Accepted Manuscript

Effects of fungal culture filtrates of *Verticillium lecanii* (*Lecanicillium* spp.) hybrid strains on *Heterodera glycines* eggs and juveniles

Ryoji Shinya, Daigo Aiuchi, Atsuhiko Kushida, Masayuki Tani, Katsuhisa Kuramochi, Masanori Koike

 PII:
 S0022-2011(07)00243-1

 DOI:
 10.1016/j.jip.2007.11.005

 Reference:
 YJIPA 5682

To appear in:

: Journal of Invertebrate Pathology

Received Date:21 May 2007Revised Date:19 November 2007Accepted Date:20 November 2007

Please cite this article as: Shinya, R., Aiuchi, D., Kushida, A., Tani, M., Kuramochi, K., Koike, M., Effects of fungal culture filtrates of *Verticillium lecanii* (*Lecanicillium* spp.) hybrid strains on *Heterodera glycines* eggs and juveniles, *Journal of Invertebrate Pathology* (2007), doi: 10.1016/j.jip.2007.11.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Effects of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid
2	strains on <i>Heterodera glycines</i> eggs and juveniles
3	
4	Ryoji SHINYA ^{a,b} , Daigo AIUCHI ^{a,c} , Atsuhiko KUSHIDA ^d , Masayuki TANI ^a ,
5	Katsuhisa KURAMOCHI ^a , and Masanori KOIKE ^{a,*}
6	
7	^a Department of Agro-Environmental Science, Obihiro University of Agriculture and
8	Veterinary Medicine, Hokkaido 080-8555, Japan. * Corresponding author [e-mail:
9	koike@obihiro.ac.jp]
10	^b Present address: Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto
11	606-8502, Japan.
12	^c The United Graduate School of Agricultural Science, Iwate University, Morioka
13	020-8550, Japan.
14	^d National Agricultural Research Center for Hokkaido Region, Memuro, Hokkaido
15	082-0071, Japan.

16 Abstract

17	Many nematode-antagonistic fungi produce secondary metabolites and enzymes that
18	demonstrate toxicity against plant-parasitic nematodes. The objective of this study was
19	to evaluate the effects of fungal culture filtrates of Verticillium lecanii hybrid strains on
20	mature eggs, embryonated eggs (eggs fertilized but without development of juveniles),
21	and second-stage juveniles (J2) of Heterodera glycines and to compare these effects
22	with those of their parental strains. The fungal culture filtrates of certain hybrid strains
23	inhibited egg hatch of mature eggs. Furthermore, the fungal culture filtrates of two
24	hybrid strains, AaF23 and AaF42, exhibited high toxicity against embryonated eggs of
25	H. glycines. However, most of the fungal culture filtrates of V. lecanii did not inactivate
26	J2. These results suggested that enzymes or other active compounds produced by the
27	fungal culture filtrates of V. lecanii exhibit activity against specific stages in the H.
28	glycines life cycle. In addition, based on a visual assessment of the morphological
29	changes in eggs caused by filtrates of each strain, there were differences between the
30	hybrid strains and their respective parental strains with regard to the active substances
31	produced by V. lecanii against the embryonated eggs. As a result of promoting
32	recombination of whole genomes via protoplast fusion, several hybrid strains may have
33	enhanced production of active substances that are different from those produced by their

- 34 parental strains. It was concluded that natural substances produced by *V. lecanii* are one
- 35 of the important factors involved in the suppression of *H. glycines* damage.
- 36
- 37 Keywords: Egg hatch; Embryonated egg; Fungal culture filtrate; Heterodera glycines;
- 38 Hybrid strain; Protoplast fusion; *Verticillium lecanii*; Second-stage juvenile

X

39 **1. Introduction**

40

41	Verticillium lecanii (A. Zimmermann) Viegas has been investigated as a
42	potentially useful biological control agent (BCA) against soybean cyst nematode (SCN),
43	Heterodera glycines Ichinohe (Meyer and Meyer, 1995; Meyer and Meyer, 1996). It is
44	known that V. lecanii colonizes the cyst nematodes H. glycines, Heterodera schachtii,
45	Heterodera avenae and Globodera pallida, and the root-knot nematodes Meloidogyne
46	incognita (Hanssler and Hermanns, 1981; Gintis et al., 1983; Meyer et al., 1990;
47	Olivares-Bernabeu and Lopez-Llorca, 2002; Uziel and Sikora, 1992; Eapen et al.,
48	2005). A potential method of enhancing activity of this species against SCN is through
49	production of hybrid strains. Aiuchi et al. (2004) performed protoplast fusion among
50	three strains of V. lecanii and obtained 174 hybrid strains. Our previous study
51	demonstrated that, when compared with their parental strains, some of these hybrid V .
52	lecanii strains suppressed damage on soybean plants and reduced the density of SCN in
53	greenhouse pot tests, thereby suggesting that these hybrid strains have potential as
54	biological control agents against SCN (Shinya et al., 2007).
55	Consequently, further studies are being conducted to improve and ensure the activity of

56 these strains by investigating the mechanisms responsible for the suppression of plant

~

57	damage and of SCN populations. One area under investigation is production of
58	nematotoxic compounds by selected V. lecanii strains. Many nematode-antagonistic
59	fungi produce secondary metabolites and enzymes that demonstrate toxicity against
60	plant-parasitic nematodes (Chen et al., 2000; Meyer et al., 2004; Nitao et al., 1999;
61	Nitao et al., 2001; Nitao et al., 2002; Anke et al., 1995; Hallmann and Sikora, 1996;
62	Bonants et al., 1995), and it was hypothesized that V. lecanii produced a natural
63	substance that could affect egg viability (Meyer and Wergin, 1998). While it has been
64	reported that certain insecticidal secondary metabolites or enzymes are produced by V .
65	lecanii (Kanaoka et al., 1978; Soman et al., 2001; Wang et al., 2005; Butt, 2002;
66	Claydon and Grove, 1982; Jackson et al., 1985; Liu et al., 2003), secondary metabolites
67	or enzymes with nematode-antagonistic properties are not as well studied. Therefore,
68	the purpose of this study is to evaluate the toxic effects of fungal culture filtrates of
69	hybrid strains of V. lecanii on eggs and juveniles of SCN, and to compare the toxicity of
70	the hybrid strains with that of their parental strains.

- 71
- 72 **2. Materials and methods**
- 73

74 2. 1. Fungal strains

76	Twelve strains of V. lecanii were used for this experiment. Two of these strains
77	(Vertalec® and Mycotal®) have been used for commercial purposes as biological
78	control agents (Koppert UK Ltd. Wadhurst, East Sussex, UK) against pest insects (Hall,
79	1984). A third strain, B-2, was isolated from green peach aphids at Obihiro. The
80	remaining nine strains were obtained by protoplast fusion (Aiuchi et al., 2004) (Table
81	1).
82	All twelve strains were cultured in potato dextrose broth (PDB; Difco
83	Laboratories, Detroit, USA) or Czapek-Dox broth. Erlenmeyer flasks (50 ml) containing
84	40 ml of liquid medium were each inoculated with a 1 cm ² block from a 2-week-old
85	fungal colony growing on potato dextrose agar (PDA; Difco Laboratories, Detroit,
86	USA). All the strains were grown in stationary culture for 4 weeks at 25°C, and the
87	fungal biomass was removed by centrifugation (3000 rpm/1000g for 5 min) and passed
88	through a 0.45-µm filter. This procedure remained identical in all the experiments. The
89	pH of each culture filtrate was recorded (Table 2).
90	
91	2. 2. Effect of fungal culture filtrates on hatch of mature eggs

93	SCN used for this experiment was cultured on soybean, Glycine max (L.) Merr.
94	cv. Kurosengoku, (planted at the National Agricultural Research Center for Hokkaido
95	Region, Shinsei, Japan). The SCN-infested soil was taken from the field and maintained
96	at 4°C for 6 months. The cysts in the soil were washed with a vigorously flowing stream
97	of tap water passing through a 710-µm-pore sieve onto a 250-µm-pore sieve, collected
98	in tap water, and then centrifuged. Light brown to dark brown cysts were picked and
99	crushed to release the eggs. The eggs were separated from the debris by passing through
100	a sterile 64- μ m-pore sieve onto a sterile 35- μ m-pore sieve, and were then placed into
101	0.5% NaOCl for 2 min. The eggs were rinsed 5 times with 100 ml sterile distilled
102	water in a sterile beaker.
103	Egg suspensions (0.1 ml) were placed into wells of a 24-well tissue culture
104	plate (ca.100 eggs/well) and combined with 0.9 ml of fungal culture filtrates at various
105	dilutions (diluted to 1/2, 1/4, 1/10, or 1/100 of the original concentration). PDB and
106	Czapek-Dox broth without fungal inoculum were used as controls. Six replicates of
107	each dilution were prepared. For 2 weeks, the eggs were preserved in a dark
108	environment at 27°C. The numbers of second-stage juveniles (J2) hatched on days 4, 7,
109	and 14 were counted using an inverted light microscope, and the percentages of hatched

eggs were calculated as follows: number of hatched J2/number of eggs originally placed
in the well × 100 (Meyer et al., 2004).

112

113 2. 3. Effect of fungal culture filtrates on the development of embryonated eggs

114

115 Four strains of V. lecanii (AaF23, AaF42, Vertalec®, and Mycotal®) were 116 cultured in PDB and fungal culture filtrates were prepared. Heterodera glycines was 117 cultured on soybean, Glycine max (L.) Merr. cv. Kurosengoku, planted in a greenhouse. 118 Pale vellow to vellow females were obtained by carefully washing the soybean roots (10 119 weeks old) and rhizosphere soil over a 710-µm-pore sieve onto a 250-µm-pore sieve. 120 These females were collected and crushed with forceps and a needle to release the eggs. 121 At this point, mature eggs containing first-stage juveniles (J1) and J2 were carefully 122 removed using a Pasteur pipet and discarded. The embryonated eggs were collected and 123 separated from the debris by washing them through a sterile 64-µm-pore sieve onto a 124 sterile 35-µm-pore sieve, and were placed in 0.5% NaOCl for 1.5 min. The term "embryonated eggs" is used to describe the eggs fertilized but without development of 125 J1 or J2 in this paper. In addition, the eggs were rinsed 5 times with 100 ml sterile 126 127 distilled water in a sterile beaker.

128	Egg suspensions (0.1 ml) were placed into wells of a 24-well tissue culture
129	plate (ca.50 eggs/well) and combined with 0.9 ml of undiluted fungal culture filtrates.
130	Uninoculated PDB was used as the control. All assays were conducted with 6 replicate
131	wells. For 2 weeks, the eggs were preserved in a dark environment at 25°C. Eggs were
132	classified as abnormal eggs (including eggs with vacuoles, discolored eggs, and floating
133	eggs) or normal eggs (eggs during normal development, mature eggs containing J2, and
134	hatched eggs) using an inverted light microscope at 1, 3, 5, 7, 10, and 14 days.
135	Furthermore, the abnormal eggs were classified into eggs with vacuoles, dark discolored
136	eggs, and floating eggs at 14 days and the percentages of each type of abnormal egg was
137	recorded for each fungal strain.
138	

- 139 2. 4. Effect of fungal culture filtrates on J2 motility
- 140

Five strains of *V. lecanii* (AaF23, AaF42, AaF80, Vertalec®, and Mycotal®) were used in this study. They were cultured in PDB and fungal culture filtrates were prepared. *Heterodera glycines* were cultured using the same procedures as described earlier for collecting pale yellow to yellow females. However, the dark brown cysts were isolated from the soil in a pot using the same procedures described for isolation

146	from the field soil. The cysts were soaked in distilled water at 28°C for 10 days and then
147	crushed to release the eggs. The eggs were separated from the debris by passing through
148	a sterile 64- μ m-pore sieve onto a sterile 35- μ m-pore sieve. The J2 that had already
149	hatched during the 10-day incubation were carefully removed at that time. The eggs
150	were then placed in 0.5% NaOCl solution for 2 min and rinsed 5 times with 100 ml
151	sterile distilled water in a sterile beaker. These eggs were suspended in distilled water
152	and incubated at 25°C. The J2 that hatched within 2 days were collected, and a J2
153	suspension containing 500 J2/ml of sterile water was prepared. J2 suspensions (0.1 ml)
154	were placed into wells of a 24-well tissue culture plate (ca. 50 J2/well) containing 0.9
155	ml of undiluted fungal culture filtrates or a PDB control. The treatments were replicated
156	in 4 wells. The plates were maintained at 25°C. The effect of fungal culture filtrates on
157	the viability of J2 was determined after 1, 24, 72, and 168 hours using a method that
158	was almost identical to that described by Chen and Dickson (2000). To summarize, 100
159	μl of 1N NaOH was added to each well, and the J2 response was observed within 5
160	minutes using an inverted light microscope. The response time was limited to 5 minutes
161	because during the preliminary examination it was observed that some J2 began to react
162	in approximately 4 minutes. J2 reactions that began after 5 minutes were not observed.
163	J2 that responded to the addition of NaOH within 5 minutes were considered alive,

164	whereas those that did not respond were considered inactive or dead. Percentages of
165	inactive or dead J2 were determined. This experiment was repeated, and the results of
166	the repeated trial were combined for analysis.
167	
168	2. 5. Statistical analysis
169	
170	The data were subjected to analyses of variance (ANOVA). The treatment
171	means were compared by the Tukey's HSD test when the F-tests were statistically
172	significant at $P < 0.05$. In addition, chi-square for independence test was used to
173	determine the interaction between the strains and breakdown of abnormal eggs.
174	
175	3. Results
176	
177	3. 1. Effect of fungal culture filtrates on hatch of mature eggs
178	
179	Fungal culture filtrates of PDB showed various effects on egg hatch. At
180	dilutions of 1/4, 1/10, and 1/100 PDB, the fungal culture filtrates of five strains (AaF23,
181	AaF42, AaF49, AaF80, and AaF103) significantly ($P < 0.01$) inhibited egg hatch when

182	compared with that observed in the controls (Table 3). On the other hand, three strains
183	(Vertalec®, Mycotal®, and B-2) did not inhibit egg hatch at any dilution. None of the
184	fungal culture filtrates of the Czapek-Dox broth showed any inhibitory effect on egg
185	hatch (date not shown). There was a wide variation in the pH of the fungal culture
186	filtrates in this study (Table 2). However, there was no relation between the pH value
187	and the rate of egg hatch.
188	
189	3. 2. Effect of fungal culture filtrates on the development of embryonated eggs
190	
191	The fungal culture filtrates of two hybrid strains, AaF23 and AaF42,
192	demonstrated toxicity against the embryonated SCN eggs (Figs. 1 and 2). Strain AaF42
193	demonstrated the greatest toxicity against the embryonated eggs when compared with
194	the other treatments after day 3. On day 1, no significant difference was observed (P $>$
195	0.05). On day 3, AaF42 treatment significantly ($P < 0.01$) increased the abnormal eggs
196	when compared with the other treatments. After the 3 rd day, the fungal culture filtrates
197	of the two hybrid strains demonstrated greater toxicity against the embryonated eggs
198	than that observed in their parental strains, Vertalec® and Mycotal®. In all the

200	day. Toward the 14 th day, there were hardly any increases in the percentages of
201	abnormal eggs. On day 14, the fungal culture filtrate of AaF42 killed 65.1% of the
202	embryonated eggs. On the other hand, 30.2% of embryonated eggs in AaF42 filtrate had
203	matured by day 14. The rest of the eggs were still immature but not abnormal in the
204	form. The fungal culture filtrates of AaF23 killed 58.4% of the embryonated eggs and
205	31.0% had matured by day 14. The fungal culture filtrates of Vertalec® and Mycotal®
206	killed 52.0% and 39.1% of the embryonated eggs, respectively, on day 14. In the PDB
207	control, 73.9% of the eggs were mature on day 14, although 23.4% were abnormal.
208	There was also an interaction between the fungal culture filtrates and
209	breakdown of the abnormal eggs on day 14 ($X^2 = 369.6$; P < 0.001) (Fig. 3). Breakdown
210	of eggs in filtrates from the fungal strains AaF23 and AaF42 exhibited similar patterns,
211	with vacuoles appearing in 89.6% and 94.8% of abnormal eggs, respectively. In the
212	fungal culture filtrate of Vertalec®, 33.3% of the abnormal eggs were floating. In
213	contrast, 98.6% of the abnormal eggs treated with the fungal culture filtrate of
214	Mycotal® were dark discolored eggs, and vacuoles were hardly observed (1.4%) in the
215	abnormal eggs.

2	1	0
4	I	0

219	After an exposure period of 168 h, the fungal culture filtrate of AaF23
220	significantly ($P < 0.01$) inhibited J2 motility compared with the other treatments (Table
221	4). However, only 20.7% of J2 remained inactive. Moreover, no significant effect on J2
222	motility was observed at the other times.
223	
224	4. Discussion
225	
226	Four V. lecanii hybrid strains (AaF23, AaF42, AaF80, and AaF103) that
227	suppressed SCN populations in a previous greenhouse test (Shinya et al., 2007) were
228	found in this study to produce compounds that significantly inhibited hatch of mature
229	SCN eggs. Conversely, culture filtrates of three parental V. lecanii strains that hardly
230	suppressed SCN populations in a previous greenhouse test (Vertalec®, Mycotal®, and
231	B-2) did not cause any inhibition of egg hatch. This would suggest that the natural
232	substances produced by V. lecanii are one of the important factors in suppression of
233	SCN numbers. There were no relationships between the pH values of fungal culture
234	filtrates and the effects on egg hatch, indicating that the differences in the pH values
235	might not have directly affected egg hatch. Pike et al. (2002) demonstrated that pH was

236	not an emergence signal for SCN, and the present study supports their results.
237	Production of active compounds is influenced by culture medium (Cayrol et al., 1989)
238	and this appeared to be the case with V. lecanii. While activity was obtained from
239	some PDB cultures, culture filtrates from Czapek-Dox broth did not affect egg hatch,
240	although this result may partly be attributed to the low egg hatch rate in this broth.
241	Enzymes or other active compounds produced by V. lecanii cultures in this
242	study tended to be more effective against eggs in early developmental stages than
243	against mature eggs containing J1 or J2, and showed little activity against hatched J2.
244	Culture filtrates from the Vertalec® and Mycotal® parental strains significantly
245	increased the percentages of abnormal embryonated eggs compared to PDB controls,
246	even though filtrates from these strains did not affect mature egg hatch. In addition,
247	culture filtrates of the hybrid strains AaF23 and AaF42 exhibited high toxicity against
248	the embryonated SCN eggs. Only the culture filtrate from AaF23, decreased activity of
249	SCN J2, and this effect was not strong. These results suggested that the toxic effect is
250	specific for certain stages of the SCN life cycle. Other studies have demonstrated this
251	type of stage-specific response. For example, Bonants et al. (1995) reported that
252	culture filtrates of Paecilomyces lilacinus had a deleterious effect on the immature eggs
253	of Meloidogyne hapla. They suggested that an extracellular protease in the filtrate

254	played an important role in this effect, and that the immature eggs were extremely
255	vulnerable, while J2 motility of <i>M. hapla</i> was not visibly influenced by treatment with
256	this culture filtrate. It is likely that enzymes produced by the culture filtrates of V .
257	lecanii similarly affected SCN eggs, and further studies are necessary to identify the
258	active compounds. It has been demonstrated that V. lecanii produces chitinases and
259	proteases (St. Leger et al., 1997; Lu et al., 2005).
260	The varying effects among V. lecanii strains on morphological breakdown of
261	the embryonated SCN eggs indicates that there are differences in the active substances
262	produced by the different strains. Prabavathy et al. (2006) demonstrated that hybrid
263	strains of Trichoderma harzianum produced by protoplast fusion exhibited enhanced
264	chitinase activity. Therefore, producing the hybrid strains AaF23 and AaF42 by
265	promoting recombination of whole genomes via protoplast fusion might have facilitated
266	the production of active substances that are different from those produced by their
267	parental strains. Hence, protoplast fusion technique would be a useful tool for
268	improving activity of active substances against plant-parasitic nematodes. Further
269	studies are required to facilitate a better understanding of the relationship between
270	active substances produced by V. lecanii in liquid medium and the toxicity of V. lecanii
271	against SCN in the soil.

272

273 Acknowledgement

- 274 The authors are grateful to Dr. Susan L. F. Meyer for previewing this
- 275 manuscript and giving us a lot of useful suggestions.

276 **References**

- 277
- 278 Aiuchi, D., Koike, M., Tani, M., Kuramochi, K., Sugimoto, M., Nagao, H., 2004.
- 279 Protoplast fusion, using nitrate non-utilizing (nit) mutants in the
 280 entomopathogenic fungus *Verticillium lecanii* (*Lecanicillium* spp.). IOBC/wprs
- 281 Bulletin. 27, 121-127.
- Anke, H., Stadler, M., Mayer, A., Sterner, O., 1995. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and
- 284 Ascomycetes. Can. J. Bot. 73, 932-939.
- 285 Bonants, P.J., Fitters, P.F., Thijs, H., Belder, E.den., Waalwijk, C., Henfling, J.W.,
- 286 1995. A basic serine protease from *Paecilomyces lilacinus* with biological
- 287 activity against *Meloidogyne hapla* eggs. Microbiology 141, 775-784.
- 288 Butt, T.M., 2002. Use of entomogenous fungi for the control of insect pests. In: Esser,
- 289 K., Bennett, J.W. (Eds.), Mycota Agricultural Applications. Springer, Berlin,
- 290 pp. 111-134.
- Cayrol, J.C., Djian, C., Pijarowski, L., 1989. Study of the nematocidal properties of the
 culture filtrate of the nematophagous fungus *Paecilomyces lilacinus*. Rev.
 Nématol. 12, 331-336.

294	Chen, S.Y., Dickson, D.W., Mitchell, D.J., 2000. Viability of Heterodera glycines
295	exposed to fungal filtrates. J. Nematol. 32, 190-197.
296	Chen, S.Y., Dickson, D.W., 2000. A technique for detecting viability of second-stage
297	juvenile of Heterodera glycines. J. Nematol. 32, 117-121.
298	Claydon, N., Grove, J.F., 1982. Insecticidal secondary metabolic products from the
299	entomogenous fungus Verticillium lecanii. J. Invertebr. Pathol. 40, 413-418.
300	Eapen, S.J., Beena, B., Ramana, K.V., 2005. Tropical soil microflora of spice-based
301	cropping systems as potential antagonists of root-knot nematodes. J. Invertebr.
302	Pathol. 88, 218-225.
303	Gintis, B.O., Morgan-Jones, G., Rodriguez-Kabana, R., 1983. Fungi associated with
304	several developmental stages of Heterodera glycines from an Alabama soybean
305	field soil. Nematropica 13, 181-200.
306	Hall, R.A., 1984. Epizootic potential for aphids of different isolates of the fungus
307	Verticillium lecanii. Entomophaga. 29, 311-321.
308	Hallmann, J., Sikora, R.A., 1996. Toxicity of fungal endophyte secondary metabolites
309	to plant-parasitic nematodes and soil-borne plant-pathogenic fungi. Euro. J.
310	Plant Pathol. 102, 155-162.

- Hänssler, G., Hermanns, M., 1981. *Verticillium lecanii* as a parasite on cysts of *Heterodera schachtii*. J. Plant Dis. Protec. 88, 678-681.
- 313 Jackson, C.W., Heale, J.B., Hall, R.A., 1985. Traits associated with virulence to the
- 314 aphid Macrosiphoniella sanborni in eighteen isolates of Verticillium lecanii.
- 315 Ann. Appl. Biol. 106, 39-48.
- 316 Kanaoka, M., Isogai, A., Murakoshi, S., Ichinoe, M., Suzuki, A., Tamura, S., 1997.
- 317 Bassianolide, a new insecticidal cyclodepsipeptide from *Beauveria bassiana*
- 318 and *Verticillium lecanii*. Agric. Biol. Chem. 42, 629-635.
- 319 Liu, B.L., Kao, P.M., Tzeng, Y.M., Feng, K.C., 2003. Production of chitinase from
- 320 *Verticillium lecanii* F091 using submerged fermentation. Enzyme Microb.
- 321 Technol. 33, 410-415.
- 322 Lu, Z.X., Laroche, A., Huang, H.C., 2005. Isolation and characterization of chitinases
- from *Verticillium lecanii*. Can. J. Microbiol. 51, 1045-1055.
- 324 Meyer, S.L.F., Huettel, R.N., Sayre, R.M., 1990. Isolation of fungi from Heterodera
- 325 glycines and in vitro bioassays for their antagonism to eggs. J. Nematol. 22,
- *326 532-537*.

327	Meyer, S.L.F., Meyer, R.J., 1995. Effects of a mutant strain and a wild type strain of
328	Verticillium lecanii on Heterodera glycines populations in the greenhouse. J.
329	Nematol. 27, 409-417.
330	Meyer, S.L.F., Meyer, R.J., 1996. Greenhouse studies comparing strains of the fungus
331	Verticillium lecanii for activity against the nematode Heterodera glycines.
332	Fundamental. Appl. Nematol. 19, 305-308.
333	Meyer, S.L.F., Wergin, W.P., 1998. Colonization of soybean cyst nematode females,
334	cysts, and gelatinous matrices by the fungus Verticillium lecanii. J. Nematol.
335	30, 436-450.
336	Meyer, S.L.F., Huettel, R.N., Liu, X.Z., Humber, R.A., Juba, J., Nitao, J.K., 2004.
337	Activity of fungal culture filtrates against soybean cyst nematode and root-knot
338	nematode egg hatch and juvenile motility. Nematology 6, 23-32.
339	Nitao, J.K., Meyer, S.L.F., Chitwood, D.J., 1999. In-vitro assays of Meloidogyne
340	incognita and Heterodera glycines for detection of nematode-antagonistic
341	fungal compounds. J. Nematol. 31, 172-183.
342	Nitao, J.K., Meyer, S.L.F., Schmidt, W.F., Fettinger, J.C., Chitwood, D.J., 2001.

- 343 Nematode-antagonistic trichothecenes from *Fusarium equiseti*. J. Chem. Ecol.
- 344 27, 859-869.

345	Nitao, J.K., Meyer, S.L.F., Oliver, J.E., Schmidt, W.F., Chitwood, D.J., 2002. Isolation						
346	of flavipin, a fungus compound antagonistic to plant-parasitic nematodes.						
347	Nematology 4, 55-63.						
348	Olivares-Bernabeu, C.M., López-Llorca, L.V., 2002. Fungal egg-parasites of						
349	plant-parasitic nematodes from Spanish soils. Rev. Iberoam. Micol. 19,						
350	104-110.						
351	Pike, S. M., Heintz, R., Walk, T., Jones, C., Kraus, G.A., Gassmann, W., Novacky, A.J.,						
352	Niblack, T.L. 2002. Is change in electrical potential or pH a hatching signal for						
353	Heterodera glycines? Phytopathology 92, 456-463.						
354	Prabavathy, V.R., Mathivanan, N., Sagadevan, E., Murugesan, K., Lalithakumari, D.,						
355	2006. Self-fusion of protoplasts enhances chitinase production and biocontrol						
356	activity in Trichoderma harzianum. Biores. Technol. 97, 2330-2334.						
357	Shinya, R., Watanabe, A., Aiuchi, D., Tani, M., Kuramochi, K., Kushida, A., Koike, M.,						
358	2007. Potential of Verticillium lecanii (Lecanicillium spp.) hybrid strains as						
359	biological control agents for soybean cyst nematode: Is protoplast fusion an						
360	effective tool for development of plant-parasitic nematode control agents? Jpn. J.						
361	Nematol. In press.						

23

362	Soman, A.G., Gloer, J.B., Angawi, R.F., Wicklow, D.T., Dowd, P.F., 2001.								
363	Vertilecanins: New phenopicolinic acid analogues from Verticillium lecanii. J.								
364	Nat. Prod. 64, 189-192.								
365	St Leger, R.J., Joshi, L., Roberts, D.W., 1997. Adaptation of proteases and								
366	carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to								
367	the requirements of their ecological niches. Microbiology 143, 1983-1992.								
368	Wang, L., Huang, J., You, M., Guan, X., Liu, B., 2005. Effects of toxins from two								
369	strains of Verticillium lecanii (Hyphomycetes) on bioattributes of a predatory								
370	ladybeetle, Delphastus catalinae (Col., Coccinellidae). J. Appl. Entomol. 129,								
371	32-38.								

372 Figure Legends

373

387

373	
374	Fig. 1. Percentages of abnormal eggs following incubation of embryonated Heterodera
375	glycines eggs (eggs fertilized but without development of J1 or J2) in culture filtrates
376	from strains of <i>Verticillium lecanii</i> . The values indicate means ± standard deviation of 6
377	replicates. The different letters associated with each point for the given days indicate
378	significant differences ($P < 0.01$, Tukey's test). No significant difference was observed
379	at day 1 (P > 0.05, Tukey's test).
380	
381	Fig. 2. Effect of fungal culture filtrates on the development of embryonated eggs. (a)
382	Mature eggs containing J2 in the control well after 10-day incubation. (b) Abnormal
383	eggs treated with fungal culture filtrates of AaF23 after 10-day incubation
384	
385	Fig. 3. Morphological breakdown of abnormal embryonated Heterodera glycines eggs
386	(eggs fertilized but without development of J1 or J2) after 14 days incubation in fungal

standard deviation of 6 replicates. Interaction between the strains and the breakdown of 388

culture filtrates from strains of Verticillium lecanii. The values indicate means ±

389 abnormal eggs was determined by chi-square for independence test (P < 0.001).

390 Table 1. Verticillium lecanii strains used in this experiment, corresponding parental

391 combinations, and evaluation of antagonism to Heterodera glycines, the soybean cyst

392 nematode (SCN)

Strains	Combinations of each parent ^a	Evaluation of antagonism to SCN ^b			
AaF11	Vertalec × Mycotal	±			
AaF17	Vertalec × Mycotal	++			
AaF23	Vertalec × Mycotal	+			
AaF42	Vertalec × Mycotal	++			
AaF49	Vertalec × Mycotal	±			
AaF80	Vertalec × Mycotal	+			
AaF103	Vertalec × Mycotal	+			
BbF17	Vertalec × Mycotal	±			
2aF26	Mycotal \times B-2	±			
Vertalec	-	-			
Mycotal	-	-			
B-2	-	-			

393

^aCombination of each parent according to Aiuchi et al. (2004).

395 ^b ++: very good, +: good, ±: fair, -: poor, according to Shinya et al (2007). The

396 evaluation of antagonism to SCN is based on the suppression of soybean plants damage

397 and of SCN population in greenhouse pot tests.

398	Table 2.	The pH	values	of fungal	culture	filtrates	from	Verticillium	lecanii	strains
-----	----------	--------	--------	-----------	---------	-----------	------	--------------	---------	---------

	Strains	Czapek-Dox broth	PDB	
	AaF11	4.91	5.32	
	AaF17	4.49	5.35	
	AaF23	4.62	4.99	
	AaF42	4.71	5.03	
	AaF49	4.83	4.92	
	AaF80	4.37	5.07	
	AaF103	4.51	5.23	
	BbF17	5.53	5.71	
	2aF26	7.23	6.62	
	Vertalec	4.67	5.34	
	Mycotal	5.32	6.58	
	B-2	3.99	4.54	
400	Control	7.28	5.14	

399 grown in potato dextrose broth (PDB) or Czapek-Dox broth at 25°C for one month

401 Table 3. Percentages of mature *Heterodera glycines* eggs hatching after 2 weeks in

402 different dilutions of culture filtrates from Verticllium lecanii strains, and in potato

			Percentage	egg ha	tch (%, mean \pm S	D)		
Strains			Dilutions of	f the fu	ngal culture filtra	ites		
	1/2		1/4		1/10		1/100	
AaF23	3.2 ± 1.9	а	3.4 ± 1.5	а	6.1 ± 3.4	a	19.6 ± 6.5	ab
AaF42	5.0 ± 4.5	а	4.0 ± 3.1	а	10.2 ± 4.3	abc	23.0 ± 16.5	ab
AaF11	5.9 ± 2.8	a	8.0 ± 0.7	ab	25.5 ± 4.3	cde	47.0 ± 5.5	cd
AaF49	5.9 ± 6.6	а	4.8 ± 5.4	а	9.6 ± 4.5	ab	34.0 ± 6.0	bc
AaF103	6.3 ± 7.1	a	4.5 ± 3.0	а	12.9 ± 7.6	abcd	26.8 ± 8.4	ab
AaF80	6.6 ± 7.2	а	2.9 ± 1.5	а	8.2 ± 4.9	ab	16.6 ± 5.4	а
AaF17	9.2 ± 6.5	ab	8.7 ± 2.6	ab	17.3 ± 8.0	abcd	54.6 ± 3.9	d
BbF17	9.6 ± 5.7	ab	7.3 ± 1.5	ab	22.0 ± 5.3	bcd	55.0 ± 6.9	d
Mycotal	19.7 ± 3.0	b	17.1 ± 12.3	bc	25.6 ± 5.9	cde	45.1 ± 4.5	cd
Vertalec	20.5 ± 5.7	b	23.1 ± 4.2	с	38.1 ± 12.8	e	48.8 ± 7.1	cd
B-2	20.6 ± 8.4	b	23.3 ± 5.0	с	27.2 ± 8.6	de	48.4 ± 4.3	cd
2aF26	21.1 ± 6.6	b	9.4 ± 2.3	ab	22.7 ± 8.7	bcde	49.0 ± 4.0	cd
Control	14.9 ± 4.7	ab	23.8 ± 6.4	с	33.9 ± 9.1	e	55.6 ± 7.8	d

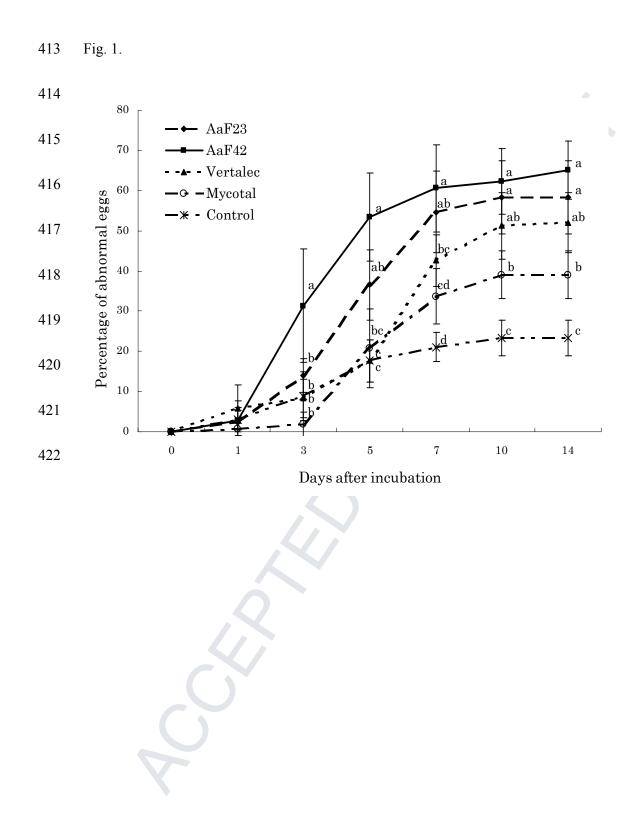
403 dextrose broth (PDB) controls

404

405 The values indicate means \pm standard deviation of 6 replicates. The different letters in

406 the same column indicate significant difference (P < 0.01, Tukey's test).

407 Table 4. Percentages of inactive second-stage juveniles of *Heterodera glycines* after

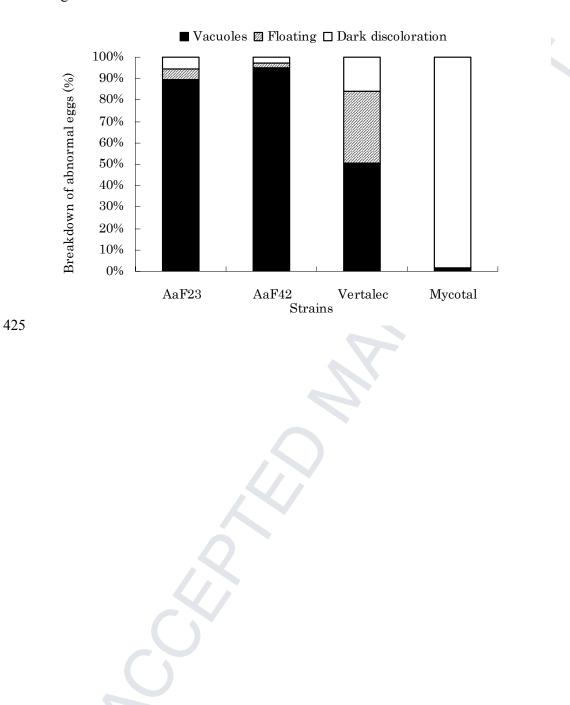

Strains	Incubation period (hours)				
Strains	1	24	72	168	
AaF23	$0.5\pm0.9\ NS$	1.5 ± 1.9 NS	1.5 ± 2.5 NS	20.7 ± 11.0 a	
AaF42	$0.4\pm0.8\ NS$	$0.3\pm0.6\ NS$	$2.5\pm2.7~\mathrm{NS}$	3.7 ± 2.8 b	
AaF80	0.8 ± 1.2 NS	1.1 ± 1.6 NS	1.7 ± 2.4 NS	2.0 ± 2.3 b	
Vertalec	0.4 ± 1.0 NS	0.7 ± 1.5 NS	2.9 ± 2.9 NS	5.2 ± 3.6 b	
Mycotal	1.6 ± 2.2 NS	2.1 ± 2.0 NS	3.1 ± 2.5 NS	4.4 ± 4.0 b	
Control	0.1 ± 0.2 NS	0.5 ± 0.7 NS	1.0 ± 0.9 NS	1.1 ± 1.0 b	

408 incubation in culture filtrates from *Verticillium lecanii* strains

410 The values indicate means \pm standard deviation of 8 replicates. The different letters in

411 the same column indicate significant difference (P < 0.01, Tukey's test).

412 NS: not significant.



30

423 Fig. 2.

424 Fig. 3.

