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Abstract: Understanding the mechanisms underlying seed dispersal is a fundamental issue in plant
ecology and vegetation management. Several species demonstrate myxospermy, a phenomenon
where the seeds form mucilage after absorbing water. Mucilage is thought to act as a glue, enabling
seeds to attach to the external surfaces of dispersing agents. However, there have been no quantitative
investigations of the efficacy of this function of seed mucilage. We performed a trampling and walking
experiment to investigate the seed dispersal of a perennial herb, Asian plantain (Plantago asiatica
L.), which forms polysaccharide mucilage upon hydration. Our experiment showed that: (1) after
trampling, more seeds of P. asiatica attached to shoes in wet conditions (after rainfall), in which seed
mucilage was created, than in dry conditions (no rainfall); and (2) after walking for 1000 m, more
seeds remained attached to shoes in wet conditions than in dry conditions. Our results indicate that
mucilage promotes the adherence of seeds to the surface of vectors. We therefore provide the first
empirical evidence that seed mucilage facilitates epizoochory and human-mediated dispersal.

Keywords: seed dispersal; human-mediated dispersal; anthropochory; animal dispersal; epizoochory;
mucilage; myxospermy; myxodiaspory; weed; urban ecology

1. Introduction

The dispersal of fruits or seeds is a major determinant of plant distributions, abun-
dances, and the structure of communities [1–5]. It plays a key role in gene flow within and
among populations as well [6,7]. Additionally, seed dispersal is a central issue in vegetation
management because it can promote the introduction of new species and weeds [4,8–15]. It
is also a major focus of studies on plant–animal interactions [16–26].

Many plants that depend on animal dispersal are transported by specific dispersing
agents, while others are be transported by a range of agents, including humans [1,16,27].
Humans are important agents of both intentional (e.g., introducing crops [28]) and unin-
tentional dispersal (e.g., seeds becoming attached to clothing [12]); dispersal by humans is
referred to as human-mediated dispersal [4,8,11–13,28–31]. Human-mediated dispersal can
also be categorized as methods involving human vectors, such as the attachment of seeds
to clothing [1,9,10,12,30–37] or shoes [9,12,29,33,34,38,39], or those involving non-human
vectors, such as vehicles [11,12,15,40,41], cargo [8], and livestock [42]. Although the sig-
nificance of the role of human vectors has long been recognized [1,32,33,38,43–45], there
is a paucity of quantitative evidence of dispersal by human vectors (e.g., [2,15,29,36,37]).
Furthermore, despite the fact that the necessity of quantification of the dispersal distance is
crucial in ecology to determine the distribution of species, there is, to date, little quantitative
evidence of dispersal distance in relation to human vectors (e.g., [1,29,37]).

Plants that depend on animal dispersal have evolved various diaspore traits to in-
crease dispersal [1,16,18,26,27,46–52], including polysaccharide mucilage. Diaspores of
several species form polysaccharide mucilage after absorbing water, in a phenomenon
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called myxospermy (in the case of seeds [45,53–58]) or myxodiaspory (in relation to di-
aspores in general [55,56,59–62]). Mucilage can act as an adhesive in epizoochory (i.e.,
dispersal by attaching to the external surface of animals) [33,43,45,46,54,56,59,63–72]. How-
ever, to the best of our knowledge, there have been no studies that quantitatively analyze
the efficacy of seed dispersal by adherence to dispersal agents due the formation of seed
mucilage. Therefore, the present study aimed to evaluate whether and how seed mu-
cilage facilitates seed dispersal, including determining whether its efficacy varies with the
hydration level of seeds (wet or dry).

Seeds of several species from the genus Plantago produce mucilage upon
hydration [45,53,56–58,61,62,64,68,70,72–84]. The polysaccharide mucilage of the Plan-
tago species is primarily composed of hemicelluloses, such as arabinoxylans, which are
responsible for the adherent properties of the mucilage [72,79]. Asian plantain (P. asiatica
L.) is a perennial rosette herb widely distributed in East Asia [85]. As has been recognized
previously [86], the seeds of this particular species also produce mucilage (Figure 1). Empir-
ical data of seed dispersal following attachment to human clothing or vehicles have been
reported for Plantago spp. (e.g., P. asiatica L. [87], P. coronopus L. [8], P. depressa Willd. [15], P.
lanceolata L. [8,38,88], and P. major L. [38]). However, to date, no studies have quantified the
efficacy of seed mucilage that is formed after hydration regarding seed dispersal for any
plant species. We hypothesized that dispersal with mucilage should be promoted under
wet conditions. Specifically, we predicted that more seeds of P. asiatica would attach to
shoes in wet conditions, due to mucilage formation, than in dry conditions.
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Figure 1. Photographs of seeds of Asian plantain (Plantago asiatica L.) before and after hydration. (a) 
Pyxises (fruits); seeds can be seen inside the bell-shaped husks. (b) A seed before hydration. The 
length of each seed was usually 1–2 mm. (c) A seed after hydration. Mucilage can be seen, having 
formed around the surface of the seed. Photographs were taken in 2021 by Nanako Abe. The original 
high-resolution images are available as Supplementary Materials. 
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We conducted this study at Tamokuteki Hiroba in Midorigaoka Park (45°55′ N 
143°11′ E, altitude: 49 m a.s.l.) in Obihiro City, Hokkaido, Japan, where P. asiatica is a com-
mon weed. The mean annual temperature and precipitation were 7.4 °C and 922 mm, re-
spectively (2002–2021), according to the Obihiro Weather Station, which is located 2.6 km 
from the study site [89]. 

2.2. Walking Experiment 
We performed walking experiments for 6 days between August and October 2021, 
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Figure 1. Photographs of seeds of Asian plantain (Plantago asiatica L.) before and after hydration.
(a) Pyxises (fruits); seeds can be seen inside the bell-shaped husks. (b) A seed before hydration. The
length of each seed was usually 1–2 mm. (c) A seed after hydration. Mucilage can be seen, having
formed around the surface of the seed. Photographs were taken in 2021 by Nanako Abe. The original
high-resolution images are available as Supplementary Materials.

2. Materials and Methods
2.1. Study Site

We conducted this study at Tamokuteki Hiroba in Midorigaoka Park (45◦55′ N 143◦11′

E, altitude: 49 m a.s.l.) in Obihiro City, Hokkaido, Japan, where P. asiatica is a common weed.
The mean annual temperature and precipitation were 7.4 ◦C and 922 mm, respectively
(2002–2021), according to the Obihiro Weather Station, which is located 2.6 km from the
study site [89].

2.2. Walking Experiment

We performed walking experiments for 6 days between August and October 2021,
when seeds were matured, following a modified protocol from a combination of previous
studies [29,33,34,37]. The exact dates of the experiments are shown in the dataset provided
in the Supplementary Materials. The selected walking lanes were located inside a flat
and sandy sports ground, where most of the surface was bare. Some sparse, small-stature
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weeds (e.g., Polygonum aviculare L. subsp. aviculare) were present, but were avoided when
selecting the walking lanes.

Each of the eight authors repeatedly performed the same experimental trials, each of
which involved the following steps (Figure 2): (1) One small part of the Plantago stand was
selected. (2) The author put on a pair of commercially available work shoes (DCM-Kakkusu
shoes, sole length: 24.5 cm) with synthetic rubber soles. (3) The selected part of the stand
was trampled by stepping on it 20 times. The trampled parts were labeled with colored
tape so as not to be used again. (4) The shoes were carefully removed while ensuring
that the seeds were not dropped. The author then carried the shoes to the starting point
(hereafter called the “0 m point”) of one of the walking lanes. (5) The number of seeds
attached to the shoes (including the soles and all the other part of the shoes) was counted;
if none were found, the trial was stopped with the initial seed number recorded as zero.
(6) The author put on the shoes again, started walking at a constant, normal speed, and
stopped walking at each observational point (1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 m
from the starting point). The shoes were carefully removed and all the seeds attached to
the shoes were counted. The location of each seed on each shoe, including the sole and the
other part of the outer surface, was recorded using the map to avoid double-counting or
miscounting. The walking lanes were straight and 50 m long. Observational points that
were over 50 m from the start were achieved by making round trips (i.e., the 100 m point
was reached by turning at the end of the 50 m walking lane and returning to the beginning).
The trial ended when 1000 m was reached, even if seeds remained on the shoes.
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taken in 2021 by Kohei Koyama. 

Figure 2. (a) The walking experiment of seed dispersal performed in 2021. (b) The work shoe used in
the experiment. (c) Seeds of Asian plantain (Plantago asiatica L.) attached to the sole of the shoe. A
red, bell-shaped husk was also attached, adjacent to the seed on the right. The photographs were
taken in 2021 by Kohei Koyama.

Field conditions during each experimental trial were classified as wet or dry. “Wet”
conditions were defined as rain having occurred on the previous day or early in the morning
of the day of the experiment; otherwise, the condition was classified as “dry”. We could
not rule out the possibility that some seeds may have become wet due to morning dew
even on dry days. A total of 1171 seeds were examined during 162 trials in the experiment
over the course of two dry and four wet days.

2.3. Data Analysis

Statistical analyses were performed using R ver. 4.12 [90] with the packages cow-
plot [91], ggbeeswarm [92], and ggplot2 [93]. To test the hypothesis that more seeds attach
to shoes in wet conditions due to mucilage formation, we compared the mean number
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of seeds attached to shoes after trampling the stands (i.e., before walking) in the two
conditions (wet and dry), using a generalized linear mixed model (GLMM). This analysis
was performed using the R function glmer [94], setting the field condition (either dry or
wet) as the fixed effect. We used a Poisson distribution (family = poisson (link = “log”)) to
predict positive and discrete dependent variables [95,96]. To test the second hypothesis,
that seeds are more likely to remain attached for longer distances in wet conditions, we
compared the fraction of seeds remaining after walking 1000 m using the logistic regression
model of GLMM (family = binomial (link = “logit”)) [47]. Following the arguments by
Barr et al. [97], all factors (person and date) were included as random slopes and random
intercepts, whenever justified by the design. Applying only random intercepts (no random
slopes) also provided highly significant results (p < 0.001). The dataset is available in the
Supplementary Materials.

3. Results

Significantly more seeds attached to shoes after trampling P. asiatica stands under wet
conditions, compared with those observed under dry conditions (p < 0.001). The median
numbers of attached seeds after trampling but before walking were 8.5 and 2.0 in wet
and dry conditions, respectively (Figure 3a). In dry conditions, we often found no seeds
attached to the shoes during trials (recorded as zero in Figure 3a). Seeds were significantly
more likely to remain on shoes after 1000 m of walking in wet conditions, compared with
those observed in dry conditions (p < 0.001). The mean fractions of seeds remaining at the
1000 m observation point were 20.8% and 3.99% in wet and dry conditions, respectively
(Figure 3b). These seeds remained intact (i.e., not crushed) on shoes after walking.
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conditions (wet vs. dry). (a) Initial number of seeds attached to a pair of shoes after trampling P. 
asiatica stands for 20 steps, just prior to each of the walking trials. The closed black circles indicate 
the results of one trial. This analysis includes cases where no seed attachment to shoes after tram-
pling was observed, which was recorded as zero. Significantly more seeds attached under wet con-
ditions (after rainfall) than dry conditions (no rainfall) (Poisson GLMM: p < 0.001). (b) Fraction of 
seeds (i.e., the total number of seeds at each distance divided by the total number of seeds at the 0 
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Figure 3. Adhesion of the seeds of Asian plantain (Plantago asiatica L.) to shoes in different field
conditions (wet vs. dry). (a) Initial number of seeds attached to a pair of shoes after trampling P.
asiatica stands for 20 steps, just prior to each of the walking trials. The closed black circles indicate the
results of one trial. This analysis includes cases where no seed attachment to shoes after trampling
was observed, which was recorded as zero. Significantly more seeds attached under wet conditions
(after rainfall) than dry conditions (no rainfall) (Poisson GLMM: p < 0.001). (b) Fraction of seeds (i.e.,
the total number of seeds at each distance divided by the total number of seeds at the 0 m point)
remaining after walking for a given distance. Data from all trials were pooled separately for each
condition (wet or dry), and trials where no seeds attached to the shoes after trampling were excluded.
The seeds were significantly more likely to remain on shoes after the 1000 m walking experiment
under wet conditions than under dry conditions (logistic GLMM: p < 0.001). The dataset is available
in the Supplementary Materials.



Sustainability 2022, 14, 6909 5 of 10

4. Discussion
4.1. Role of Diaspore Mucilage in Human-Mediated Dispersal

Human-mediated dispersal plays an important role in the dispersal of many plant
species [4,8,9,11,13,15,30,32,35–37,41,45]. It is thought that seed mucilage facilitates seed dis-
persal [33,43,45,46,54,56,59,63,65–71], including human-mediated dispersal.
Kreitschitz et al. [54,56,71] found that the seed polysaccharide mucilage of two congeneric
species, P. ovata and P. lanceolata, acts as a glue, causing seeds to become sticky when
wet and to remain strongly adhered to a glass surface even after drying out. There-
fore, seed mucilage can be considered analogous to the polysaccharide glue used for
postal stamps [81], which also becomes sticky upon hydration and subsequent drying.
Schaber et al. [98] found a similar property for the seeds of other species. However, neither
of these authors investigated how the mucilage actually facilitates seed dispersal, as their
work was laboratory based. The results of the present study provide the first field-based
quantitative evidence supporting the laboratory findings of Kreitschitz et al. [54,56,71] and
Schaber et al. [98], showing that seed mucilage facilitates seed dispersal by acting as a glue
that contributes to the adhesion of seeds to shoes.

The weed P. asiatica is common on and around footpaths in the Midorigaoka park. Our
study demonstrated that P. asiatica seeds can be dispersed more than 1000 m by walkers. In
the park, there are bus stops and parking lots within 1000 m of identified P. asiatica stands.
It is thus possible that seeds are dispersed to greater distances by remaining attached to
the shoes of visitors who use buses or other vehicles, as has been suggested for Brassica
spp. [29]. Therefore, our findings highlight a possible route for the inflow and outflow of
seeds into and out of the park.

4.2. Limitations of the Present Study

The present study has several limitations. First, seed mucilage has been suggested to
play versatile roles beyond seed dispersal [58,68,78,99], which were not investigated in our
experiment. Seed mucilage anchors seeds in the soil, allowing them to remain in a favorable
location (a phenomenon called antitelochory) [56,62,65,68,69,71,83,100,101]. Seed mucilage
also facilitates water absorption and retention to promote germination (especially in arid
environments) [56,61,68–70,73,74,78,81,83,102,103] and to facilitate repairing of damaged
DNA [102]. It also prevents or reduces herbivory by protecting seeds [60,68,78,83,104,105],
provides lubrication inside the digestive tracts of animals, and protects seeds during en-
dozoochory [61,68,78,83,106,107]. Furthermore, it promotes seed floating on water during
hydrochory [65,68], facilitates seed development inside fruits [68], provides carbohydrate
resources to soil microbes [58,108], and acts as a reward for dispersal agents [48]. Although
these additional roles of mucilage are not mutually exclusive to our hypothesis that mu-
cilage facilitates epizoochory, further studies are needed to evaluate the relative significance
of the role of mucilage in seed dispersal in comparison to its other roles.

Second, our finding that P. asiatica seeds are dispersed by attachment to shoes does
not preclude the existence of alternative dispersal mechanisms for this species. Several
species from the genus Plantago are known to attach to a variety of vectors. For example,
the seeds of P. major and P. lanceolata are dispersed by attaching to both clothing and
vehicles [12,41,88]. The seeds of P. lanceolata are dispersed by attaching to animals and
being contained in dung [88]. The seeds of P. lagopus are dispersed by attaching to sheep
fleece [42], and the seeds of P. depressa attach to vehicles [15]. Hence, it is likely that the
seeds of P. asiatica also attach to non-human vectors. Therefore, future studies should
evaluate the relative contribution of other non-human vectors.

Third, the present results are based on limited experimental conditions; the adherence
property of mucilage depends on the materials of the surface of clothing [30,31,34] and,
probably, on soil properties. Furthermore, we investigated only one species; patterns of
seed retention on clothing also depend on seed traits, such as the type of adhesive structure
of each species, which can include mucilages, sticky spines, and hairs [30,37]. Therefore,
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further studies are warranted to explore the potential dispersal of additional species with
different seed traits under various field conditions, in order to make broader inferences.

5. Conclusions

Plantago asiatica seeds produce mucilage when they absorb water. Seeds are more
likely to attach to the shoes of walkers who step on P. asiatica stands in wet conditions (after
rainfall) than in dry conditions. The seeds are also more likely to remain on shoes when
they attach during wet conditions, as compared to dry conditions. Our study provides the
first empirical evidence that seed mucilage facilitates epizoochory and human-mediated
dispersal. However, because the present dataset is limited to one species in one particular
field, further studies that cover a wide range of species and field conditions are needed in
order to draw generalizations from our results.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su14116909/s1.
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