1 Note and Comments

3 Title:
4 Reduction of photosynthesis before midday depression occurred: leaf photosynthesis of
5 Fagus crenata in relation to canopy position and a number of days after rainfall.
6

7 Authors:
8 Kohei Koyama ${ }^{1 *}$, Kihachiro Kikuzawa ${ }^{1}$
9

10 *Corresponding author.

11

$12{ }^{1}$ Laboratory of Plant Ecology, Ishikawa Prefectural University, Suematsu, Nonoichi, 13 Ishikawa, 921-8836, Japan

14

15 (*) Email address: kkoyama@ishikawa-pu.ac.jp

Abstract

We investigated an effect of canopy position and a number of days after rainfall on reduction of photosynthetic rate in a Fagus crenata forest in summer 2008, during days when midday depression was not apparent. We compared in-situ photosynthetic rate and photosynthetic rate that was calculated by photosynthetic light response curves measured in the morning. The ratio, in-situ photosynthesis divided by the curve-estimated value, declined towards the end of each day for the upper leaves, but not for the lower leaves. Total photosynthesis was reduced only for the upper leaves by 12% during five days after the rainfall.

Key words: Photosynthesis; stomatal conductance; net primary production; temperate forest; Fagus crenata Blume.

Introduction

Temperate forests are carbon sinks against climate change (Granier et al. 2000; 2002; Luyssaert et al. 2008; Saigusa et al. 2008; Kato and Tang 2008; Ito 2008; 2010; Koyama \& Kikuzawa 2010a; Joo et al. 2011). The "big leaf model" extended single-leaf responses (Farquhar 1989) into whole-plant responses under the same scheme, and proposed simple relations predicting ecosystem carbon gain based on an optimization hypothesis (Sellers et al. 1992; Dewar et al. 1996; Haxeltine and Prentice 1996;

Terashima et al. 2005; Koyama and Kikuzawa 2009; 2010b). Recently, the big leaf model was validated even under fluctuating light intensity, both theoretically (Koyama and Kikuzawa 2010b), and empirically (Rosati and DeJong 2003; Rosati et al. 2004; Posada et al. 2009; Koyama and Kikuzawa 2010b). However, there have also been countless results showing that the optimization was not always realized (Field 1983; Hirose and Werger 1987; Meir et al. 2002; Posada et al. 2009). One possible explanation for this discrepancy is that photosynthesis is not only limited by light, but also by other factors (Mooney and Gulmon 1979; Meir et al. 2002; Niinemets and Valladares 2004). Even when light is plentiful, both stomatal and non-stomatal limitation plays important roles for reducing in-situ photosynthetic rate for trees (Ishida et al. 1999a; Muraoka et al. 2000; Niinemets et al. 2004; Valladares and Pearcy 2002; Misson et al. 2010). In this study, we will demonstrate that photosynthesis of upper leaves on Fagus crenata forest was not solely determined by light, but also by stomatal limitation.

Leaf stomatal conductance is controlled by many factors. External environment such as air humidity (Jarvis 1976; Tenhunen et al. 1987; Ball et al. 1987; Harley and Tenhunen 1991; Leuning 1995; see review by Damour et al. 2010) controls stomata via increment of transpiration (Mott and Parkhurst 1991; Mott and Peak 2010). However, Damour et al. (2010) concluded that in addition to those leaf-level responses, including an effect of soil water condition is needed. Tazaki et al (1980) reported that upper leaves of mulberry tree showed no midday depression in the second day after the last rainfall,
but apparent depression occurred in the eighth day. Nakai et al. (2010) also reported in the experiment of Salix gracilistyla cuttings, that the longer the drought treatment, the more stomatal limitation on photosynthesis. However, those studies did not investigate the difference of stomatal limitation between canopy positions.

Within a single canopy, a limiting factor for photosynthesis may differ among different positions. Firstly, leaves from different positions within a canopy themselves differ morphologically, chemically, anatomically and physiologically. This is observed in Fagus crenata (Uemura et al. 2000; Yamasaki and Kikuzawa 2003; Iio et al. 2005; 2009; Koyama and Kikuzawa 2010ab), other temperate deciduous trees (Niinemets 1995; 2010; Koyama and Kikuzawa 2010b; Yoshimura 2010) and temperate evergreens (Hozumi and Kirita 1972; Katahata et al. 2007). Also, leaves on higher position may have smaller water reserves (Jarvis 1976) and / or longer water pathway from root (Ryan et al. 2006). Hence, it is expected that a degree of stomatal limitation of photosynthesis should differ among different canopy positions. However, in most of the previous studies, the effect of canopy position was not investigated (cf. Tazaki et al. 1980; Zotz and Winter 1996; Muraoka et al. 2000; Ishida et al. 1999a; 2000; Valladares et al. 2008; Misson et al. 2010; Nakai et al. 2010). For other studies which investigated different canopy positions, the temporal pattern in relation to soil water conditions was not investigated (cf. Muraoka and Koizumi 2005; Iio et al. 2009). To date, knowledge on the interaction between soil water condition and canopy position is very limited (cf.

Niinemets et al. 2004). Regarding the above argument, it is necessary to simultaneously investigate both of the above two factors (Niinemets and Valladares 2004). The aim of this study is to elucidate spatial and temporal pattern of efficiency of photosynthetic rate under field condition in a Japanese beech forest (Fagus crenata Blume). We tested the following two hypotheses. (1) Daytime reduction of photosynthesis was apparent for the upper leaves, but not for the lower leaves. (2) This reduction was interactively affected by the soil water condition. There will be no apparent reduction in daily photosynthetic rate just after a rainfall, but will be a significant reduction when the number of days after the last rainfall increased.

Methods

Species and Site

Fagus crenata Blume is a late-successional deciduous canopy tree distributed in mountainous regions in Japan (Matsui et al. 2004). The site was a 15 -year-old plantation in the Ishikawa Prefectural Forest Experiment Station $\left(36^{\circ} 25^{\prime} \mathrm{N}, 136^{\circ} 38^{\prime}\right.$ E, elevation 220 m), which is located at the foot of Mt. Hakusan. At the plantation, 130 trees were planted in 1995 in the area of $171 \mathrm{~m}^{2}$. Those trees were grown by seeds from Mt . Hakusan (Jiro Kodani, personal communication), and hence they should belong to the Japan Sea coast haplotypes (cf. Okaura and Harada 2002). The stand height and the mean DBH were around 6 m and 4.7 cm in 2008, respectively. The canopy was closed

111 Photosynthesis measurement

112 A total of 91 mm rainfall was observed within two days in 27 and 28 July 2008 at the 113 site (data from the Ishikawa Prefectural Forest Experiment Station, by courtesy of Dr. 114 Jiro Kodani). There was no rain during successive measurement days as confirmed by a 115 plastic funnel-top container set above the canopy. The measurements were conducted on
the 1 st, the 3 rd and the 5 th day after the last rainfall on 28 July. We used two portable photosynthesis systems (LI-6400, LI-COR, Lincoln, USA), with CO_{2} supply inside the chambers kept at 350 ppm . Four leaves on the upper part of the canopy (i.e. "the upper leaves") were selected from one branch at the height of 5.7 m . Those were accessed by a scaffolding tower. Another four leaves on the lower canopy (i.e. "the lower leaves") were selected from one branch on an adjacent tree at the height of 1.5 m , as there were no accessible lower leaves on the same tree. For each position (the upper and lower), incident photosynthetically active photon flux density (PPFD) were measured for seven times with 1-2 hours intervals during daytime (8:30-16:00) with a quantum sensor (IKS-27, KOITO Kogyo, Yokohama, Japan) placed above the branch of those leaves. Hence, the angle of each leaf was not considered in this study. Net photosynthetic rates of those intact leaves at each moment were measured by the two LI-6400s under the PPFD of the same intensity just recorded on those leaves on each occasion, which were supplied by the LED light sources (LI-6400-02B). On each occasion, the PPFDs were kept constant until the equilibration of the leaves (typically, 20-40 min). Leaf conductance to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\left(\mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$, leaf temperature, and vapor pressure deficit based on leaf temperature (VPD) (kPa) were simultaneously calculated by the LI-6400s. In the following, we will regard g as equivalent to leaf stomatal conductance, assuming that leaf boundary layer resistance was negligible. Immediately after each occasion of the photosynthetic measurement, dark respiration rate was measured with zero light.

We simultaneously measured one photosynthetic light response curve for each of the same sample leaves with the same LI-6400s. Those measurements were conducted from 9:30 to 11:30 a.m., intermittently between the in-situ photosynthesis measurements described above. For the lower leaves, all the four leaves were measured on the 1st day. For the upper leaves, as we could not finish the measurement on the 1st day, each two of the four leaves were measured on the 1 st and the 3 rd day. On each measurement, the leaves were firstly induced by PPFD $=1500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ until equilibration. Then, PPFD was changed from higher to lower (2000, 1500, 1000, 750, $500,250,125,63,32$ and $0 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) with the LEDs. On each occasion of the change, PPFD was kept constant until the equilibration of the leaves. During those light-response measurements, leaf temperatures were not controlled and ranged $28.6^{\circ} \mathrm{C}$ $-33.2{ }^{\circ} \mathrm{C}$ and $28.1^{\circ} \mathrm{C}-31.9^{\circ} \mathrm{C}$ for the upper and the lower leaves, respectively.

Data analysis
Diurnal course of in-situ gross photosynthetic rate $\left(P_{\mathrm{g}_{-} \text {mes, }}, \mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right.$) for each leaf was calculated as the sum of net photosynthesis and dark respiration rate at each moment. We set another open-sky PPFD sensor set above the canopy during the measurement days, and we set $P_{\mathrm{g} _ \text {mes }}$ at the dawns and the sunsets as both zeros (i.e. when the open-sky PPFD became zero) on each day. Daily photosynthesis for each leaf was estimated by interpolations of those $P_{\mathrm{g}_{-} \text {mes }}$ values.

We alternatively calculated hypothetical diurnal courses of gross photosynthetic rate, estimated solely by the diurnal change of the light intensity. Each net photosynthetic rate during the light-response measurement (from PPFD 0 to 2000 $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$, see above) were converted to gross photosynthetic rate by adding dark respiration rate $(\operatorname{PPFD}=0)$. Then, non-rectangular hyperbola (Marshall and Biscoe 1980) was fitted by KaleidaGraph 4 (Synergy Software, Reading, USA) $\left(r^{2}>0.997\right)$:
$P_{\mathrm{g} \mathrm{cv}}=\frac{\Phi I+P_{\max }-\sqrt{\left(\Phi I+P_{\max }\right)^{2}-4 \theta \Phi I P_{\max }}}{2 \theta} \quad\left(\mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \quad$ Eq. 1

In Eq. $1, P_{\mathrm{g}_{\mathrm{c}} \mathrm{cv}}\left(\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$ indicates a curve-estimated gross photosynthetic rate at each incident PPFD intensity ($I, \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}$). $P_{\text {max }}$ indicates maximum gross photosynthetic rate of that leaf when I approaches infinity. The other two parameters, ϕ ($\mu \mathrm{mol} \mu \mathrm{mol}^{-1}$) and θ (dimensionless) indicate initial slope and convexity, respectively. The curve-estimated photosynthetic rate $\left(P_{\mathrm{g}_{\mathrm{c}}} \mathrm{cv}, \mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$ at each time was estimated by substituting the same incident PPFD as was used in the in-situ photosynthetic rate described above into Eq. 1 with each different set of parameters $P_{\text {max }}, \phi$ and θ for each different leaf. We used each single set of parameters for each leaf, such that same photosynthetic light response curves were assumed throughout the five measurement days. In other words, we hypothetically fixed conditions of the leaves at the time of 13.0J for Windows (SPSS Japan Inc, Tokyo, Japan).

Results

Upper leaves had higher maximum gross photosynthetic rate ($P_{\mathrm{g}_{-} \max }$) and dark respiration rate (Table 1), which is consistent with the previous studies (Iio et al. 2005; Koyama and Kikuzawa 2010b). Diurnal course of in situ gas exchange rate ($P_{\mathrm{g} _\mathrm{mes}}$) basically followed incident PPFD both for the upper and the lower leaves, except in the afternoon on the fifth day (Fig. 1a). There were no apparent "midday" depressions for the both positions. The only visible difference was found in the upper leaves on the 5th day, in which afternoon photosynthetic rate was apparently lower than that in the morning. Diurnal course of VPD and leaf temperature showed similar pattern as that of PPFDs (Fig. 1c). Leaf conductance to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ tended to decline towards the end of each day (Fig. 1b). This trend was evident on all the days for the upper leaves, but only on the 5th day for the lower leaves. The actual in-situ daily gross photosynthetic rate averaged over the three measurement days was 0.35 and $0.042\left(\mathrm{~mol} \mathrm{~m}^{-2} \mathrm{day}^{-1}\right)$ for the upper and lower leaves, respectively.

Although "midday depression" was not apparent, a clear difference was detected between canopy positions when we compare $P_{\mathrm{g}_{-} \mathrm{mes}} / P_{\mathrm{g}_{\mathrm{c}} \mathrm{cv}}$ (Fig. 2). For the upper leaves $P_{\mathrm{g}_{\mathrm{\prime}} \text { mes }} / P_{\mathrm{g} _ \text {cv }}$ linearly declined towards the end of each day. In contrast, for the lower leaves $P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ only fluctuated around the mean value for all the days. The slope of the decline of the upper leaves became steeper (i.e. more negative), as the number of days after the last rain increased (Fig. 3). The $P_{\mathrm{g}_{-} m e s} / P_{\mathrm{g}_{-} \mathrm{cv}}$ were strongly and

218

positively correlated with leaf conductance to $\mathrm{H}_{2} \mathrm{O}$ for the upper leaves, but there were no consistent relationships for the lower leaves (Fig. 4).

Discussion

We found a clear difference between canopy positions; only the upper leaves showed declining trends in photosynthetic efficiency (Fig. 2). We estimated the percentage loss of daily gross photosynthetic rate due to this decline as follows. When $P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ of one particular time (say, 15:00) on one day was 0.85 , while $P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ of the earliest morning within that day was 1.1 (see Fig. 2 upper), we calculated the ratio $1.1 / 0.85$ (= 1.3). It means that leaves in the earliest morning can conduct 1.3 times more photosynthesis than the actual leaf exists at 15:00 under the same PPFD observed at 15:00. Then, we calculated product of this ratio and $P_{\mathrm{g}_{\mathrm{\prime}} \text { mes }}$ on each time on each day. It is the estimation of hypothetical photosynthetic rate conducted by a leaf, being "fixed" at the condition of that in the earliest morning, whilst PPFD on that leaf was changed as the same way as the actual diurnal course. Finally, we calculated potential gross daily photosynthetic rate by the interpolation of those values as the same manner as the above actual ones. Compared with those potential values, actual gross daily photosynthetic rates were 12% and 1% less for the upper and the lower leaves, respectively. Hence, the reduction was modest for the upper leaves, and did not exist for the lower leaves. Those results supported the hypothesis that photosynthesis is constrained more greatly for the
upper leaves than the lower leaves (Jarvis 1976; Niinemets et al. 2004).
Among the upper leaves, $P_{\mathrm{g}_{_} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ decreased towards the end of each day. This result supported Jarvis (1976), who suggested that water reserves within branches or stems were gradually exhausted in upper canopies towards the end of each day. This diurnal decline became steeper, as the number of days after the rainfall increased (Fig. 3). Then, the visible reduction of photosynthetic rate was eventually observed in the afternoon on the fifth day (Fig. 1a). Those results are consistent with the study of a mulberry tree (Tazaki et al. 1980), which showed that midday depression was not evident until the second day after the last rainfall, but it was apparent from one week after the rainfall. Those results were consistent with the classical scheme of the periodical decline of soil water potential from morning to sunset within each day, with the absolute water availability decreases as days after the last rain proceeds (Slatyer 1967). Kikuzawa et al. (2004) reported 46.5% reduction of daily photosynthesis for the sun leaves of Alnus sieboldiana, when the apparent midday depression occurred. Our results (12% loss without visible midday depression) suggests that a reduction of photosynthesis does not abruptly rises up to 46% when an apparent midday depression is observed, but it gradually increases from the onset of a rainless period. This indicates that there may be no threshold condition for a midday depression. Hence, our results depicted more general pattern than that of Tazaki et al. (1980), since it showed reduction of photosynthesis before "midday depression" was apparent. Stomatal limitation was expected to be higher for the upper leaves, which were exposed to high light environment (Niinemets and Valladares 2004). In addition, leaves on the higher position may have smaller water reserves (Jarvis 1976), longer water pathway from root (Ryan et al. 2006) and, specifically for tall trees, less water potential due to gravitation (Ishii et al. 2008; Nabeshima and Hiura 2008). Another mechanism suggested that sunlit upper leaves may have more water supplies by a selective investment of water into favorable sunlit leaves (Sprugel et al. 2002). In this study (6 m height), the gravitational effect should be negligible. However, we could not separate each of those confounding effects, as we selected upper and lower leaves from different individuals. Hence, before generalizing our results to other forests, mechanistic measurements including investigation of water supply on each position is needed to separate those factors.

We did not measured photoinhibition. Actual reduction is caused by both stomatal limitation and photoinhibition (Ishida et al. 1999abc; 2000; 2001; Muraoka et al. 2000; Werner et al. 2001; Valladares and Pearcy 2002; Yamazaki et al. 2007; Misson et al. 2010). Uemura et al. (2005) discussed that the reduction of photosynthesis in another Fagus crenata forest was due to photoinhibition, rather than stomatal closure. Our results showed that at least some part of reduction of photosynthesis was related to stomatal closure, which did not violate the conclusion by those studies.

We used LED light-sources, such that an effect of heat loading (Ishida et al.

2000; Uemura et al. 2005; Iio et al. 2009; Vogel 2009) may not have been properly evaluated. Although our method has a clear disadvantage in these points, it has another merit than those using natural sunlight. Diurnal course of incident photosynthetic rate did not show a visible midday depression on the 1st day (Fig 1a), which is consistent with Tazaki et al. (1980). However, when we calculated the $P_{\mathrm{g}_{\mathrm{m}} \mathrm{mes}} / P_{\mathrm{g}_{\mathrm{c}} \mathrm{cv}}$, the reduction became apparent from the 1st day (Fig. 2). Hence, the reduction was detected only when we evaluated the ratio of the two kind of photosynthetic rates, $P_{\mathrm{g}_{\mathrm{_}} \text {mes }}$ and $P_{\mathrm{g}_{\mathrm{c}}}$, both of which were measured by the same LEDs, so that were readily comparable.

The study period was during the hottest season of one year on one particular ecotype of Fagus crenata. However, patterns of photosynthetic limitation should vary among seasons or years (Ishida et al. 1999b; Valladares et al. 2008; Misson et al. 2010). Generally, responses to environment differ among species (Turner et al. 1984; Ishida et al. 1999a; Uemura et al. 2000; 2005; Turnbull et al. 2002; Oguchi et al. 2005; Valladares et al. 2008; Kitaoka et al. 2009; Kamiyama et al. 2010), among ecotypes of Fagus crenata (Yamazaki et al. 2007; Tateishi et al. 2010), and between microhabitats (Koyama and Kikuzawa 2008; Nagano et al. 2009). A behavior of a plant can be considered as a summation of simple basic principles and those situation-dependent factors (Koyama and Kikuzawa 2009). Simple theories and complex factors are not mutually exclusive, but are compensatory for each other.

Acknowledgements

Soc Exp Biol 31:471-505

316 Granier A, Pilegaard K, Jensen NO (2002) Similar net ecosystem exchange of beech stands located in 317 France and Denmark. Agric For Meteorol 114:75-82

318 Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental 319 factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis, from biochemistry to canopy, 320 CSSA, Madison, pp 17-19

321 Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct 322 Ecol 10:551-561

Hirose T, Werger MJA (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen
allocation pattern in the canopy. Oecologia 72:520-526

Hozumi K, Kirita H (1970) Estimation of the rate of total photosynthesis in forest canopies. Bot Mag Tokyo 83:144-151

Iio A, Fukasawa H, Nose Y, Kato S, Kakubari Y (2005) Vertical, horizontal and azimuthal variations in 329 Physiol 25:533-544

330 Iio A, Fukasawa H, Nose Y, Naramoto M, Mizunaga H, Kakubari Y (2009) Within-branch heterogeneity 331 of the light environment and leaf temperature in a Fagus crenata crown and its significance for
photosynthesis calculations. Trees 23:1053-1064
333 Ishida A, Nakano T, Matsumoto Y, Sakoda M, Ang LH. (1999a) Diurnal changes in leaf gas exchange and 334 chlorophyll fluorescence in tropical tree species with contrasting light requirements. Ecol Res 14:77-88 exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751-763

350 Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and 351 validated using AsiaFlux data. Agric For Meteorol 148:738-747

352 Ito A (2010) Changing ecophysiological processes and carbon budget in East Asian ecosystems under 353 near-future changes in climate: implications for long-term monitoring from a process-based model. 354 Journal of Plant Research 123:577-588

Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans Roy Soc Lond B 273:593-610

Joo SJ, Park MS, Kim GS, Lee CS (2011) CO_{2} flux in a cool-temperate deciduous forest (Quercus mongolica) of Mt. Nam in Seoul, Korea. J Ecol Field Biol 34:95-106

Kamiyama C, Oikawa S, Kubo T, Hikosaka K (2010) Light interception in species with different functional groups coexisting in moorland plant communities. Oecologia 164:591-599

Katahata S, Naramoto M, Kakubari Y, Mukai Y (2007) Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 21:619-629

Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO_{2} sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Change Biol 14:1-16 Katul G, Manzoni S, Palmroth S, Oren R (2010) A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Bot 105:431-442

Kikuzawa K, Shirakawa H, Suzuki M, Umeki K (2004) Mean labor time of a leaf. Ecol Res 19:365-374

Kitaoka S, Watanabe Y, Koike T (2009) The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings. Tree Physiol 29:1503-1511

Koyama K, Kikuzawa K (2008) Intraspecific variation in leaf life span for the semi-evergreen liana Akebia trifoliata is caused by both seasonal and aseasonal factors in a temperate forest. J Ecol Field Biol 31: 207-211

Koyama K, Kikuzawa K (2009) Is whole-plant photosynthetic rate proportional to leaf area? A test of
scalings and a logistic equation by leaf demography census. Am Nat 173:640-649
light saturation and light use efficiency. Oecologia 163:53-63. DOI 10.1007/s00442-010-1638-9

Leuning R (1995) A critical appraisal of combined stomatal-photosynthesis model for C_{3} plants. Plant

Cell Environ 18:339-355

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008)

Marshall B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on
irradiance. I. Derivation. J Exp Bot 31:29-39

Matsui T, Yagihashi T, Nakaya T, Tanaka N, Taoda H (2004) Climatic controls on distribution of Fagus
crenata forests in Japan. J Veg Sci 15:57-66. DOI: 10.1111/j.1654-1103.2004.tb02237.x

Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002)
Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen
concentration and leaf mass per unit area. Plant Cell Environ 25:343-357

Misson L, Limousin J-M, Rodriguez R, Letts MG (2010) Leaf physiological responses to extreme
droughts in Mediterranean Quercus ilex forest. Plant Cell Environ 33:1898-1910

Mooney HA, Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic
characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant with greater mass per area under wind-stress conditions? Plant Biol 11:94-100

411 Nakai A, Yurugi Y, Kisanuki H (2010) Stress responses in Salix gracilistyla cuttings subjected to 412 repetitive alternate flooding and drought. Trees 24:1087-1095

413 Niinemets Ü (1995) Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: 414 adapation to a vertical light gradient. Acta Oecol 16:52-5441.

Mott KA, Parkhurst DF (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ 14:509-515

Mott KA, Peak D (2010) Stomatal responses to humidity and temperature in darkness. Plant Cell Environ 33:1084-1090

Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain. Agric For Meteor 134:39-59.

Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in the natural high light. Plant Cell Environ 23:235-250

Nabeshima E, Hiura T (2008) Size-dependency in hydraulic and photosynthetic properties of three Acer species having different maximum sizes. Ecol Res 23:281-288

[^0]415 Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant 416 functional types and in species with varying shade tolerance. Ecol Res 25:693-714

417 Niinemets Ü, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting 418 environmental stresses along natural light gradients: optimality and constraints. Plant Biol 6:254-268

419 Niinemets Ü, Sonninen E, Tobias M (2004) Canopy gradients in leaf intercellular CO2 mole fractions 420 revisited: interactions between leaf irradiance and water stress need consideration. Plant Cell Environ

27:569-583

Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant

Cell Environ 28:916-927

Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese Beech (Fagus crenata Blume). Heredity 88:322-329
achieved by adjustment of individual leaf angles and nitrogen content. Ann Bot 103:795-805

Rosati A, DeJong TM (2003) Estimating photosynthetic radiation use efficiency using incident light and

454 Turner NC, Schulze E-D, Gollan T. (1984) The responses of stomata and leaf gas exchange to vapour top canopies of two Fagus trees in a winter-deciduous forest, Japan. For Ecol Manag 212:230-242 and late-winter frosts? Ann Bot 102:923-933

Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:

Yamasaki M, Kikuzawa K (2003) Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137:226-232
pressure deficits and soil water content. I. Species comparison at high soil water contents. Oecologia 63:338-342.

Uemura A, Ishida A, Nakano T, Terashima I, Tanabe H, Matsumoto Y (2000) Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiol 20:945-951

Uemura A, Ishida A, Matsumoto Y (2005) Simulated seasonal changes of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ exchange at the

Valladares F, Pearcy RW (2002) Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year. Plant Cell Environ 25:749-759

Valladares F, Zaragoza-Castells J, Sánchez-Gómez D, Matesanz S, Alonso B, Portsmuth A, Delgado A, Atkin OK (2008) Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effects of photoinhibition on whole-plant carbon gain

476

 27:961-968477 Yoshimura K (2010) Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen
478 distribution of leaves in Cedrela sinensis. Plant Cell Environ 33:750-758 Zotz G, Winter K (1996) Diel patterns of CO2 exchange in rainforest canopy plants. In: Mulkey SS, 480 Chazdon RL, Smith AP (eds.) Tropical Forest Plant Ecophysiology. Chapman \& Hall, New York, pp 481 89-113 PPFD on the branch. b Leaf conductance to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. c (Open boxes) leaf temperature.

500 (Open circles) vapor pressure deficit based on the leaf temperature (VPD).
Table 1 The photosynthetic light response curve parameters and dark respiration rate $\left(R_{\mathrm{d}}\right)$ at the time of the curve measurement.

	Upper	Lower	Units
$P_{\text {max }}$	13.7^{a}		3.8^{b}
ϕ	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$		
θ	0.055	0.049	$\mathrm{~mol} \mathrm{~mol}^{-1}$
θ	0.21	0.55	
R_{d}	1.8^{c}		0.2^{d}

Different uppercase letters: (a, b) $p<0.01$ and (c, d) $p<0.05$ (t - test).

Figure Legends (Figs. 1-4)

Fig. 1 Diurnal courses of the parameters. The left, the middle and the right column shows the 1st, the 3rd and the 5th day after the last rain in 28 July 2008, respectively. For each parameter but PPFD (one sensor), the mean value of the four leaves on each position are respectively shown. The error bars indicate the unbiased estimate of the standard deviation.
a (Closed circles) in situ gross photosynthetic rate of the leaves ($P_{\mathrm{g} _ \text {mes }}$). (Open circles)
(5th day) $P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \mathrm{cv}}=1.4-4.1 \times 10^{-2} \mathrm{~h}$.

513 Fig. 3 The slopes of the diurnal decline of $P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ (i.e. the slopes of the linear

517 Fig. $4 P_{\mathrm{g}_{-} \text {mes }} / P_{\mathrm{g}_{-} \text {cv }}$ in relation to g. Each open circle and its error bar indicate mean value and standard deviation, respectively, for the four leaves in each position.

519 Pearson's correlation coefficients (r) were shown (${ }^{*} p<0.05,{ }^{* * *} p<0.001$).
Fig. 2 Diurnal course of $P_{\mathrm{g}_{\mathrm{\prime}} \text { mes }} / P_{\mathrm{g}_{\mathrm{c}} \text { cv }}$, the ratio between in-situ photosynthetic rate on each time and photosynthetic rate estimated by photosynthetic light response curve, which was measured at one particular time during measurement days for each leaf. Each open circle and its error bars indicate mean value and its unbiased standard deviation, respectively, for the four leaves on each canopy position. Solid lines indicate significant linear regressions (${ }^{*} p<0.05,{ }^{* *} p<0.01$):
(1st day) $P_{\mathrm{g}_{\mathrm{_}} \mathrm{mes}} / P_{\mathrm{g} _\mathrm{cv}}=1.3-2.2 \times 10^{-2}$ Time of day (h). (3rd day) $P_{\mathrm{g}_{\mathrm{L}} \text { mes }} / P_{\mathrm{g}_{\mathrm{_}} \mathrm{cv}}=1.4-2.9 \times 10^{-2} \mathrm{~h}$. regressions for the upper leaves shown in Fig. 2) in relation to number of days after the last rain.
522

Fig. 2

526
527
Fig. 3

$530 \quad$ Fig. 4

[^0]: 者

