1	Title

2	Evaluating the use of piezo manipulator, laser, or their combination for blastocoel
3	cavity puncture to improve cryopreservation outcomes of large equine embryos
4	Running Head: Improving cryopreservation of large equine embryos
5	Reza Rajabi-Toustani ^{1#} , Hiroyuki Watanabe ^{2#} , Munkhtuul Tsogtgerel ^{1,3} , Yuanzhi Gao ¹ , Li
6	Canbo ¹ , Shingo Haneda ¹ , Soon Hon Cheong ⁴ , Yasuo Nambo ^{1,3,*}
7	¹ Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and
8	Veterinary Medicine, Hokkaido 080-8555, Japan
9	² Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary
10	Medicine, Hokkaido 080-8555, Japan
11	³ United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
12	⁴ Department of Clinical Sciences, College of Veterinary Medicine, Cornell University,
13	Ithaca, NY 14853, U.S.A.
14	[#] These authors contributed equally to this work.
15	*Address for correspondence: Department of Clinical Veterinary Sciences, Obihiro
16	University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
17	E-mail: ynambo@obihiro.ac.jp

19 Abstract

20 The main difficulty of large equine embryo cryopreservation is the replacement of blastocoel fluid with cryoprotectant solution. The objective of this study was to improve 21 the cryopreservation of large equine embryos with PMAP and/or LAP. Embryos were 22 23 collected via non-surgical transcervical procedure and divided into three groups based on 24 their size (A≤300 μm; 300 μm<B<700 μm; and C≥700 μm). Six embryos 233-1360 μm 25 in diameter were punctured via piezo manipulator and/or laser pulse before cryopreservation. All embryos were cryopreserved on a Cryotop®. Frozen-thawed 26 27 embryos were cultured for 3h and transferred to the recipient mares. After one week, pregnancy was diagnosed by ultrasonography. Two of six embryos resulted in a positive 28 pregnancy, the result of pregnancy in group A and B was positive, but in group C was 29 30 negative, and further investigation is necessary for ≥700 µm embryos. The results showed laser-assisted puncture could be helpful to extract blastocoel fluid and replace it with 31 32 cryoprotectant. This is the first positive pregnancy report in laser puncture-assisted frozen-thawed equine embryo (>300 µm). However, more research is required to find the 33 34 best method for embryos \geq 700 µm.

35 KEYWORDS: Equine; Embryo; Cryopreservation; Blastocoel fluid; Cryoprotectant;
 36 Piezo manipulator; Laser pulse.

37 1 INTRODUCTION

38 Embryo cryopreservation is a valuable method for banking valuable equine genetics (Allen & Stewart, 2001). The success of equine embryo cryopreservation is affected by 39 40 three main factors, which are: embryo size, blastocoel volume, and having an intact capsule (Diaz et al., 2016). Large equine embryos (>300 µm) have unacceptably low post-41 42 thaw pregnancy rates after transfer unless the blastocoel cavity is punctured. However, embryos smaller than 300 µm diameter can be cryopreserved without puncturing the 43 blastocoel cavity and have pregnancy rates of 50-65% (Stout, 2012). Embryos bigger 44 45 than 300 µm show a reduced ability to shrink during cryopreservation and re-expand 46 during post-warming incubation (Stout, 2012). Although the exact functions of the capsule are not known, its presence is crucial to 47 the survival of the early embryo (Stout et al., 2005). The presence of a capsule makes the 48 49 embryos less permeable to the cryoprotectants, and the large blastocoel volume is prone 50 to ice crystal formation (Eldridge-Panuska et al., 2005).

51 Several methods have been proposed to puncture the blastocoel cavity of large equine 52 embryos to improve cryopreservation survival. Laser technology is now being applied 53 across assisted reproductive technology (ART) to reduce procedure times and increase 54 the consistency and reproducibility of traditional ART techniques such as assisted

55	hatching, embryo	biopsy,	intracytoplasmic	sperm	injection,	sperm
56	immobilization/selection	n, and cryo	preservation (Davids	on et al., 2	2019). In addi	tion, the
57	use of microinjection nee	edles has be	een evaluated for blas	stocoel pur	ecture (with or	without
58	aspiration). There are a	few studie	s on equine laser-ass	isted cryoj	preservation b	out more
59	investigation in this are	a is neede	d to obtain the best	method fo	or cryopreserv	ation of
60	equine embryos.					
61	We evaluated piezo	o microma	nipulator-assisted p	uncture (I	PMAP) and/c	or laser-
62	assisted puncture (LAP)	for creating	g a hole in the capsule	and tropho	oblast layer to	improve
63	the exchange of blastoco	el fluid wit	h cryoprotectant solu	tion for cry	opreservation	oflarge
64	equine embryos on Cryo	otop® (Kita	azato, Shizuoka, Japa	n). The air	n of this stud	y was to
65	improve the cryopreserv	ation of lar	ge equine embryos w	vith PMAP	and/or LAP.	
66						
67	2 MATERIALS AND N	AETHOD:	5			
68	Animals belonging	to the Ho	orse Research Farm	in the C	Dbihiro Unive	ersity of
69	Agriculture and Veterina	ary Medici	ne were kept accordi	ng to the u	university anii	mal care
70	regulations. Also, all exp	perimental	procedures were app	roved by th	ne Animal Exp	periment
71	Committee of Obihiro U	niversity o	f Agriculture and Vet	erinary Mo	edicine.	
72	Two Hokkaido nativ	e pony and	two crossbreed (Ho	kkaido nat	ive pony × Ha	aflinger)

73	donor mares and four Hokkaido native pony and two crossbreed (Hokkaido native pony
74	× Haflinger) recipient mares were used in this study. Artificial insemination and embryo
75	collection were done as described previously (Hannan et al., 2019, 2020). Briefly,
76	artificial inseminations using frozen semen (200×10 ⁶ spermatozoa/AI) from a Connemara
77	pony stallion were performed approximately 32 h after hCG injections. Embryo
78	collections were done via non-surgical transcervical procedure, a sterile uterine catheter
79	with a cuff attached to a sterile Y Junction W/Folly Connector with clamps to regulate the
80	inflow and outflow of a commercially prepared complete flush solution (VIGRO®,
81	Vetoquinol NA. Inc., Princeville, QC, Canada) in one end and with a sterile embryo
82	filter (EZ-Way Filter, SPI-MFG) on the other. After uterine flushing the mesh of embryo
83	filter was rinsed several times and the filter dish was examined by means of a dissecting
84	microscope (Olympus Corp., Tokyo, Japan) to identify the embryo. Embryo was washed
85	in holding media (VIGRO®, Vetoquinol NA. Inc.,) and transferred to the laboratory in
86	the 4-well cell culture dish.

In the laboratory, embryos were sized and graded morphologically on a scale of 1-4 (Tremoleda et al., 2003) and were categorized into three groups A \leq 300 µm, 300 µm<B<700 µm, and C \geq 700 µm. Embryos were transferred to Medium 199 (Sigma M7528; with Earle's salts, 25 mM HEPES and sodium bicarbonate) and punctured 20 µm

91	with a laser system (LYKOS-DTS: Hamilton Thorne, Beverly, MA, USA) and/or piezo
92	micromanipulator with 20 µm needle (PMM-150FU: Prime Tech, Ibaraki, Japan).
93	Punctured embryos were transferred in an equilibration medium containing 7.5%
94	ethylene glycol and 7.5% Dimethyl Sulfoxide (Me ₂ SO) in Medium 199 plus 20% Fetal
95	Bovine Serum (FBS) for a maximum of 15 min at room temperature. After that, embryos
96	were transferred to the vitrification solution containing 15% ethylene glycol and 15%
97	Me ₂ SO in Medium 199 plus 20% FBS, loaded onto the Cryotop®, and soaked into the
98	liquid nitrogen within 1 min.
99	Embryos were thawed in Medium 199 containing 1M sucrose and 20% FBS for 1 min
100	at 37 °C then transferred to Medium 199 containing 0.5 M sucrose and 20% FBS for 3
101	min at room temperature. After that, embryos were washed in Medium 199 with 20%
102	FBS for 5 min at room temperature and transferred to fresh Medium 199 with 20% FBS
103	and turned on the warm plate (37 °C) and kept for 5 min. Embryos were cultured in
104	Medium 199 with 20% FBS for 3h. After 3h of culture, embryos and capsule size were
105	measured, and the quality of the embryo were assessed before embryo transfer. Embryo
106	transfers were performed non-surgically as described previously (Hannan et al., 2019,
107	2020). One week after embryo transfer, a spherical embryonic vesicle was diagnosed by
108	ultrasonographic examination of the uterus and pregnancy was confirmed at the heartbeat

stage, on days 26 (Case 1) and 28 (Case 3). Pregnant mares were checked twice a week
for normal embryonic development and a heartbeat in the early pregnancy stage and once
a week after that (Hannan et al., 2020).

112

113 **3 RESULTS**

In this study, six embryos were collected from eight uterine flushes (75%) from four 114 115 mares on day 7 and 8. All embryos were in the blastocyst stage, and their size were 116 between 233 and 1360 µm. All collected embryos were evaluated in grade 1 and 117 categorized into 3 groups A \leq 300 µm (n=1), 300 µm<B<700 µm (n=3) and C \geq 700 µm 118 (n=2) (Table 1). Three out of six embryos (50%) remained a grade 1 after thawing, and both trophoblast and capsule diameters were similar to the pre-cryopreservation size. 119 120 PMAP treatment was effective in group A, and embryo quality was good (Fig. 1 A & 121 B), and the result of pregnancy was positive for case number 1 (Fig. 2). After thawing and 122 3h of culture, trophoblast size was 186 and 242 µm, and capsule size was 241 and 258 123 µm respectively (Case number 1; Table 1). In group B, PMAP was not a successful 124 method for removing blastocoel fluid, and trophoblast size was 476 and 453 µm 125 respectively after thawing and culture (Case number 2; Table 1). The pregnancy result was positive (Fig. 2) when we used LAP in an embryo in group B case number 3 (Fig. 1. 126

127	C & D). However, the result of pregnancy for the combination of PMAP and LAP method
128	was not positive, the quality of embryo was good, and the embryo was expanded after
129	culture (grade 1). The trophoblast size was 431 and 547 μ m after thawing and culture
130	(Case number 4; Table 1). All embryos in groups A and B re-expanded after thawing and
131	culture with case number 2 being the only exception. Embryos \ge 700 µm in group C did
132	not re-expand with trophoblast diameter of 953 and 807 μm for case number 5, and 1153
133	and 752 μ m for case number 6, respectively after thawing and 3h of culture.

135 4 DISCUSSION

Embryos with a diameter of $>300\mu m$ have been reported to have a 44% (4/9) 136 pregnancy rate post-thaw between day 11 and 14, but in the second pregnancy check on 137 day 23, none of the recipient mares remained pregnant (Scherzer et al., 2011). In the 138 current study, embryos treated with LAP or LAP and PMAP showed two out of three 139 embryos maintaining grade 1 morphology after cryopreservation (Case number 3 and 4). 140 141 One of the embryos resulted in a successful pregnancy (case number 3; Fig. 1. C & D). In the PMAP treated embryos, one out of three embryos was assessed as grade 1 and 142 transfer of that embryo resulted in a pregnancy (case number 1; Fig. 1 A & B). Heartbeat 143 144 confirms both foals are alive till now (170-day of pregnancy; Fig. 2).

145	Several different methods were used to induce blastocoel collapse for the successful
146	equine embryo cryopreservation including direct puncture with a glass biopsy needle,
147	acupuncture needle, tungsten microneedle (Wilsher et al., 2020), piezo manipulator (Choi
148	et al., 2011) and laser pulse puncture (Scherzer et al., 2011). The previous results showed
149	microneedle or Laser pulse puncture could be helpful in human cryopreservation and
150	pregnancy rate (60% and 62%, respectively) (Mukaida et al., 2006). To the best of our
151	knowledge, it is the first report on the LAP cryopreservation method with a positive and
152	stable pregnancy in >300 μ m equine embryo. It seems LAP is a quicker and more precise
153	method with less damage to the embryo than other puncture methods.
154	We had a positive pregnancy in the piezo group. Case number 1 was in the small
155	embryo group but the two other embryos in the medium and big size groups did not result
156	in pregnancy. On the other hand, we could get a positive pregnancy result in a medium
157	sized embryo cryopreserved after blastocoel puncture with LAP technology. In
158	conclusion, using LAP can be helpful for equine medium size embryos; however, the
159	current methodology is not suitable for big embryos (\geq 700 µm), and it needs more
160	investigation to improve LAP technology for large equine embryos.

161

163 Acknowledgments

164	The authors are thankful to M. A Hannan and Shiori Takeuchi for technical assistance.
165	
166	Conflict of interest
167	None of the authors have any conflict of interest to declare.
168	
169	Funding
170	This study was supported by the Livestock Promotional Subsidy from the Japan
171	Racing Association.
172	
173	

174 **References**

- 175 Allen, W. R., & Stewart, F. (2001). Equine placentation. Reproduction, Fertility and
- 176 Development, 13(7–8), 623–634. https://doi.org/10.1071/rd01063
- 177 Choi, Y. H., Velez, I. C., Riera, F. L., Roldán, J. E., Hartman, D. L., Bliss, S. B., ...
- 178 Hinrichs, K. (2011). Successful cryopreservation of expanded equine blastocysts.
- 179 *Theriogenology*, 76(1), 143–152.
- 180 https://doi.org/10.1016/j.theriogenology.2011.01.028
- 181 Davidson, L. M., Liu, Y., Griffiths, T., Jones, C., & Coward, K. (2019, May 1). Laser
- 182 technology in the ART laboratory: a narrative review. *Reproductive BioMedicine*

183 Online, Vol. 38, pp. 725–739. https://doi.org/10.1016/j.rbmo.2018.12.011

- 184 Diaz, F., Bondiolli, K., Paccamonti, D., & Gentry, G. T. (2016). Cryopreservation of Day
- 1858 equine embryos after blastocyst micromanipulation and vitrification.186Theriogenology,85(5),894–903.
- 187 https://doi.org/10.1016/j.theriogenology.2015.10.039
- 188 Eldridge-Panuska, W. D., Caracciolo Di Brienza, V., Seidel, G. E., Squires, E. L., &
- 189 Carnevale, E. M. (2005). Establishment of pregnancies after serial dilution or direct
- 190 transfer by vitrified equine embryos. *Theriogenology*, 63(5), 1308–1319.
- 191 https://doi.org/10.1016/j.theriogenology.2004.06.015

192	Hannan, M. A., Haneda, S., Itami, Y., Wachi, S., Saitoh, T., Cheong, S. H., & Nambo, Y.
193	(2019). Successful embryo transfer from Hokkaido native pony after artificial
194	insemination with frozen semen. Journal of Veterinary Medical Science, 81(2), 241-
195	244. https://doi.org/10.1292/jvms.18-0414
196	Hannan, M. A., Haneda, S., Murata, K., Takeuchi, S., Cheong, S. H., & Nambo, Y. (2020).
197	Birth of first foals through embryo transfer after artificial insemination using frozen
198	semen in Japan. Journal of Reproduction and Development, 66(2), 193-197.
199	https://doi.org/10.1262/jrd.2019-117
200	Mukaida, T., Oka, C., Goto, T., & Takahashi, K. (2006). Artificial shrinkage of
201	blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of
202	vitrification improves survival rate and pregnancy outcome of vitrified human
203	blastocysts. Human Reproduction, 21(12), 3246–3252.
204	https://doi.org/10.1093/humrep/del285
205	Scherzer, J., Davis, C., & Hurley, D. (2011). Laser-assisted Vitrification of Large Equine
206	Embryos. Reproduction in Domestic Animals, 46(6), 1104–1106.

- 207 https://doi.org/10.1111/j.1439-0531.2011.01795.x
- Stout, T. (2012). Cryopreservation of Equine Embryos: Current State-of-the-Art.
 Reproduction in Domestic Animals, 47(SUPPL.3), 84–89.

210 https://doi.org/10.1111/j.1439-0531.2012.02030.x

211	Stout, T. A.	E., 1	Meadows,	S.,	& Allen,	W.	R.	(2005)	. Stage-s	pecific	formation	of 1	the
)	,	,	,	,			· · · · /	0				

- equine blastocyst capsule is instrumental to hatching and to embryonic survival in
- 213 vivo. Animal Reproduction Science, 87(3–4), 269–281.
- 214 https://doi.org/10.1016/j.anireprosci.2004.11.009
- 215 Tremoleda, J. L., Stout, T. A. E., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander,
- B., & Galli, C. (2003). Effects of In Vitro Production on Horse Embryo Morphology,
- 217 Cytoskeletal Characteristics, and Blastocyst Capsule Formation. *Biology of*
- 218 *Reproduction*, 69(6), 1895–1906. https://doi.org/10.1095/biolreprod.103.018515
- 219 Wilsher, S., Rigali, F., Kovacsy, S., & Allen, W. (2020). Puncture of the equine embryonic
- 220 capsule and its repair in vivo and in vitro. Journal of Equine Veterinary Science, 93,
- 221 103194. https://doi.org/10.1016/j.jevs.2020.103194

Fig. 1. Two transferred embryos with positive pregnancy, after thawing (A and C) and 3

h culture (B and D). A and B, C and D are the same embryo.

Fig. 2. Heart rate of two positive pregnant mares from the day of ovulation until 170-day

of pregnancy.

Table 1. Embryo grade and diameter after collection, trophoblast and capsule size after thawing and culture, method of puncture, and the

result of pregnancy.

Case Gro number	C	Embryo diameter after	Diameter (µm)	after thawing	Diameter (µm)	after culture	Embryo grade	Method of	Result of pregnancy	
	Group	collection (µm)	Trophoblast	Capsule	Trophoblast	Capsule	after culture	puncture		
1	А	233	186	241	242	258	1	PMAP	+	
2	В	684	476	691	453	727	4	PMAP	_	
3	В	598	414	546	468	548	1	LAP	+	
4	В	571	431	530	547	558	1	LAP*2, PMAP	_	
5	С	1235	953	1112	807	1103	3	PMAP*2	_	
6	С	1360	1153	1244	752	1223	4	LAP, PMAP	_	

233 *2: two times.