1	Title:
2	Molecular detection of <i>Blastocystis</i> sp. subtype 14 in the Yezo sika deer (Cervus nippon
3	yesoensis) in Hokkaido, Japan
4	
5	Name of authors:
6	Takahiro Shirozu, Yu-ki Morishita, Mami Koketsu, Shinya Fukumoto*
7	
8	Affiliation:
9	National Research Center for Protozoan Diseases, Obihiro University of Agriculture
10	and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
11	
12	*To whom correspondence should be addressed:
13	Shinya Fukumoto, Ph.D.
14	Associate Professor of National Research Center for Protozoan Diseases, Obihiro
15	University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555,
16	Japan.
17	Tel: +81-155-49-5887
18	Fax: +81-155-49-5643

- 19 Email: fukumoto@obihiro.ac.jp

22 Abstract

23	This study describes the first report of <i>Blastocystis</i> sp. colonization in the sika
24	deer (Cervus nippon) in Japan and in other animals in Hokkaido, Japan. Blastocystis sp.
25	is one of the most widespread intestinal protist in a wide range of animals. Blastocystis
26	sp. isolated from mammalian and avian species have been classified into 17 subtypes
27	(STs). Some of the STs are zoonotic. The aim of this study was to evaluate Blastocystis
28	sp. colonization in the Yezo sika deer (Cervus nippon yesoensis) in Hokkaido, Japan.
29	The Yezo sika deer are currently overabundant and they are expanding their habitat to
30	humans and livestock. A total of 132 deer fecal samples were subjected for molecular
31	detection of <i>Blastocystis</i> sp Of these, 60 (45.5%) samples were positive using PCR,
32	which targets the small subunit ribosomal RNA gene sequence. All Blastocystis sp.
33	DNA sequences from the Yezo sika deer were genotyped into ST14, which were
34	originally reported in cattle. These findings indicate that the current public health risks
35	of Blastocystis sp. from the Yezo sika deer is low, although more detailed future
36	analysis is required.
37	

38 Keywords

39 *Blastocystis* sp., Yezo sika deer, subtype 14

40	Blastocystis sp. is an intestinal protist that can colonise a wide range of host
41	species from insects to mammals (Yoshikawa et al., 2016). Although asymptomatic
42	cases are common, it has been reported that Blastocystis colonization relates irritable
43	bowel syndrome (IBS) and symptoms such as diarrhea, constipation, abdominal pain
44	and flatulence in human patients (Dogruman-Al et al., 2009). Blastocystis sp. isolated
45	from mammalian and avian species have been classified into subtypes (STs) based on
46	the sequencing of the small subunit ribosomal RNA (SSU rDNA) gene (Alfellani et al.,
47	2013; Ramirez et al., 2016; Stensvold and Clark, 2016). At present, 17 known STs have
48	been reported. The host specificity of <i>Blastocystis</i> sp. seems to be low. ST1 to ST9 and
49	ST12 have been identified in humans (Cian et al., 2017; Ramirez et al., 2016; Rene et
50	al., 2009). Most of these STs in humans have also been detected in non-human hosts,
51	and Blastocystis sp. is considered as a zoonotic protist parasite (Stensvold and Clark,
52	2016).
53	The Yezo sika deer (Cervus nippon yesoensis) is the biggest wild ruminant
54	found on Hokkaido island, Japan. The population of the Yezo sika deer is overabundant
55	because the wolves, their natural predator, were endangered and there are no effective
56	population control measures put in place by the government. The current population of
57	the Yezo sika deer is estimated to be approximately > 650,000 in Hokkaido (Suzuki,

58	2019). This overabundant population can harm the ecosystem, and the Yezo sika deer is					
59	expanding its habitat into human populations. Furthermore, they continue to cause					
60	considerable damage, especially to livestock, crops, and forests (Takatsuki,					
61	2009). These situations have resulted in inter-species infections by various kinds of					
62	pathogens from the Yezo sika deer to humans or livestock (Tei et al., 2003; Trimmel					
63	and Walzer, 2020). Therefore, it has become important to clarify the pathogen species					
64	carried by deer to prevent deer-borne infections in humans and livestock.					
65	We aimed to determine whether the Yezo sika deer were colonised with					
66	Blastocystis sp., and which STs were dominant. To clarify these issues, we conducted a					
67	molecular epidemiological survey using individual traceable rectal fecal samples of the					
68	Yezo sika deer in the eastern part of Hokkaido.					
69	From 2016–2017, 132 rectal fecal samples were collected from the Yezo sika					
70	deer hunted in the eastern part of Hokkaido, mainly in the Tokachi sub-prefecture					
71	(Table 1). The ELEZO Company hunters acted in accordance with the general hunting					
72	license. The hunters recorded the sex, age, date of the hunt, and location of the deer.					
73	Rectal fecal samples were collected within 2 h after hunt and stored at -30°C until DNA					
74	extraction. DNA was extracted from approximately 0.2 g of a fecal sample using the					

75	PureLink TM Microbiome DNA Purification Kit (Thermo Ficsher Scientific, Waltham,					
76	MA, USA). All DNA samples were adjusted to 5 ng/ μ l for the subsequent analysis.					
77	Blastocystis-specific primers RD5 (ATCTGGTTGATCCTGCCAGT) and					
78	BhRDr (GAGCTTTTTAACTGCAACAACG) were used for parasite detection using					
79	Taq DNA polymerase (New England Biolabs, Ipswich, MA, USA) based on the study					
80	conducted by Scicluna et al. (Scicluna et al., 2006). PCR products were analyzed using					
81	agarose gel electrophoresis. In the PCR analysis, 60 of the 132 showed approximately					
82	600-bp clear positive band representing the 18s small subunit ribosomal RNA of					
83	Blastocystis. All PCR positive products were subjected to sequencing and BLAST					
84	analyses using RD5 primer to confirm the real Blastocystis sp. positive. The positive					
85	ratio of the <i>Blastocystis</i> sp.was 45.5% (Table 1). There was no significant difference in					
86	positive rates when the areas were compared using the chi-square test.					
87	Eight PCR positive samples were randomly chosen and subjected to					
88	sequencing analysis. Blastocystis-positive PCR products were purified using the					
89	QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany), and subjected to direct					
90	sequencing analysis using the RD5 and BhRDr primers and the BigDye [™] Terminator					
91	v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). The deer Blastocystis sp.					
92	sequences obtained were compared using ClustalW. A phylogenetic tree was					

93	constructed using the MEGA7 software (Pennsylvania State University, State College,					
94	PA, USA). We performed the analysis using the neighbor-joining method and the					
95	maximum composite likelihood substitution model. The Yezo sika deer Blastocystis sp.					
96	sequence obtained was deposited in the GenBank database under accession number					
97	MT373685. The eight sequences were identical in ClustalW comparison. In the					
98	phylogenetic tree analysis, the Blastocystis sp. sequence derived from the Yezo sika					
99	deer was clustered with the <i>Blastocystis</i> ST14 (Figure 1) (Fayer et al., 2012).					
100	We demonstrated the presence of <i>Blastocystis</i> sp. in the Yezo sika deer using					
101	molecular epidemiological survey. This is the first report describing Blastocystis sp.					
102	colonization in Hokkaido and in the sika deer in Japan. The ST14 constituted majority					
103	of the Blastocystis sp. from the Yezo sika deer. Masuda et al. reported that Blastocystis					
104	ST14 was the major ST detected in cows of Kanagawa prefecture, Kanto district, Japan					
105	(Masuda et al., 2018). Additionally, Masuda et al. reported that approximately half of					
106	the Blastocystis sppositive cattle had breeding history in Hokkaido. This information					
107	suggests that some of the cattle in Hokkaido are also colonised with <i>Blastocystis</i> ST14,					
108	which was transferred to the Kanagawa prefecture via cattle transportation, although					
109	there is no study describing <i>Blastocystis</i> sp. colonization in cattle in Hokkaido.					
110	Therefore, Blastocystis sp. colonization in cattle in Hokkaido should be addressed in					

111 future studies to clarify the ecology of *Blastocystis* sp. colonization in ruminants in
112 Hokkaido and in Japan as a whole.

- 113 Blastocystis ST14 was originally isolated from cattle (Fayer et al., 2012). There 114 is, however, no report describing the detection of ST14 in human patients to date. This 115 study was conducted in a limited period and was limited to the region of eastern 116 Hokkaido, mainly in the Tokachi sub-prefecture. To evaluate the comprehensive risk of 117 Blastocystis sp. colonization in animals, including humans, livestock, and wildlife in 118 Hokkaido, a continuous survey of *Blastocystis* sp. colonization in the Yezo sika deer 119 and other animals is required. 120 We did not isolate the *Blastocystis* parasite from the fecal samples using in 121 vitro culture in this study. We determined the Yezo sika deer *Blastocystis* STs using 122 direct sequencing analysis of the PCR products derived from the DNA samples 123 extracted from the feces of the deer. This molecular subtyping strategy is not suitable 124 for the detection of low population STs in a multiple-colonization case. The amplicon 125 derived from rare STs is masked by the sequences derived from the major STs. 126 Furthermore, the use of DNA from feces is not suitable for a more detailed molecular
- 127 characterization of the *Blastocystis* sp. because of the low ratio of *Blastocystis*-derived
- 128 DNA in the DNA samples. Therefore, in future studies, isolation and analysis of the

129	Blastocystis sp. parasite itself, obtained by in vitro culture although it is known that in					
130	vitro culture does not work well from ruminants, from the fecal samples should be					
131	employed to better understand the actual state of Blastocystis sp. colonization in the -					
132	Yezo sika deer.					
133						
134	Acknowledgements					
135	We thank the members of the ELEZO Company for the collection of samples					
136	from deer. This work was supported by the Research on Food Safety of the Ministry of					
137	Health, Labour and Welfare, Japan (H28-syokuhin-wakate-012).					
138						
139	References					
140	Alfellani, M.A., Taner-Mulla, D., Jacob, A.S., Imeede, C.A., Yoshikawa, H., Stensvold,					
141	C.R., Clark, C.G., 2013. Genetic diversity of <i>blastocystis</i> in livestock and zoo					
142	animals. Protist 164, 497-509.					
143	Cian, A., El Safadi, D., Osman, M., Moriniere, R., Gantois, N., Benamrouz-Vanneste, S.,					
144	Delgado-Viscogliosi, P., Guyot, K., Li, L.L., Monchy, S., Noel, C., Poirier, P.,					
145	Nourrisson, C., Wawrzyniak, I., Delbac, F., Bosc, S., Chabe, M., Petit, T., Certad,					
146	G., Viscogliosi, E., 2017. Molecular Epidemiology of Blastocystis sp. in Various					

147	Animal Groups from Two French Zoos and Evaluation of Potential Zoonotic Risk.					
148	PLoS One 12, e0169659.					
149	Dogruman-Al, F., Kustimur, S., Yoshikawa, H., Tuncer, C., Simsek, Z., Tanyuksel, M.,					
150	Araz, E., Boorom, K., 2009. Blastocystis subtypes in irritable bowel syndrome					
151	and inflammatory bowel disease in Ankara, Turkey. Mem Inst Oswaldo Cruz 104,					
152	724-727.					
153	Fayer, R., Santin, M., Macarisin, D., 2012. Detection of concurrent infection of dairy					
154	cattle with Blastocystis, Cryptosporidium, Giardia, and Enterocytozoon by					
155	molecular and microscopic methods. Parasitol Res 111, 1349-1355.					
156	Masuda, A., Sumiyoshi, T., Ohtaki, T., Matsumoto, J., 2018. Prevalence and molecular					
157	subtyping of <i>Blastocystis</i> from dairy cattle in Kanagawa, Japan. Parasitol Int 67,					
158	702-705.					
159	Ramirez, J.D., Sanchez, A., Hernandez, C., Florez, C., Bernal, M.C., Giraldo, J.C., Reyes,					
160	P., Lopez, M.C., Garcia, L., Cooper, P.J., Vicuna, Y., Mongi, F., Casero, R.D.,					
161	2016. Geographic distribution of human Blastocystis subtypes in South America.					
162	Infect Genet Evol 41, 32-35.					
163	Rene, B.A., Stensvold, C.R., Badsberg, J.H., Nielsen, H.V., 2009. Subtype analysis of					
164	Blastocystis isolates from Blastocystis cyst excreting patients. Am J Trop Med					

165 Hyg 80, 588-592.

- Scicluna, S.M., Tawari, B., Clark, C.G., 2006. DNA barcoding of *blastocystis*. Protist 157,
 77-85.
- Stensvold, C.R., Clark, C.G., 2016. Molecular Identification and Subtype Analysis of
 Blastocystis. Curr Protoc Microbiol 43, 20A 22 21-20A 22 10.
- 170 Suzuki, H., 2019. Wildlife management policy in Hokkaido. The Review of Legal and
- 171 Political Sciences 55, 167-177.
- 172 Takatsuki, S., 2009. Effects of sika deer on vegetation in Japan: A review. Biological
- 173 Conservation 142, 1922-1929.
- 174 Tei, S., Kitajima, N., Takahashi, K., Mishiro, S., 2003. Zoonotic transmission of hepatitis

175 E virus from deer to human beings. Lancet 362, 371-373.

- 176 Trimmel, N.E., Walzer, C., 2020. Infectious Wildlife Diseases in Austria-A Literature
- 177 Review From 1980 Until 2017. Front Vet Sci 7, 3.
- 178 Yoshikawa, H., Koyama, Y., Tsuchiya, E., Takami, K., 2016. Blastocystis phylogeny
- among various isolates from humans to insects. Parasitol Int 65, 750-759.
- 180
- 181

183 Figure caption

184

185	Figure 1. S	T identification	in the	Blastocystis	sppositive	samples t	through

186 sequencing and phylogenetic analysis.

- 187 The phylogenetic tree was constructed using the neighbor-joining method with
- 188 the maximum composite likelihood model following *Blastocystis* 18S SSU rDNA
- 189 sequence analysis. The percentage of replicate trees, in which the associated taxa
- 190 clustered together in the bootstrap test (1000 replicates), has been shown next to the
- 191 branches. The *Blastocystis* sp. sequence (MT373685) obtained from the Yezo sika deer
- 192 in this study is shown in bold. Sequences of *Blastocystis* sp. isolated from the cattle in
- 193 Kanagawa prefecture, Japan (Masuda et al., 2018) are indicated by •. *Eimeria*
- 194 *tenella* has been used as an outgroup.