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Efficient Production of Ethanol from Saccharified Crops Mixed with Cheese Whey 

by the Flex Yeast Kluyveromyces marxianus KD-15
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Ethanol production from a mixture of wheat flour or potato tubers and cheese whey was examined 
using the flex yeast Kluyveromyces marxianus KD-15, a 2-deoxyglucose-resistant mutant of strain NBRC 
1963 that can produce ethanol from sugar beet thick juice diluted with whey. Strain KD-15 simultane-
ously converted glucose and lactose to ethanol within 48 h, in media containing 10.0% to 15.0% (w/v) to-
tal sugars from saccharified filtrate and whey. For efficient production of ethanol from 15.0% (w/v) total 
sugars, KD-15 cells were collected after fermentation and inoculated into fresh media. Batch fermentation 
was successfully repeated at least ten times in medium composed of saccharified potato tubers mixed with 
whey. Yeast cells began to convert all the sugars to ethanol within 24 h, accompanied by cell propagation 
after the third batch.
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Introduction
Renewable biofuels have received attention due to 

worldwide concern for the depletion of fossil fuels, thereby 
potentially reducing the reliance on petroleum and decreas-
ing greenhouse gas emissions (Antoni et al., 2007). Ethanol 
produced from sugarcane, corn, and other crops is used as a 
gasoline substitute or supplement for automobiles in many 
countries (Walter et al., 2008). Lignocellulosic biomass is a 
potential source for the growing demand for fuel ethanol, as 
the excess utilization of crops for ethanol production impacts 
the global food supply; however, a number of challenges im-
pede its industrial application (Balat et al., 2008; Chen and 
Qiu, 2010).

Hokkaido, the northernmost island of Japan, is a major 
agricultural region of crop rotation farming with sugar beets, 
beans, potatoes, and wheat. Crops deemed unsuitable as food 
or food ingredients are used as material for fuel ethanol pro-
duction. Maximum amounts of domestic sugar beet, which 
are subject to government subsidies, are annually set to bal-
ance with sugar imports. Excess amounts of sugar beet are 

diverted from the market for ethanol manufacturing in the 
form of raw juice or juice concentrate. An alternative crop 
source for ethanol is low-grade wheat, evaluated using the 
standards for test weight, imperfect grains, moisture content, 
damaged kernels, and the presence of foreign material. Most 
substandard wheat is utilized as animal feed and occasionally 
for ethanol fermentation after enzymatic hydrolysis.

Another form of biomass, other than locally available 
crops, accessible for ethanol production is whey, excreted 
in cheese-making processes with 90% of the volume of 
milk used (Siso, 1996). The yeasts employed are typically 
Kluyveromyces marxianus strains capable of fermenting lac-
tose, the principal sugar in whey, and not the conventional 
yeast Saccharomyces cerevisiae (Guimarães et al., 2010). 
However, fermentation of crude whey containing about 5% 
lactose generates only 2.5% ethanol, which is far from eco-
nomically feasible due to the high cost of distillation. Even 
when a lactose-fermenting strain is used, supplementation 
with glucose to elevate the initial sugar concentration trig-
gers catabolite repression, preventing the yeast cells from 
fermenting lactose (Wang et al., 1987).

We previously isolated several mutants resistant to 2-de-
oxyglucose from K. marxianus NBRC 1963 and selected a 



that of potato tubers, respectively. Galactose was not detected 
in the fluids, indicating that the enzymes used here lack 
β-galactosidase, which hydrolyzes lactose into glucose and ga-
lactose. Recovery of glucose from starch was calculated to be 
89.0% (w/w) in wheat flour and 76.6% (w/w) in potato tubers.

Fermentation tests    K. marxianus KD-15 and its paren-
tal strain NBRC 1963 were grown in 60 mL of YPD medium 
(1.0% yeast extract, 2.0% polypeptone, and 2.0% glucose) at 
30℃ for 24 h with shaking (150 rpm). An aliquot (50 mL) of 
the medium was centrifuged, and harvested cells were inocu-
lated into 100 mL of fermentation medium (initial concentra-
tion, 2 × 108 cells/mL) in a 200 mL Erlenmeyer flask. The 
fermentation media were prepared by mixing the saccharified 
fluid and whey filtrate, previously heated to remove the pre-
cipitate and sterilized at 121℃ for 20 min. Total sugars were 
adjusted to 15.0%, 12.5%, and 10.0% (w/v) by increasing the 
volume of whey filtrate, resulting in a higher ratio of lactose. 
Each flask was stopped with a Silicosen culture plug (Shin-
Etsu Polymer Co., Ltd., Tokyo) and further covered with Sa-
ran Wrap (Asahi Kasei Chemicals Corp., Tokyo), punctured 
with a pin to allow the emission of CO2 gas, and incubated 
at 30℃ with shaking (90 rpm). When necessary, cells were 
collected from the entire volume of fermented broth by cen-
trifugation and inoculated into fresh medium for the repeated 
batch-fermentations.

Analytical procedures    Ethanol and total sugars were 
determined using a high-performance liquid chromatograph 
(LaChrom Elite, Hitachi High-Technologies Corp., Tokyo) 
equipped with a packed column (Shodex KS-801, Showa 
Denko Co., Tokyo) and an RI monitor.

For the β-galactosidase assay, the crude enzyme (0.05 
mL), prepared from a cell suspension (Oda and Nakamura, 
2009), was added to 1.0 mL of 50 mM phosphate buffer (pH 
6.8) containing 5 mM o-nitrophenyl β-d-galactopyranoside 
and incubated at 30℃ for 30 min. The reaction was stopped 
by the addition of 1.0 mL of 3.0% (w/v) Na2CO3, and the 
release of o-nitrophenol was determined by absorbance at 
410 nm. One unit of activity was defined as the amount of 
enzyme that released 1 µmol of o-nitrophenol per min.

Whole and viable numbers of yeast cells were enumer-
ated using a hemocytometer without and with alkaline meth-
ylene blue staining (Sami et al., 1994), respectively.

Results
Fermentation of saccharified flour mixed with whey    K. 

marxianus KD-15 and NBRC 1963 were cultured in media 
composed of saccharified flour mixed with whey (containing 
about 10.0%, 12.5%, and 15.0% total sugars) (Fig. 1). The 
ratio of lactose decreased in proportion to the increase in to-
tal sugars (Table 1). The two strains consumed 10.0% of all 

catabolite-repression insensitive mutant, KD-15, capable of 
synthesizing ethanol from sucrose, lactose, and a mixture of 
sucrose and lactose (Oda and Nakamura, 2009). Strain KD-
15, named flex yeast after flex-fuel vehicles, was shown to 
produce ethanol from a medium composed of sugar beet 
thick juice diluted with crude whey (Oda et al., 2010). In 
the present study, experiments assessed the applicability of 
this strain to ethanol production from local starchy materials 
mixed with crude whey.

Materials and Methods
Raw materials    Flour comprised of 75.0% (w/w) starch 

was prepared by milling wheat (Hokushin variety) harvested 
in Tokachi District of Hokkaido in August 2010 and evalu-
ated as substandard. Potato (Hokkaikogane variety) used for 
processed foods, with a tuber starch content of 17.9% (w/w), 
was produced in the experimental field of Memuro Research 
Station, National Agricultural Research Center for Hokkaido 
Region (Memuro, Hokkaido) in September 2010. Crude 
whey (6.0% (w/v) lactose) was a by-product of Camembert 
cheese production using fresh milk at the Tokachino Fro-
mages Co. (Nakasatsunai, Hokkaido) in March 2010.

Enzymes    The commercial enzyme preparations used 
were Liquozyme SC (120 Kilo Novo α-amylase Unit [KNU]/
g) as α-amylase, Spirizyme Fuel (750 amyloglucosidase 
unit [AGU]/mL) as glucoamylase, Viscozyme L (100 fungal 
β-glucanase unit [FBG]/g) as β-glucanase, and Viscozyme 
Wheat FG as cellulase and endo-1,4-xylanase, obtained from 
Novozymes A/S (Bagsvaerd, Denmark).

Saccharification    For preparation of 100 mL of sac-
charified slurry from wheat flour, 20 µL of Liquozyme SC 
was dissolved with stirring in 86 mL of whey (pH 5.7-6.0) at 
room temperature. With continued stirring, 20 g of flour was 
gradually added to the whey-enzyme mixture and subjected 
to stepwise heating for 30 min each at 75℃, 85℃, and 98℃. 
After cooling to 65℃, 20 µL of Spirizyme Fuel and 2 µL of 
Viscozyme Wheat FG were added and the mixture was incu-
bated for 16 h.

About 500 g of mashed raw potato tubers was mixed 
with 50 mL of whey, 500 µL of Liquozyme SC, and 50 µL of 
Viscozyme L and heated for 30 min each at 65℃, 75℃, and 
85°C. The slurry was mixed by hand with a spatula every 
15 min in 1 h and every 30 min thereafter. After cooling to 
65℃, 500 µL of Spirizyme Fuel was added and the mixture 
was further incubated for 16 h.

The saccharified slurries were centrifuged and filtrated 
with cheese cloth to obtain a fluid composed of glucose and 
lactose that was completely hydrolyzed from starch. Glu-
cose and lactose concentrations were 20.2% and 6.0% (w/
v) in the fluid of wheat flour and 17.0% and 0.8% (w/v) in 
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the highest level of ethanol (72.3 mg/mL) in 48 h. Even after 
consumption of glucose for 24 h, strain NBRC 1963 hardly 
took up any lactose within 72 h, resulting in a lower yield of 
ethanol per substrate (g/g).

The two strains showed basal β-galactosidase activity im-
mediately after inoculation (Fig. 2). Strain KD-15 actively 
synthesized β-galactosidase, which increased three-fold in 
the three media containing 10.0% to 15.0% total sugars. In 
strain NBRC 1963, the activity was elevated with 10.0% to-

the sugars in 24 h and produced 50 mg/mL of ethanol. Strain 
KD-15 took up lactose more quickly than strain NBRC 1963. 
In the medium containing 12.5% total sugars, strain KD-15 
converted equal amounts of glucose and lactose to 62 mg/mL 
of ethanol in 36 h. Lactose was consumed by strain NBRC 
1963 when glucose disappeared from the medium. Differ-
ences in the two strains were obvious when the sugar con-
centration of the medium increased to 15.0%. Strain KD-15 
utilized glucose and lactose simultaneously and accumulated 
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Fig. 1.  Ethanol production in media composed of saccharified flour mixed with whey. Strains KD-15 (a, c, e) and NBRC 
1963 (b, d, f) were grown in media containing about 10.0% (a, b), 12.5% (c, d), and 15.0% (e, f) total sugars, derived from 
saccharified flour mixed with whey. Data are shown as the average values and standard deviations from four independent 
experiments. Symbols: ○, ethanol; □, glucose; ■, lactose.

Table 1.  Parameters of fermentation in media composed of saccharified flour mixed with whey.

Strain Total sugar  
concentration (% [w/v])

Initial content (mg/mL)
Emax (mg/mL)a YE/S (%)b

Glucose Lactose Total

KD-15
10.0 40.4 ± 4.8 60.9 ± 7.4 101.3 ± 3.0 46.3 ± 1.0 45.8 ± 2.2
12.5 71.4 ± 8.7 60.2 ± 5.2 131.6 ± 6.1 59.7 ± 3.3 45.4 ± 3.5
15.0 99.3 ± 8.5 59.4 ± 6.4 158.7 ± 10.0 71.4 ± 2.6 45.1 ± 2.7

NBRC 1963
10.0 42.3 ± 6.0 62.4 ± 8.5 104.8 ± 4.5 46.9 ± 0.8 44.8 ± 2.4
12.5 71.6 ± 7.4 60.5 ± 5.9 132.1 ± 4.2 54.1 ± 5.3 41.1 ± 4.8
15.0 99.4 ± 7.9 59.3 ± 6.1 158.7 ± 8.7 49.1 ± 4.7 31.0 ± 3.8

a Maximum ethanol concentration reached.
b Yield of ethanol per substrate in g/g.
Each parameter was calculated from the data obtained in Fig. 1. Data are shown as the average values and standard deviations from four 
independent experiments.
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consumption of lactose by strain NBRC 1963 was prolonged 
in the media containing 10.0% and 12.5% total sugars and 
repressed in that containing 15.0% total sugars, due to the 
high initial content of glucose. The β-galactosidase activities 
were about twice those in the media composed of sacchari-
fied flour mixed with whey (Fig. 4). Strain KD-15 showed 
varied activities in the media containing 10.0%, 12.5%, and 
15.0% total sugars. Changes in β-galactosidase activity were 
not the same as those in the media composed of saccharified 
flour mixed with whey. However, the activity of strain KD-
15 was apparently higher than that of NBRC 1963, indicat-

tal sugars, similarly to strain KD-15, and was stimulated, in a 
limited manner, with 12.5% and 15.0% total sugars. The pat-
tern of enzyme activity in the two strains corresponded with 
their utilization of lactose.

Fermentation of saccharified potato tubers with whey
Fermentation was assessed in the media composed of sac-
charified potato tubers mixed with whey (Fig. 3). These me-
dia included smaller amounts of lactose than those prepared 
from flour, because the volumes of whey added to moist 
tubers are limited for the saccharification process (Table 2). 
Strain KD-15 fermented all the sugars in the media, while 
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Fig. 2.  β-Galactosidase activity in media composed of saccharified flour mixed with whey. Cells of strains KD-15 (a) and 
NBRC 1963 (b) in Fig. 1 were used for the assay of β-galactosidase activity. Symbols: ◇, 10.0%; ♦, 12.5%; △, 15.0%.

Fig. 3.  Ethanol production in media composed of saccharified potato tubers mixed with whey. Strains KD-15 (a, c, e) and 
NBRC 1963 (b, d, f) were grown in media containing about 10.0% (a, b), 12.5% (c, d), and 15.0% (e, f) total sugars, de-
rived from saccharified potato tubers mixed with whey. Data are shown as the average values and standard deviations from 
three independent experiments. Symbols are the same as those in Fig. 1.
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Fig. 5.  Repeated-batch fermentation in medium composed of saccharified flour mixed with whey. Strain KD-15 was 
grown in media containing about 15.0% total sugars, derived from saccharified flour mixed with whey. Data are shown as 
representative values from three independent experiments. Symbols: ○, ethanol; □, glucose; ■, lactose; ▲, cell number; △, 
cell viability.

Fig. 4.  β-Galactosidase activity in media composed of saccharified potato tubers mixed with whey. Cells of strains KD-15 
(a) and NBRC 1963 (b) in Fig. 3 were used for the assay of β-galactosidase activity. Symbols are the same as those in Fig. 2.

Ethanol Production by the Flex Yeast

Table 2.  Parameters of fermentation in media composed of saccharified potato tubers mixed with whey.

Strain Total sugar 
concentration (% [w/v])

Initial content (mg/mL)
Emax (mg/mL)a YE/S (%)b

Glucose Lactose Total

KD-15
10.0 56.1 ±4.0 48.9 ± 2.3 105.1 ± 5.4 46.1 ± 2.4 43.8 ± 0.3
12.5 98.0 ± 1.5 36.0 ± 0.6 134.0 ± 1.7 57.6 ± 3.0 43.0 ± 1.7
15.0 137.0 ± 10.8 19.1 ± 4.0 156.1 ± 7.0 69.1 ± 3.9 44.2 ± 0.5

NBRC 1963
10.0 55.9 ± 3.4 48.8 ± 0.3 104.7 ± 3.2 46.2 ± 2.7 44.2 ± 1.9
12.5 97.6 ± 4.8 35.9 ± 1.3 133.5 ± 5.9 53.9 ± 3.4 40.4 ± 3.6
15.0 138.8 ± 9.4 19.6 ± 4.4 158.4 ± 5.0 62.4 ± 3.2 39.6 ± 1.2

a Maximum ethanol concentration reached.
b Yield of ethanol per substrate in g/g.
Each parameter was calculated from the data obtained in Fig. 3. Data are shown as the average values and standard deviations from three 
independent experiments.
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pensated for by an increase in the total number of cells (Figs. 
5, 6). The initial pH of the media was 4.9-5.2 and was rou-
tinely reduced to 4.4-4.7 after each batch (data not shown).

Discussion
Microbial cells typically utilize certain sugars preferen-

tially, with catabolite repression blocking the synthesis of 
enzymes catalyzing the metabolism of other carbon sources 
(Gancedo, 1998). The extent of catabolite repression depends 
heavily on the species of organism, type of sugar, and culture 
conditions (Gancedo, 1992). Some microorganisms utilize 
less-preferred sugars after the concentrations of preferred 
sugars decrease below a certain level, while others cannot 
take up less-preferred sugars even after the consumption of 
preferred sugars (Kim et al., 2010a).

K. marxianus is reportedly free from catabolite repres-
sion with respect to the expression of respiratory enzymes, 
in contrast to S. cerevisiae (Fonseca et al., 2008), while pref-
erential utilization of glucose by K. marxianus was observed 
in a medium containing glucose and lactose (Wang et al., 
1987).

Among the 2-deoxyglucose-resistant mutants of K. 
marxianus NBRC 1963, strain KD-15 showed a catabolite-
repression insensitive phenotype, as lactose was metabo-
lized in the presence of sucrose with stimulated synthesis of 
β-galactosidase (Oda and Nakamura, 2009). However, it was 
not guaranteed that strain KD-15 could actually convert lac-
tose to ethanol in the presence of glucose.

ing its lack of sensitivity to catabolite repression triggered by 
exogenous glucose.

Repeated-batch fermentation    For the efficient produc-
tion of ethanol from 15.0% total sugars, the cells of strain 
KD-15 were harvested after fermentation and inoculated 
into fresh media composed of saccharified crops mixed with 
whey. These batch fermentations were repeated several times 
for each medium.

In the third batch fermentation of medium composed of 
saccharified flour mixed with whey, the cells utilized lactose 
rapidly, whereas glucose was utilized more slowly than in 
the first batch (Fig. 5). The experiment was terminated at the 
fifth batch because glucose was not consumed completely in 
48 h after the third batch.

In contrast, batch fermentation was successfully repeated 
at least ten times in the medium composed of saccharified 
potato tubers mixed with whey (Fig. 6). The cells took up all 
the sugars more quickly as the fermentation was repeated, 
confirming a previous report (Ma et al., 2009). The time to 
complete fermentation was reduced from 48 h in the first 
batch to 24 h in the third batch. The average values of the 
initial content of total sugars, maximum ethanol concentra-
tion reached, and yield of ethanol per substrate (g/g) through 
the 10-batch fermentations were 154.3 ± 2.3 (mg/mL), 64.1 
± 1.4 (mg/mL), and 41.5 ± 1.3 (%), respectively.

The number of vigorous cells in both fermentations 
seemed to be constant throughout the process, as determined 
from the findings that the reduction in viable cells was com-
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Fig. 6.  Repeated-batch fermentation in medium composed of saccharified potato tubers mixed with whey. Strain KD-15 
was grown in media containing about 15.0% total sugars, derived from saccharified potato tubers mixed with whey. Data 
are shown as representative values from three independent experiments. Symbols are the same as those in Fig. 5.
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mixed materials composed of saccharified flour and potato 
tubers combined with whey might result in a stable and ef-
ficient process.

Repeated-batch fermentation is a promising method to in-
crease ethanol production with a high cell density as well as 
to reduce manufacturing costs (Kim et al., 2010b; Yamakawa 
et al., 2010). Furthermore, flocculation characteristics might 
be required for efficient recycling of cells without centrifuga-
tion (Silva et al., 2010; Zhao and Bai, 2009).

A conventional S. cerevisiae strain exhibited a higher 
rate of ethanol production from sucrose compared with 
strain KD-15; however, it cannot consume lactose (Oda 
and Nakamura, 2009). Enzymatic hydrolysis of lactose by 
β-galactosidase makes it possible to generate glucose and 
galactose, which are fermentable by S. cerevisiae (Coté et 
al., 2004). However, preliminary experiments showed that a 
supplement of commercial β-galactosidase in the sacchari-
fication procedure did not completely split lactose derived 
from whey. Even when lactose is hydrolyzed to glucose and 
galactose, exogenous glucose represses galactose fermenta-
tion in S. cerevisiae through catabolite repression (Bailey et 
al., 1982). Ethanol production from saccharified crops mixed 
with whey still requires the use of strain KD-15, rather than S. 
cerevisiae strains, for the usual manufacturing process. The 
crops might be replaced by food-processing by-products, 
such as starch (Arapoglou et al., 2010; Ebrahimi et al., 2008) 
and cellulosic material from wheat or rice straw (Binod et 
al., 2010; Talebnia et al., 2010).
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