date":"2024-04-18","publish_status":"0","recid":"2000178","relation_version_is_last":true,"title":["Analyzing quantitative trait loci of agronomic traits for plant architecture and yield in adzuki bean (Vigna angularis)."],"weko_creator_id":"12","weko_shared_id":-1},"updated":"2024-04-18T08:04:03.006426+00:00"}