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Abstract: (1) Background: A central subject in clonal plant ecology is to elucidate the mechanism by
which clones forage resources in heterogeneous environments. Compared with studies conducted
in laboratories or experimental gardens, studies on light foraging of forest woody clonal plants in
their natural habitats are limited. (2) Methods: We investigated wild populations of an evergreen
clonal understory shrub, Japanese pachysandra (Pachysandra terminalis Siebold & Zucc.), in two
cool-temperate forests in Japan. (3) Results: Similar to the results of herbaceous clonal species, this
species formed a dense stand in a relatively well-lit place, and a sparse stand in a shaded place.
Higher specific rhizome length (i.e., length per unit mass) in shade resulted in lower ramet population
density in shade. The individual leaf area, whole-ramet leaf area, or ramet height did not increase
with increased light availability. The number of flower buds per flowering ramet increased as the
canopy openness or population density increased. (4) Conclusions: Our results provide the first
empirical evidence of shade avoidance and light foraging with morphological plasticity for a clonal
woody species.

Keywords: clonal plants; clonal species; phalanx; guerrilla; light foraging; phenotypic plasticity;
morphology; shade tolerance; shade acclimation; forest understory

1. Introduction

Clonal plants produce their offspring via not only sexual reproduction but also asexual
reproduction, in which new individual clones with an identical gene set, called ramets,
are generated [1–6]. Elucidating the mechanism by which clones forage resources in
heterogeneous environments is a central issue in clonal plant ecology [4,5,7–22], plant
growth modeling [23], and their application in vegetation management [17–20,24–31].
Additionally, the spatial arrangement of ramets determines the reproductive success of
clonal plants; this is because aggregation of ramets that belong to the same genets leads to
an increased percentage of geitonogamous self-pollination [6].

Plants in forests are often shaded by neighboring plants or canopy trees [20,32–39].
The theory of resource foraging predicts that clonal plants selectively deploy ramets
in places where resources are locally abundant [7–12,18,19,21,40,41]. The foraging of
favorable resource-rich patches acts as a mechanism of escape from unfavorable patches,
including shaded patches [9,12,18]. Avoidance of shade can be achieved at multiple
levels [4,19,38]. In shade, clonal plants often increase specific rhizome length (i.e., length
per unit mass) [7,18] and elongate their internodes [7,18,38,42] or increase their petiole
length [38,42,43]. These increases in rhizome and petiole length are shade-induced spacer
elongation phenomena [42,44]. To date, several researchers have investigated the resource
foraging theory by experimentally studying clonal plants [7–9,11,19,38,41,44].

Most of the previous studies on resource foraging of clonal plants were performed
using plants that were grown in pots or trays [7–9,18,19,24,40,42,44–47] and/or inside labo-
ratories or greenhouses [7,8,19,24,45] rather than in their natural habitats. Nevertheless, it
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has been discussed that plants respond to their environment in different ways depending
on whether they are grown in pots or in their natural habitats [5,48,49]. Plants in natu-
ral habitats experience greater fluctuations in their environment compared with plants
that grow in pots or in greenhouses [32,48]. Particularly, artificial shading using shade
cloths or films (e.g., [7,10,17,18,42,44–47,50–54]) does not produce sunflecks experienced
by plants grown in natural forest understory [32,48]. However, compared with studies in
laboratories or gardens, studies on resource foraging of wild plants in their natural habitats
(e.g., [12,38,41]) are limited. Moreover, most of the previous studies on resource foraging
of clonal plants have investigated herbaceous [7–12,16–20,24,38,40–42,44,46,47] or bam-
boo [13,15] species. The reproductive biology [1,29,55–59] and resultant genetic structure
of populations [60–62] of clonal woody species have been studied intensively. However, to
the best of our knowledge, no studies have quantitatively investigated light foraging or
shade avoidance for clonal woody species. Hence, it is unclear whether the theory of light
foraging can be applied to woody clonal plants in forest understory vegetation.

Japanese pachysandra (Pachysandra terminalis Siebold et Zucc.; Buxaceae) is a short-
stature (ramet height approximately 15–35 cm at the study site), evergreen woody clonal
species [63,64] that propagates using horizontal (plagiotropic) rhizomes (i.e., belowground
stems) [65]. Each ramet comprises a single (usually unbranched) vertical aboveground stem
and evergreen leaves with its appearance similar to an erect herb (Figure 1). This species
forms a dense stand in a relatively well-lit place (Figure 1a) and a sparse stand in a shaded
place (Figure 1b). It is a monoecious species with unisexual flowers, and the fruits are white
drupes (Figure 1c). This species is distributed in East Asia [63], and it is widely used as a
ground cover plant in Japan (pers. obs.) and several other countries [53,54,66–68]. Reports
by Jeong and Kim [53] and Lee et al. [54] clarified mechanisms of shade acclimation at
the level of an individual leaf or ramet (e.g., leaf photosynthetic traits and plasticity in
aboveground vertical stem length, etc.), which were generally in agreement with typical
shade acclimation responses of nonclonal plants. However, the mechanisms of light
foraging and shade avoidance by the deployment of new ramets as a clonal plant were
not investigated in these studies. Therefore, in the present study, we investigated a forest
woody clonal plant that grows in its natural habitat to clarify the mechanism underlying
light foraging and shade avoidance for this species.
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Figure 1. Photographs of Pachysandra terminalis Siebold et Zucc. (a) A dense stand in a relatively
better-lit plot. (b) A sparse stand in a shaded plot. (c) Drupes. Markings or numberings by ink
pens appear on some leaves. Photographs were taken on 1 October 2020 by Kohei Koyama. High-
resolution images are available in the Supplementary Materials.

Figure 1. Photographs of Pachysandra terminalis Siebold et Zucc. (a) A dense stand in a relatively
better-lit plot. (b) A sparse stand in a shaded plot. (c) Drupes. Markings or numberings by ink
pens appear on some leaves. Photographs were taken on 1 October 2020 by Kohei Koyama. High-
resolution images are available in the Supplementary Materials.
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2. Results
2.1. Ramet Population Density

Ramet population density increased as canopy openness increased (p < 0.01, Figure 2a).
Consequently, the leaf area index (LAI, i.e., total leaf area per unit land area) increased
as canopy openness increased (p < 0.01, Figure 2b). The positive correlation between the
LAI and canopy openness was caused by the increment in correlated increase in ramet
population density and canopy openness, rather than by the increment in individual
leaf size or ramet size. The individual leaf area (p = 0.583), mean whole-ramet leaf area
(p = 0.439), and mean ramet height (p = 0.434) did not significantly increase with the
increasing canopy openness.
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Figure 2. (a) Population density (i.e., the total number of ramets in each 1 m2 subplot) in spring and (b) leaf area index
(LAI, i.e., total leaf area per unit land area) in relation to canopy openness in spring. Each symbol indicates the value of one
subplot. Red: Forest of Obihiro. Blue: forest of the Hokkaido Obihiro Agricultural High School. The dataset is available as a
part of the Supplementary Materials.

2.2. Morphological Plasticity

This species has two morphologically distinct types of horizontal rhizomes: thin and
thick (Figure 3; see the Discussion for these two types). The mean specific rhizome length
(SRL; i.e., length per unit mass) was significantly higher for thin rhizomes than for thick
rhizomes (p < 0.001). For both thin and thick rhizomes, the SRL increased in shade (thin:
p = 0.0356; thick: p = 0.0486). Consequently, the overall SRL, calculated by dividing the
total rhizome length (i.e., sum of the total lengths of thick and thin rhizomes) by the total
mass, increased in shade (p = 0.0241; Figure 4a). The increased SRL resulted in the lower
population density in shade (p < 0.001; Figure 4b).

Although SRL decreased in shade for both types of rhizomes, responses of rhizome
length per ramet to different light availability differed between thin and thick rhizomes.
The rhizome length per ramet of thin rhizomes increased in shade, though the results
were not significant (p = 0.0634; Figure 4c). The modest elongation of the thin rhizomes
resulted in a lower ramet population density in shade (p < 0.001; Figure 4d). By contrast,
the length of the thick rhizomes per ramet did not show clear dependency on canopy
openness (p = 0.688; Figure 4e). In addition, contrary to our expectation, petiole length,
which we thought would increase in shade, decreased in shade (p < 0.01; Figure 4f).

Figure 2. (a) Population density (i.e., the total number of ramets in each 1 m2 subplot) in spring and (b) leaf area index
(LAI, i.e., total leaf area per unit land area) in relation to canopy openness in spring. Each symbol indicates the value of one
subplot. Red: Forest of Obihiro. Blue: forest of the Hokkaido Obihiro Agricultural High School. The dataset is available as a
part of the Supplementary Materials.

2.2. Morphological Plasticity

This species has two morphologically distinct types of horizontal rhizomes: thin and
thick (Figure 3; see the Discussion for these two types). The mean specific rhizome length
(SRL; i.e., length per unit mass) was significantly higher for thin rhizomes than for thick
rhizomes (p < 0.001). For both thin and thick rhizomes, the SRL increased in shade (thin:
p = 0.0356; thick: p = 0.0486). Consequently, the overall SRL, calculated by dividing the
total rhizome length (i.e., sum of the total lengths of thick and thin rhizomes) by the total
mass, increased in shade (p = 0.0241; Figure 4a). The increased SRL resulted in the lower
population density in shade (p < 0.001; Figure 4b).

Although SRL decreased in shade for both types of rhizomes, responses of rhizome
length per ramet to different light availability differed between thin and thick rhizomes.
The rhizome length per ramet of thin rhizomes increased in shade, though the results
were not significant (p = 0.0634; Figure 4c). The modest elongation of the thin rhizomes
resulted in a lower ramet population density in shade (p < 0.001; Figure 4d). By contrast,
the length of the thick rhizomes per ramet did not show clear dependency on canopy
openness (p = 0.688; Figure 4e). In addition, contrary to our expectation, petiole length,
which we thought would increase in shade, decreased in shade (p < 0.01; Figure 4f).
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Figure 3. (a) Thin and (b) thick rhizomes. Photographs were taken on 18 October 2020, by Kohei Koyama. High-resolution
images are available in the Supplementary Materials.
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Figure 4. (a) Specific rhizome length (SRL; i.e., length per unit mass, thin and thick combined) in relation to canopy openness.
(b) Population density (i.e., the number of ramets in each 1 m2 subplot in autumn) in relation to SRL. (c) Thin rhizome
length per ramet (i.e., the total thin rhizome length in each subplot divided by the number of ramets in that subplot) in
relation to canopy openness. (d) Dependence of population density on thin rhizome length per ramet. (e) Thick rhizome
length per ramet in relation to canopy openness. (f) Mean petiole length in relation to canopy openness. Each symbol
indicates the value of one subplot. Red: Forest of Obihiro. Blue: forest of the Hokkaido Obihiro Agricultural High School.
The dataset is available as a part of the Supplementary Materials.
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2.3. Sexual Reproduction

Probability of having at least one flower bud did not significantly increase as canopy
openness increased (p = 0.959). Nevertheless, among the ramets with flower buds, the total
number of flower buds on each ramet significantly increased as the canopy openness or
ramet density increased (p < 0.01 for both cases, Figure 5a,b).
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3. Discussion

Higher specific rhizome length (SRL) resulted in lower ramet density in shade
(Figure 2a; Figure 4a,b). The SRL reflects the achievement of unit length of elongation per
unit investment of biomass (similar to specific leaf area [32,69–73]). A higher SRL in shade
was consistent with the results of other herbaceous clonal species (Glechoma hederacea [7] and
Reynoutria japonica [18]). However, to the best of our knowledge, our result provides the first
of its kind for a woody clonal species living in their natural forest habitats. Previous studies
on herbaceous species have shown that the plasticity of horizontal stems differed among
clonal species. For some species, the elongation of the stolon or rhizome internode length
was observed (Cymbalaria muralis [42], Fragaria vesca [42], Glechoma hederacea [7], Hydro-
cotyle bonariensis [9], H. vulgaris [10], Lamium galeobdolon (syn. Lamiastrum galeobdolon) [10],
Potentilla anglica [46], Reynoutria japonica [18], and Trifolium repens [44]). Conversely, the
elongation was not observed for other species (Anagallis tenella [42], Glechoma hirsuta [42],
Potentilla reptans [42,46], and Ranunculus repens [42]). Pachysandra terminalis has two types
of horizontal rhizomes: thin rhizomes are milky-brown-white, whereas thick rhizomes are
usually green or purple-red (Figure 3). Yoshie et al. [65] discussed that thin rhizomes sprout
from existing underground rhizomes, whereas thick rhizomes originate from aboveground
vertical stems that gradually descend and become underground horizontal rhizomes with
roots. A thick rhizome might have an additional function as an underground storage organ,
as a meter of each type allows this species to deploy offspring ramets one meter apart from
the parent ramets.

The mean ramet leaf area did not increase as the canopy openness increased, consis-
tent with the result observed for G. hederacea [7]. Given that neither ramet leaf area nor
individual leaf area changed with the light availability, the increased population density
was responsible for the increment of LAI (Figure 2b). Thus, although this species can
tolerate shade, our results revealed that the effectiveness of ground cover as a garden-
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3. Discussion

Higher specific rhizome length (SRL) resulted in lower ramet density in shade
(Figure 2a; Figure 4a,b). The SRL reflects the achievement of unit length of elongation per
unit investment of biomass (similar to specific leaf area [32,69–73]). A higher SRL in shade
was consistent with the results of other herbaceous clonal species (Glechoma hederacea [7] and
Reynoutria japonica [18]). However, to the best of our knowledge, our result provides the first
of its kind for a woody clonal species living in their natural forest habitats. Previous studies
on herbaceous species have shown that the plasticity of horizontal stems differed among
clonal species. For some species, the elongation of the stolon or rhizome internode length
was observed (Cymbalaria muralis [42], Fragaria vesca [42], Glechoma hederacea [7], Hydro-
cotyle bonariensis [9], H. vulgaris [10], Lamium galeobdolon (syn. Lamiastrum galeobdolon) [10],
Potentilla anglica [46], Reynoutria japonica [18], and Trifolium repens [44]). Conversely, the
elongation was not observed for other species (Anagallis tenella [42], Glechoma hirsuta [42],
Potentilla reptans [42,46], and Ranunculus repens [42]). Pachysandra terminalis has two types
of horizontal rhizomes: thin rhizomes are milky-brown-white, whereas thick rhizomes are
usually green or purple-red (Figure 3). Yoshie et al. [65] discussed that thin rhizomes sprout
from existing underground rhizomes, whereas thick rhizomes originate from aboveground
vertical stems that gradually descend and become underground horizontal rhizomes with
roots. A thick rhizome might have an additional function as an underground storage organ,
as a meter of each type allows this species to deploy offspring ramets one meter apart from
the parent ramets.

The mean ramet leaf area did not increase as the canopy openness increased, consis-
tent with the result observed for G. hederacea [7]. Given that neither ramet leaf area nor
individual leaf area changed with the light availability, the increased population density
was responsible for the increment of LAI (Figure 2b). Thus, although this species can
tolerate shade, our results revealed that the effectiveness of ground cover as a garden-
ing plant increased as the light availability increased. The number of flower buds per
flowering ramet increased as canopy openness or ramet density increased (Figure 5). The
increment in investment in sexual reproduction with the increment in ramet density is
consistent with the results observed for dewberries (Rubus spp.) [1] and the clonal herb
Ranunculus reptans [24].
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We observed that the petiole length increased as the light availability increased
(Figure 4e). Our result differs from most of the previous study results for the herbaceous
clonal stoloniferous or rhizomatous species, where a longer petiole length in shade was ob-
served (Cymbalaria muralis [42], Fragaria vesca [42], Glechoma hederacea [7,47], G. hirsuta [42],
Hydrocotyle vulgaris [10], Lamium galeobdolon [10], Potentilla anglica [46], P. reptans [42,46],
Ranunculus repens [42], Trifolium fragiferum [38,42], and T. repens [42,44]). However, no such
trend was observed for Petasites japonicus [32]. Most of the herbaceous clonal species inves-
tigated so far have vertical petioles that directly elongate from horizontal aboveground
stolons (but see the results related to an erect herb, L. galeobdolon [10]). Huber et al. [42,46]
suggested a theory that vertically oriented (orthotropic) organs are more plastic in response
to shade than horizontally oriented (plagiotropic) ones. Supporting this prediction, Hu-
ber et al. [42,46] showed that horizontal petioles that elongate from the vertical stems of
erect herbaceous species were less plastic in response to shade compared with vertical
petioles that elongate from horizontal stolons of clonal species from closely related taxa.
Similar to these erect herbs, the species P. terminalis in the present study has horizontal
petioles that elongate from vertical aboveground woody stems (which in turn connect
to horizontal belowground rhizomes). The reason for this difference may be explained
by the difference between vertical and horizontal structures of petioles, although other
factors, such as the difference between herbaceous and woody species and/or between
short-lived leaves of herbaceous species or long-lived evergreen leaves of woody species,
may be present. In addition, as petioles do not only function as shade-avoidance structures
but also as supporting tissues [74,75], their function could differ among the species with
different leaf morphology. Currently, however, limited information is available on light
foraging for woody clonal species.

Our study had several additional limitations. First, we did not investigate the special
genetic structure of the populations. Therefore, although we found a difference in ramet
density in different light environments, we cannot determine whether the ramets from the
same genets aggregate in a dense stand (i.e., “phalanx form” [6,18,76,77]) or are sparsely
dispersed and intermingled with other genets (i.e., “guerrilla form” [6,18,76,77]). The type
of the spatial arrangement of ramets (phalanx or guerrilla) determines not only resource
capture but also reproductive success, as an aggregation of ramets that belong to the same
genets leads to an increased percentage of geitonogamous self-pollination [6]. Second,
the total number of flowers may not provide an appropriate estimate of reproductive
success through sexual reproduction because reproductive success is also determined by
pollen limitation [78,79] and inbreeding depression caused by self-pollination [6,79,80].
Our data only showed that investment in sexual reproduction increased with the increment
in ramet density, but it did not show the difference in reproductive success in different light
environments. Third, only one woody clonal species was investigated for a short period.
The differences among woody species from wider taxa and growth forms, especially shrub
vs. tall trees and deciduous vs. evergreens, should be investigated in future studies. Given
these important limitations, further studies are needed to reconfirm our findings before
any generalization.

4. Materials and Methods
4.1. Study Sites

In 2020, we investigated wild populations in two nearby cool-temperate forests (ap-
proximately 3 km apart from each other) in an urban area of Obihiro City in Hokkaido,
Japan. During the period in 1998–2017, the mean annual temperature and precipitation at
the Obihiro Weather Station (approximately 6 km from the two study sites) were 7.2 ◦C and
937 mm, respectively [81]. The first site (F) was in the Forest of Obihiro (42◦53′ N, 143◦09′ E,
altitude: 86 m a.s.l.), which is a secondary forest composed of a mixture of planted and
regenerated trees comprising varieties of deciduous broad-leaved trees and evergreen
coniferous trees. The second site (H) was located on the campus of the Hokkaido Obihiro
Agricultural High School (45◦52′ N 143◦11′ E, altitude: 69 m a.s.l.). The forest comprises
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natural broad-leaved deciduous forests and planted coniferous forests, but the study was
conducted only in a natural forest stand. The understory vegetation comprises a mixture
of native species, which include Pachysandra terminalis, Sasa chartacea (Makino) Makino &
Shibata, Cardiocrinum cordatum (Thunb.) Makino [78], and Phryma esquirolii H.Lév.

4.2. Sampling Strategy

We investigated 13 plots (F: n = 6, H: n = 7). In the Forest of Obihiro, P. terminalis
covered the forest floor as discrete large patches, and one plot was established in each
investigated patch. In the high school forest, the species continuously covered the range of
ground of the investigated forest stand, and seven plots from different locations within
the stand were established. Within each plot, we established two or three 1 m2 subplots,
avoiding the edges of the patches or the stands. The total number of subplots was 33 (F:
n = 14, H: n = 19). In one plot (H, #11), the field investigation was interrupted in summer
due to a hornet nest in the plot; hence, some parameters (LAI and the ramet height) were
not obtained.

4.3. Measurement of Canopy Openness

For each subplot, we estimated the canopy openness using hemispherical
photographs [82–84] taken on cloudy days during the period of 4–6 May 2020, just af-
ter snow melt when the leaves of the upper canopy deciduous trees had not yet expanded.
We used a light environment before canopy closure because photosynthesis before canopy
closure is especially important for photosynthetic carbon gain for this understory shrub
species [65,85]. The photographs were taken with a Nikon Fisheye Converter FC-E8
mounted on Nikon CoolPix P5100. The camera was set horizontally approximately 1 m
above the ground using tubular spirit levels and a tripod. The images were binarized, and
canopy openness was calculated using the CanopOn2 software [83].

4.4. Ramet Population Density in Spring and Sexual Reproduction

We counted the total number of ramets in each subplot from 29 April to 9 May, in 2020.
Ramet population density in spring was defined as the number of ramets in each 1 m2

subplot. Each ramet was classified as either (1) a ramet with at least one flower bud or (2) a
ramet without any flower buds, to calculate the percentage of flowering ramets in each
subplot. The number of flower buds (i.e., the sum of female and male flower buds) was
counted for all flowering ramets if the total number of flowering ramets in a plot did not
exceed 10. If the number of flowering ramets in a plot exceeded 10, the number of flower
buds was counted for the 10–15 haphazardly selected ramets.

4.5. Measurement of LAI

We estimated the leaf area on 13–14 July 2020, after the appearance of current-year
leaves had completed. Five ramets that were adjacent to, and hence from the same stand of,
each subplot were harvested. Immediately after sampling, the leaves were scanned with
an A4 flatbed scanner (CanoScan LiDE 210; Canon, Tokyo). The individual leaf area was
measured using ImageJ software [86], and the mean total leaf area per ramet was calculated.
The leaf area index (LAI) was estimated as the product of the mean total leaf area per ramet
and the number of ramets within each 1 m2 subplot. The height of ramets (defined as the
distance between the ground surface and the point at which the highest leaf attached to the
vertical stem) was measured for 8–12 ramets in each subplot on 30 July 2020.

4.6. Measurement of Rhizome Length and Ramet Population Density in Autumn

All belowground parts of P. terminalis were harvested in eight subplots (F: n = 6, H:
n = 2) during 11–27 October 2020. The ramet population density in autumn was defined
as the total number of ramets in each 1 m2 subplot. The two types of rhizomes (Figure 3)
were sampled separately. Additionally, for each subplot, we sampled a total of 1 m of each
type of rhizome, each of which comprised five to ten 10–20 cm parts. All of the harvested
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rhizomes were oven-dried at 70 ◦C for at least one week. The total dry mass of all rhizomes
and 1 m samples for each subplot were measured with a precision balance. The total length
of the rhizomes in each subplot was calculated by dividing the total mass by the mass
per unit length of each type of rhizome. The total rhizome length was calculated as the
sum of thick and thin rhizome lengths for each subplot. The mean rhizome length of each
ramet was calculated by dividing the total rhizome length of each type by the number
of ramets at the time of harvest. The specific rhizome length (SRL, i.e., length per unit
mass) of each type of rhizome (thin and thick) was calculated as the inverse of the mass
per unit length of the 1 m samples of each type. The overall SRL (thin and thick rhizomes
combined) was calculated by dividing the total rhizome length by the total rhizome mass
in each subplot; this value represents the proportions of thick and thin rhizomes and the
SRL of each rhizome type.

The length of the petiole was measured for 15 leaves from five ramets (three leaves
per ramet) in each subplot. Immediately after sampling, the leaves were scanned with an
A4 flatbed scanner (CanoScan LiDE 210). The length of the petiole was measured using
Image J software [86].

4.7. Statistical Analysis

All statistical analyses were performed with the statistical software R [87] using
packages “cowplot” [88], “ggplot2” [89], and “lme4” [90]. Significance of the effect of each
explanatory variable was tested with a generalized linear mixed model (GLMM) using
the function glmer [90]. To predict binomial outcomes (a ramet either with at least one
or without any flower bud), we used a logistic regression analysis with binomial error
distribution (family = binomial (link = “logit”)) [91,92]. To predict positive and discrete
dependent variables (number of ramets per unit land area and number of flower buds
on each ramet), we used Poisson distribution (family = poisson (link = “log”)) [93,94]. To
predict positive and continuous variables (the rest of the dependent variables), we used
Gamma distribution (family = Gamma (link = “log”)) [95]. Following the arguments in [96],
we constructed a model of maximal random effects structure by choosing all random effects
that were justified by the design instead of choosing random variables via model selection.
In the present case, random effects (i.e., ramet (only for petiole length and individual leaf
area), subplot, plot, and site) were nested. When justified by the design, all these factors
were included as nested random slopes and intercepts. The dataset presented in this paper
is available as a part of the Supplementary Materials.

Supplementary Materials: The dataset and the original high-resolution photographs used in this
article are available online at https://www.mdpi.com/article/10.3390/plants10040809/s1.
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