1	Highlights
2	Effect of bakery enzyme and high-pressure on bread making quality (BMQ) was
3	evaluated.
4	The optimal condition was determined by response surface methodology (RSM).
5	The combination of bakery enzyme and high-pressure maximally improved the BMQ.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 Abstract

2 Various enzymes are added to dough to improve the quality. Two enzymes are 3 α -amylase and hemicellulose (bakery enzymes), whose substrates are damaged starch 4 and insoluble dietary fiber, respectively. They improve the formation of gluten networks 5 in the dough, resulting in a higher specific loaf volume (SLV). The use of high-pressure 6 treatment has also increased as a substitute for heat treatment and various products are 7 being processed utilizing high-pressure treatment. This study investigated the effect of 8 combing bakery enzyme and high-pressure treatment on dough qualities. The optimal 9 concentration of bakery enzymes and high-pressure level were determined using 10 response surface methodology and optimization technique. Bread dough was prepared 11 by the optimal condition, 0.20% of bakery enzyme and 43MPa of high-pressure 12 treatment, and the bread dough was then baked. Optimal combining bakery enzyme and 13 high-pressure treatment drastically improved bread making qualities such as increased 14 SLV, higher concentrations of reducing sugar, and lower concentrations of damaged 15 starch and insoluble dietary fiber compared to the Control and to those that were only 16 treated with bakery enzymes or high-pressure treatment, respectively. In addition, the 17 bread with both bakery enzymes and high-pressure treatment showed improved micro 18 structure in the crumb and maintained freshness longer.

19

20 Key words: high pressure; bread making quality; enzymes; response surface
21 methodology

- 22
- 23

24

1 Introduction

2 Generally, damaged starch (DS) and insoluble dietary fibers (DFs) (especially insoluble 3 pentosan) in wheat flour inhibit the formation of a suitable gluten network in dough, and 4 they are considered as factors reducing bread making quality (BMQ) (Wang et al. 2002; 5 Hung et al. 2007; Santiago et al. 2015a). Various enzymes for bread making are used to 6 improve BMQ; especially α -amylase and hemicellulase, which are hydrolases enzymes, 7 that act on the DS and insoluble DF. The addition of these enzymes results in an 8 increase of low molecular saccharides, the formation of a desirable gluten network, an 9 increased specific loaf volume (SLV) and a retarded bread staling rate during storage 10 (Santiago et al. 2015a; Matsushita et al. 2017).

In recent years, the use of high-pressure processing technology, a new food processing method, has been increasing and is expected to become an alternative to heat treatment (Unni et al 2015). High-pressure treatment is a technique that applies high hydrostatic pressure on food products during the processing to suppress the growth of bacteria and promote the immersion effect (Kim and Han, 2012). Moreover, some enzymes are activated by applying high-pressure treatment and the process effectively distributes the enzymes uniformly throughout the food (Fujiwara et al. 2001).

18 From previous studies, it appears that high-pressure treatment promotes enzymatic 19 activity on bread dough, and it is our belief that combining high-pressure treatment with 20 additional enzymes can be an effective approach to improving BMO (Asaka et al. 1991; 21 Fujiwara et al. 2001; Kim and Han, 2012). However, it is necessary to experiment with 22 a large number of combinations in order to determine the optimum conditions for 23 combining additional enzymes and high-pressure treatment for bread making. In this 24 study, we conducted bread making tests according to the central composite plan and 25 determined the regression coefficients from the subsequent data to develop a response

surface model (RSMd). By using the expression from the RSMd and Solver (Excel add-in software), it was possible to derive the optimal combination of additional enzymes and high-pressure treatment level for the maximized SLV of the bread. We evaluated the effect of adding bakery enzyme and using a high-pressure treatment on BMQ by using our derived optimal condition.

6

7 Materials and Methods

8 Flour and bakery enzyme used

9 A commercial strong wheat flour (Camellia) manufactured by Nisshin Flour Milling
10 Co., Ltd. (Tokyo, Japan) and a commercial bakery enzyme, which contains α-amylase
11 and hemicellulase, (IBIS Yellow Clean Label) manufactured by Lesffre Co., Ltd.
12 (Marcq-en-Baroeulnjo, France) were used in this study.

13

14 **Optimization of concentration of bakery enzyme and high-pressure level**

15 A central composite face-centered design (CCF), as reported by Flander et al (2007), 16 was used with two variables to determine the optimal condition of concentration of 17 bakery enzyme and high-pressure treatment. This CCF was composed of twelve 18 experiments with four replicates at the center point. The two variables optimized were 19 bakery enzyme (%), based on flour, and high-pressure treatment level (MPa). The 20 concentration of bakery enzyme and high-pressure treatment level ranged from 0.000 to 21 0.250 % flour base and from 0 to 100 MPa, respectively. Experimental conditions 22 (concentration of added bakery enzyme and high-pressure treatment level) at the center 23 point were 0.125 % flour base and 50 MPa. The conditions at the axial point were 0.250 % and 50 MPa, 0.000 % and 50 MPa, 0.125 % and 0 MPa, and 0.125 % and 100 24 25 MPa. The conditions at the factorial point were also 0.000 % and 0 MPa, 0.000 % and

1 100 MPa, 0.250 % and 0 MPa, and 0.250 % and 100 MPa. Then random bread making 2 tests were done using the various combinations of the concentration of the bakery 3 enzyme and high-pressure level. In this study, SLV was adopted as a response, and 4 concentration of bakery enzyme and high-pressure treatment level were factors for 5 analysis with RSMd. The reason for choosing SLV as a response is that it is a 6 representative index of BMQ. From the results of twelve CCF experiments, a RSMd for 7 a response and factors was derived using multiple regression analyses. Selection of the 8 explanatory variables of the RSMd was determined by a stepwise back selection method 9 with a 2.0 of F value as an index. Effectiveness of the model was assessed by verifying 10 the factor effect with analysis of variance (ANOVA). The optimal concentration of 11 bakery enzyme and the high-pressure treatment level were also determined with the 12 model by using the Excel add-in software Solver. After the CCF experiments, bread 13 making tests were conducted using the Control, bakery enzyme supplemented (BE), 14 high-pressure treated (HP), and optimal bakery enzyme supplemented and high-pressure 15 treated (BE/HP) doughs, and the BMQ of the doughs were evaluated in detail.

16

17 Dough preparation and bread making

18 The bread making tests were carried out using the remix-straight method. The optimal 19 amount of water absorption was determined using a Farinograph at 500 BU according to 20 the AACC (1991). All materials, except the yeast, were put into a pin mixer (National 21 Complete 100-200 Gram Mixer, Model 100-200A, National Mfg. Co., Lincoln, USA) 22 with Versa-Logger (ATTO Co., Ltd., Tokyo, Japan) and mixed for 3 min at 25Hz. The 23 Control dough and the doughs with bakery enzyme was incubated for 10 min at 20 $^{\circ}$ C 24 and 70% relative humidity in a fermentation cabinet and then mixed again after the 25 addition of yeast to just beyond peak development, as indicated by the electric power curve of the mixing motor. The doughs with high-pressure treatment for 10 min at
20 °C or both treatments were tested under various high-pressure treatment levels, and
then the treatments of the dough were made in same way. After remixing, dough and
bread were made by the standard no-time method (Yamauchi et al. 2001).

5

6 **DS and DFs analysis**

7 Samples for DS and DFs analysis were prepared according to the method reported by 8 Santiago et al. (2015a) using dough after proofing. DS content in dough was measured 9 with a Megazyme assay kit (Megazyme International Ireland Ltd., Wicklow, Ireland) 10 according to the method of Gibson et al. (1991). Neutral detergent fiber (NDF), which 11 are cellulose, hemicellulose and lignin content, and acid detergent fiber (ADF), which 12 are cellulose and lignin content, were measured using the official AOAC method (2000). 13 The difference between NDF and ADF was calculated to approximate hemicellulose 14 content.

15

16 Soluble sugar analysis

Water-soluble fractions of the bread crumb after baking were extracted for the measurement of sugar content and composition. The measurements of total and reducing saccharide content and the HPLC analysis of glucose, fructose, sucrose, and maltose contents were carried out using the same methods as reported by Santiago et al. (2015b).

22

23 Dough properties and bread evaluation

The gas retention of dough and the gassing power of dough were measured by the same method as reported by Santiago et al. (2015a). The SLV of bread cooled at room

temperature for 1 h after baking was measured by the rapeseed-displacement method according to the AACCI (2000). Replicates of three doughs and loaves, respectively, were prepared in a single bread making test to measure the gas retention of dough, gassing power and SLV. Photographs and images of the breads were taken with a digital camera and scanner and crust color was recorded with a colorimeter (CR-400, Konica Minolta Sensing, Inc., Tokyo, Japan), according to the method described by Santiago et al. (2015a).

8

9 Scanning electron microscopy observation

10 The images of gluten structure in bread crumb were obtained using a Scanning Electron 11 Microscopy according to the same method reported by Santiago et al. (2015b). To 12 observe clearly the gluten network structure of bread crumb, the bread crumb samples 13 were washed with deionized distilled water in a sonicator for 10 min to elute the starch 14 in the crumb.

15

16 **Evaluation of bread staling rate**

The temporal change of crumb hardness was measured at 1, 2, and 3 days of storage according to the same method reported by Yamauchi et al. (2001). The loaves were sliced into 2 cm-thick pieces and a square of crumb (3 x 3 cm) was cut from the central part. Using a creep meter (RE2-33005C; Yamaden Co., Ltd., Tokyo, Japan), the temporal hardness changes of the bread crumb were measured by compressing each square with a special cube plunger (6 cm length x 6 cm width x 2 cm height).

23

24 Statistical analysis

25 Significant differences in the data presented in Table 1 to Table 3 and Fig. 3 were

evaluated using ANOVA at a 5% level of significance with Tukey's multiple range test
 (Excel statistical software 2012).

3

4 **Results and Discussion**

5 Optimization of concentration of bakery enzyme and high-pressure level

6 The RSMd with SLV as the response and the concentration of bakery enzyme and 7 high-pressure treatment level as the factors shown below was derived by using multiple 8 regression analysis based on the results of twelve bread making CCF experiments.

9 $Y=1.56952X_1+0.00468X_2-1.72571X_1^2-0.00004X_2^2-0.00360X_1X_2+4.23071$

10 where Y is SLV (ml/g); X_1 is concentration of bakery enzyme (%) based on flour; X_2 is 11 high-pressure treatment level (MPa). R² and adjusted R² showed high values, 0.9554 12 and 0.8996, respectively, and F value of all explanatory variables were more than 2.0. 13 Using ANOVA, the p value of the effectiveness in this model was 0.0083, which 14 assessed that the effectiveness was significant at 1% significance level. The value of R^2 15 can explain 95.54% of the total variation of SLV values by this model and its standard 16 error is very small at 0.044 ml/g. From these results, it was clarified that this RSMd is a 17 sufficiently effective equation for estimating SLV using the concentration of bakery 18 enzyme and high-pressure treatment level. Therefore, optimal concentration of bakery 19 enzyme and high-pressure treatment level for maximum SLV were calculated with the 20 above equation using Solver. The optimal combination of added bakery enzyme and 21 high-pressure treatment level were 0.20 % flour and 43 MPa, respectively. In other 22 words, BE were supplemented with bakery enzyme at 0.20 %, HP were treated with 23 high-pressure at 43 MPa, and BE/HP were supplemented and treated with bakery enzyme and high-pressure at 0.20 % and 43 MPa, respectively. 24

1 Contents of DS in dough

Table 1 shows the contents of DS in the Control, BE, HP, and BE/HP doughs. BE and
BE/HP doughs had significantly lower values than the Control dough; especially BE/HP
dough had the lowest value among all samples. On the other hand, HP dough had a
somewhat lower value compared to the Control.

6 The higher DS content of doughs without bakery enzyme are associated with 7 insufficient decomposition of DS, which is generated by the physical damage during the 8 milling process (Santiago et al. 2015b). Douzals et al. (1998) reported that the 9 gelatinization of wheat starch begins above 300 MPa and finishes at 600 MPa. Hence, 10 the starch in HP dough was not gelatinized and damaged under 43 MPa in this study. 11 Since the activity of endogenous α -amylase in dough was also low, it seems that DS 12 degradation does not proceed sufficiently even with HP treatment at 43 MPa. In 13 addition, it suggests that the DS content in BE/HP dough was lower than those in BE 14 dough because high-pressure treatments enhance the amylase activity, especially 15 α -amylase, on the dough.

16

17 Contents of DFs in dough

Table 1 shows the contents of DFs in the Control, BE, HP, and BE/HP doughs. The NDF content in BE/HP dough were significantly lower than the Control. Those in BE and HP doughs were not significantly different from those in the Control and BE/HP doughs, and there was no significant difference in all the samples among the means of ADF. The NDF-ADF contents of BE and BE/HP doughs were lower or significantly lower than those of the Control and HP doughs. In comparison, HP dough had similar values to the Control dough.

25 Generally, DFs negatively affect the formation of an optimal gluten network, resulting

1 in the reduction of gas retention of dough and SLV (Hung et al. 2007; Matsushita et al. 2 2017). BE and BE/HP doughs showed lower DFs except for ADF content, especially 3 NDF-ADF, than the Control which was attributed to the xylanase activity of the 4 hemicellulase in the bakery enzyme. In addition, enhancement of the enzymatic activity 5 was also observed in this result since the DS and NDF contents of BE/HP dough had 6 lower values than those of BE dough. The hemicellulase hydrolyzes the DFs, such as 7 xylan and arabinoxylan, resulting in low NDF content and approximate hemicellulose 8 (NDF-ADF) content in the dough (Jiang et al. 2005; Stojceska and Ainsworth, 2008). 9 Ultimately, the improvement of gas retention of dough and SLV of BE and BE/HP 10 doughs and bread can be associated with the reduction in the amounts of DS and DFs 11 (mainly insoluble hemicellulose (pentosan)) as shown in Table 1.

12

13 Soluble sugar contents of bread

Table 2 shows the sugar contents of the water-soluble fractions in various breads. The maltose content of the Control was significantly lower compared with that of the BE/HP bread. The BE/HP bread showed the highest maltose content among all samples, 12.83 \pm 2.13 mg/g dough, whereas the BE and HP doughs had higher values compared with the Control, but there was no significant difference among those doughs. Glucose, fructose, and sucrose contents were not also significantly different among all samples.

In terms of reducing sugar, the Control had a significantly lower content of 23.41 ± 0.99 mg/g bread than all others. The HP bread had 24.84 ± 0.67 mg/g bread, which is significantly higher than the Control but significantly lower than the BE and BE/HP breads. The BE and BE/HP breads had high values, 26.89 ± 0.45 and 28.64 ± 0.38 mg/g bread, respectively. The BE/HP bread showed the significantly highest reducing sugar content among all samples. Regarding the total sugars, the BE and BE/HP breads had significantly higher content
 than the Control and HP. The BE/HP bread had a higher total sugar content than the BE
 bread but there was no significant difference between these samples.

4 The α -amylase mainly breaks down DS (including gelatinized starch) in dough into low 5 molecular weight dextrins and oligo-saccharides during the bread making process, and 6 the endogenous β-amylase in wheat flour converts the saccharides into maltose (Hidalgo 7 et al. 2013). In addition, the hemicellulase catalyzes the degradation of polysaccharides 8 (mainly hemicellulose) into mono sugars and short chain saccharides, resulting in the 9 increased soluble sugar contents in BE and BE/HP breads as shown in Table 2. Santiago 10 et al. (2015b) also reported that the addition of α -amylase and hemicellulase increases 11 the soluble sugar contents in bread.

12

13 **BMQ evaluation**

Table 3 shows the BMQ of various doughs. The BE, HP and BE/HP doughs had decreased gassing power compared with the Control dough. The gassing power of BE and HP doughs were significantly lower than that of the Control at 1 h fermentation in particular. There was no significant difference observed after 2 h and 3 h fermentation.

18 Although there was no significant difference among treatments in the gas retention of 19 dough, the bakery enzyme heightened the gas retention of dough, and as a result, the BE 20 and BE/HP doughs had higher values compared with the Control. The BE/HP dough 21 especially had a higher value compared with the others. On the other hand, the HP 22 dough had similar gas retention of dough compared with the Control.

Regarding SLV, the BE/HP bread had significantly the highest values, and there was no significant difference among the others. The SLV (4.60) of BE/HP bread showed a very close value to the estimated value (4.65) calculated using the RSMd described earlier.

1 This indicates that effectiveness of this model was verified by the experiments.

2 Goesaert et al. (2009) and Jiang et al. (2005) suggested that a-amylase and 3 hemicellulase decompose DS and pentosan (equivalent to NDF-ADF) into mono-sugars 4 in dough, which consequently promotes yeast fermentation and improves gassing power 5 during the fermentation. However, in this study, the gassing power of two doughs with 6 BE during fermentation was significantly lower or lower compared with the Control 7 (Table 3). It seems that the high concentrations of various components, like mono- and 8 di-saccharides, produced by the addition of bakery enzyme suppresses yeast 9 fermentation (Matsushita et al. 2019). This may be the reason the gassing power of BE 10 and BE/HP doughs were slightly suppressed compared to the Control. While it seems 11 that the increased gas retention of dough of BE and BE/HP doughs is related to the 12 improvement of SLV. Patel et al. (2012) also reported a similar result that the addition 13 of fungal α-amylase increased the SLV of chemically leavened bread. Likewise, Jiang et 14 al. (2005) and Shah et al (2006) reported that hemicellulase catalyzes the degradation of 15 polysaccharides (mainly hemicellulose) into mono sugars and short chain saccharides, 16 resulting in superior gluten network formation. The catalytic activity of α -amylase and 17 hemicellulase may have led to the dough and bread of BE and BE/HP having higher gas 18 retention of dough and SLV compared to those of the Control. These results show that 19 BE/HP had the most improved SLV compared to others, which indicates that 20 high-pressure treatment enhances enzymatic activity and the combination of bakery 21 enzyme and high-pressure treatment has a greater impact than individual treatments of 22 bakery enzyme and high-pressure. Asaka et al (1991) also investigated the effects of 23 high-pressure on the enzymatic activity and suggested that the enhancement in activity 24 was from pressure induced changes in the interactions with other constituents or from 25 the release of membrane-bound enzymes. In addition, RSMd and the optimization technique using Solver were effective in determining the optimal combination of bakery
enzyme and high-pressure because the predicted value of SLV (4.65 ml/g) from this
model was very close with the measured value (4.60 ml/g).

4

5 Bread color and appearance

6 Table 3 shows crust color of various breads. In terms of values of L* and b*, BE and 7 BE/HP breads had lower or significantly lower values than the Control and HP breads. 8 Regarding the values of a^{*}, BE and BE/HP breads had higher or significantly higher 9 values than the Control HP breads. There was no significant difference between the 10 Control and HP breads in the mean of L*, a*, and b*. The crust color of BE and BE/HP 11 breads became darker than the Control, which corresponded to their lower values of L* 12 and b*, shown in Table 3 and Fig. 1, respectively. Fig. 1 shows the bread appearances 13 and crumb images. The crust redness of BE/HP bread in Fig. 1 was also significantly 14 stronger compared to the Control, which is evidenced by the significantly higher a* values of crust (Table 3). The loaf sizes of BE and BE/HP breads were larger than the 15 16 Control and BE/HP bread was obviously larger than others. These results were 17 congruent with their SLV (Table 3). In terms of crumb, BE and BE/HP bread crumbs 18 had larger vertical bubbles compared with the Control and HP, which related to the 19 larger SLV of BE and BE/HP breads. These results show that breads with bakery 20 enzyme has an excessively dark crust color, which related to the significantly higher 21 reducing sugar contents of BE and BE/HP breads. Goesaert et al. (2009) reported that 22 the addition of α -amylase increased concentrations of reducing sugars such as glucose, 23 fructose, resulting in the enhancement of the Maillard reaction.

24

25 Bread crumb structure

1 Figure 2 shows images of the various bread crumbs just after baking, which illustrates 2 the gluten network and the crosslinks between starch gel and gluten because the bread 3 crumbs were eluted to almost completely remove the swollen starch. The Control and 4 HP bread crumbs (Fig. 2a and c) had the crosslink between gelatinized starch gel and 5 the gluten network, which was almost not present in the BE and BE/HP bread crumbs 6 and the crosslink parts are shown with arrows (Fig. 2b and d). The Control and HP 7 bread crumbs (Fig. 2a and c) likely have weak gluten networks with more gelatinized 8 starch-gluten crosslinks. The residual gelatinized starch was not completely 9 decomposed by the intrinsic enzymes in wheat flour, and subsequently was cross-linked 10 to the gluten network during the baking process, resulting in a weak gluten network in 11 the bread crumb. On the other hand, BE and BE/HP bread crumbs (Fig. 2b and d) had 12 lesser starch-gluten crosslinks and fine and uniform gluten networks compared to the 13 Control and HP bread crumbs. This improvement by using optimal bakery enzyme and 14 high-pressure treatment is associated with the increased gas retention of dough and SLV 15 (Table 3). Santiago et al. (2015b) also reported that the addition of α -amylase and 16 hemicellulase improved the crumb structure (gluten network and crosslink starch gel 17 and gluten) of bread made from the dough supplemented with sweet potato powder.

18

19 Hardness of bread

Figure 3 shows the temporal hardness changes of the various bread crumbs during storage. The Control bread had the significantly highest value among all samples at 1 day. While BE/HP bread had the significantly lowest value among all samples. There was no significant difference between BE and HP bread. The hardness of bread at 2 days showed significantly high values in the following order: Control, HP, BE, and BE/HP. BE and BE/HP breads especially had very lower values compared to the others. The values of the Control and HP breads drastically increased at 3 days and, especially,
 the former showed the significantly highest value among all samples. While the values
 of BE and BE/HP breads remained low with the BE/HP bread having the lowest value
 among all samples.

5 There are various factors which relate to the temporal changes in bread crumb hardness 6 during storage: retrogradation rate of gelatinized starch gel in bread, SLV, low 7 molecular saccharides content, and bread moisture. It was reported that α -amylase 8 decomposes DS and gelatinized starch to low molecular weight saccharides which 9 retards the retrogradation of gelatinized starch gel and reduces the amount of available 10 starch for the retrogradation (Duran et al. 2001; Goesaert et al. 2009; Palacios et al. 11 2004). Caballero et al. (2007) and Palacios et al. (2004) also reported that the α -amylase has an anti-staling effect on bread during storage. Martin and Hoseney (1991) and 12 13 Palacios et al. (2004) suggested that the partially decomposed starch gel has a lower 14 retrogradation rate. Moreover, the starch-protein interactions are interfered with by 15 these low molecular weight saccharides, which are produced by α -amylase hydrolysis in 16 dough, resulting in a few and weak crosslinks between the starch gel and protein (Fig. 17 2), and reduces the hardening rate of the bread (Martin and Hoseney 1991; Martin et al. 18 1991). The SLV of BE/HP bread (Table 3 and Fig. 1) with the optimum concentration 19 of bakery enzyme and high-pressure treatment was significantly the largest among all 20 samples. Clarke et al. (2002) also reported that the staling rate of bread clearly 21 decreased with a large SLV. The staling suppression of bread with the accompanying 22 increase of SLV is considered to be mainly due to the increased porosity of the crumb. 23 In addition, the insoluble hemicellulose (mainly insoluble pentosan) interferes with the 24 formation of a desirable gluten network, while hemicellulase mainly attacks the 25 insoluble pentosan and changes it to low molecular weight saccharides, resulting in the

improvement of BMQ. It was reported that the addition of hemicellulase improved SLV
and increased low molecular weight saccharides in dough (Caballero et al. 2007;
Ghoshal et al. 2013; Matsushita et al. 2017). In this study, the BE and BE/HP doughs
actually had significantly lower amounts of approximate hemicellulose (NDF-ADF)
than the Control dough (Table 1).

6 From these findings, it seems that the main factors suppressing bread staling in BE/HP 7 bread is high SLV because of the fine gluten network structure that accompanies the 8 degradation of DS and insoluble pentosan and retards starch gel retrogradation in bread 9 with low molecular weight saccharides. This improvement is caused by a larger increase 10 in some saccharides with decompositions of DS and DFs in BE/HP compared with the 11 Control and HP dough. These results (Table 2) support the conclusions reported by 12 Caballero et al. (2007), Matsushita et al. (2017), Ghoshal et al. (2013), and Goesaert et 13 al. (2009).

14

15 Conclusion

16 This study investigated the effects of combining bakery enzyme and high-pressure 17 treatment on BMQ. In addition, the optimum concentration of bakery enzyme and 18 high-pressure treatment level (0.20 % and 43 MPa) were established using RSMd and 19 the optimization technique by Solver. The high-pressure treatment enhances enzymatic 20 activity (degradation of damaged starch and hemicellulose, mainly insoluble pentosan, 21 into soluble low molecular saccharides), resulting in the formation of desirable gluten 22 networks and dough properties. Ultimately, the bread treated at the optimal condition by 23 both bakery enzyme and high-pressure had desirable properties such as increased gas 24 retention of dough and SLV, desirable gluten network development, and retarded bread 25 staling rate during storage compared with doughs treated by bakery enzyme or

high-pressure individually. In addition, the combination of bakery enzyme and 1 2 high-pressure treatment increased maltose, reducing sugar, and total sugar content in 3 dough. These findings suggest that the optimal combination of bakery enzyme and 4 high-pressure treatment drastically improves BMQ. RSMd and the optimization 5 technique are an effective method to establish the optimum conditions for combining 6 bakery enzyme and high-pressure treatment in bread making because the value of R^2 7 can explain 95.54% of the total variation of SLV values by this model and its standard 8 error is very small at 0.044 ml/g.

9

10 **References**

- AACC (1991) "Approved Methods of the AACC", 8th ed. Method 08-01. The
 American Association of Cereal Chemists, St. Paul, MN
- AACCI (2000) "Approved Methods of the AACCI", 11th ed. Method 10- 05.01. The
 American Association of Cereal Chemists International, St. Paul, MN
- AOAC (2000) "Official methods of analysis", 17th ed. AOAC International,
 Gaithersburg, MD
- Asaka M, Hayashi R (1991) Activation of polyphenoloxidase in pear fruits by high
 pressure treatment. Agric Biol Chem 55:2439-2440

Caballero PA, Gomez M, Rosell CM (2007) Improvement of dough rheology, bread
quality and bread shelf-life by enzymes combination. J Food Eng 81:42-53

- Clarke C, Schober TJ, Arendt EK (2002) Effect of single strain and traditional mixed
 strain starter cultures in rheological properties of wheat dough and bread quality.
 Cereal Chem 79:640-647
- Douzals JP, Perrier Cornet JM, Gervais P, Coquille JC (1998) High-pressure
 gelatinization of wheat starch and properties of pressure-induced gels. J Agricult

1	Food Chem 46:48	524-4829
1		

- Duran E, Leon A, Barber B, De Barber CB (2001) Effect of low molecular weight
 dextrins on gelatinization and retrogradation of starch. Eur Food Res Technol
 212:203-207
- Flander L, Salmenkallio-Marttila T, Suortti T, Autio K (2007) Optimization of
 ingredients and baking process for improved wholemeal oat bread quality. LWT Food Sci Technol 40:860-870
- Fujiwara S, Kunugi S, Oyama H, Oda K (2001) Effects of pressure on the activity and
 spectroscopic properties of carboxyl proteinases. Apparent correlation of
 pepstatin-insensitivity and pressure response. Eur J Biochem 268:645-655
- Ghoshal G, Shivhare US, Banerjee UC (2013) Effect of xylanase on quality attributes of
 whole-wheat bread, J Food Quality 36:172-180
- Gibson TS, Al Qalla H, McCleary BV (1991) An improved enzymatic method for the
 measurement of starch damage in wheat flour. J Cereal Sci 15:15-27
- Goesaert H, Slade L, Levine H, Delcour JA (2009) Amylases and bread firming an
 integrated view. J Cereal Sci 50:345-352
- Hidalgo A, Brusco M, Plizzari L, Brandolini A (2013) Polyphenol oxidase,
 alpha-amylase and beta-amylase activities of Triticum monococcum, Triticum
 turgidum and Triticum aestivum: A two-year study. J Cereal Sci, 58:51-58
- Hung PV, Maeda T, Morita N (2007) Dough and bread qualities of flours with whole
 waxy wheat flour substitution. Food Res Int, 40:273-279
- Jiang Z, Li X, Yang S, Li L, Tan S (2005) Improvement of the breadmaking quality of
 wheat flour by the hyperthermophilic xylanase B from Thermotoga maritime.
 Food Res Int 38:37-43
- 25 Kim D, Han DG (2012) High hydrostatic pressure treatment combined with enzymes

1

2

increases the extractability and bioactivity of fermented rice bran. Innov Food Sci Emerg Technol 16:191-197

- Martin ML, Zeleznak KJ, Hoseney RC (1991) A mechanism of bread firming. I. Role
 of starch swelling, Cereal Chem 68:498-502
- Martin ML, Hoseney RC (1991) A mechanism of bread firming. II. Role of starch
 hydrolyzing enzymes. Cereal Chem 68:503-507
- Matsushita K, Santiago DM, Noda T, Tsuboi K, Kawakami S, Yamauchi H (2017) The
 bread making qualities of bread dough supplemented with whole wheat flour and
 treated with enzymes. Food Sci Technol Res 23:403-410
- Palacios HR, Schwarz PB, D'Appolonia BL (2004) Effect of alpha-amylases from
 different sources on firming of concentrated wheat starch gels: relationship to
 bread staling. J Agricult Food Chem 52:5987- 5994
- Patel MJ, Ng JHY, Hawkins WE, Pitts KF, Chakrabarti-Bell S (2012) Effects of fungal
 α-amylase on chemically leavened wheat flour dough. J Food Sci 56:644-651
- Santiago DM, Matsushita K, Noda T, Tsuboi K, Yamada D, Murayama D, Koaze H,
 Yamauchi H (2015a) Effect of purple sweet potato powder substitution and
 enzymatic treatments on bread making quality. Food Sci Technol Res 21:159-165
- Santiago DM, Matsushita K, Noda T, Tsuboi K, Yamada D, Murayama D, Kawakami S,
 Shimada K, Koaze H, Yamauchi H (2015b) Texture and structure of bread
 supplemented with purple sweet potato powder and treated with enzymes, Food
- 21 Sci Technol Res 21:537-548
- Shah AR, Shah RK, Madamwar D (2006) Improvement of the quality of whole wheat
 bread by supplementation of xylanase from *Aspergillus foetidus* Bioresour
 Technol 97:2047-2053
- 25 Stojceska V, Ainsworth P (2008) The effect of different enzymes on the quality of

1	high-fibre enriched brewer's spent grain breads. Food Chem 110:865-872
2	Unni LE, Chauhan OP, Raju PS (2015) Quality changes in high pressure processed
3	ginger paste under refrigerated storage. Food Biosci 10:18-25
4	Wang J, Rosell CM, Barber CB (2002) Effect of the addition of different fibres on
5	wheat dough performance and bread quality, Food Chem 79:221-226
6	Yamauchi H, Nishio Z, Takata K, Oda Y, Yamaki K, Ishida N, Miura H (2001) The
7	bread-making quality of a domestic flour blended with an extra strong flour and
8	staling of the bread made from the blended flour. Food Sci Technol Res 7:120-125
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 Figure Caption

2 Figure 1. Photographs and scanned images of various breads and their crumbs

3 BE: bakery enzyme-supplemented bread, HP: high-pressure treated bread, BE/HP:

4 optimal bakery enzyme-supplemented and high-pressure treated bread.

5 Figure 2. Electron microscope photographs of various bread crumbs

6 The bread crumb samples were washed with deionized distilled water in a sonicator for 7 10 min to elute the starch in the crumb. BE: bakery enzymes-supplemented bread, HP: 8 high-pressure treated bread, BE/HP: optimal bakery enzymes-supplemented and 9 high-pressure treated bread. The arrows indicate the crosslinks between gelatinized 10 starch gel and gluten.

11 Figure 3. Temporal hardness changes of various breads crumb

The vertical bar is the standard deviation of each value (n=8). The ANOVA between
the data was evaluated using Tukey's multiple range test (Excel statistical software
2012) The symbols followed by a different letter are significantly different (p<0.05).
O: Control, △: E, □: HP, ◇: E/HP. BE: bakery enzyme-supplemented bread, HP:
high-pressure treated bread, BE/HP: optimal bakery enzyme-supplemented and
high-pressure treated bread.

18

19

- 21
- 22
- 23
- 24
- 25

Bread making treatments	DS (%)	NDF (%)	ADF (%)	NDF-ADF (%)
Control	3.95 ±0.49 ^a	1.15 ±0.08 ^a	$0.29\pm\!\!0.04~^{\rm a}$	0.86 ±0.05 ª
BE	3.33 ± 0.25 bc	0.93 ± 0.12 ab	0.23 ± 0.14 $^{\rm a}$	0.69 ± 0.06 bc
HP	$3.67 \pm 0.24 \ ^{ab}$	1.13 ± 0.18 ^{ab}	$0.28\pm\!\!0.06$ $^{\rm a}$	$0.85 \pm 0.12 ^{\text{ab}}$
BE/HP	3.05 ± 0.13 °	$0.84 \pm 0.09 \ ^{\rm b}$	$0.29\pm\!\!0.02$ $^{\rm a}$	$0.55\pm\!0.07$ °

Table 1. Results of damaged starch and fiber contents of dough

Each value is the mean \pm SD (Damaged starch: n=8, Others: n=4). The ANOVA between the data was evaluated using Tukey's multiple range test (Excel statistical software 2012). The values followed by the same letter within a column are not significantly different (p<0.05).

The DS and DFs contents are percentage based on the dry base weight of samples.

DS: damaged starch, NDF: natural detergent fiber, ADF: acid detergent fiber, NDF-ADF: approximate hemicellulose content, BE: bakery enzyme-supplemented dough, HP: high-pressure treated dough, BE/HP: optimal bakery enzyme-supplemented and high-pressure treated dough.

Dread matring treatments	Glucose	Fructose	Sucrose	Maltose	Reducing Sugar	Total Sugar
Bread making treatments	(mg/g bread)	(mg/g bread)	(mg/g bread)	(mg/g bread)	(mg/g bread)	(mg/g bread)
Control	9.87 ±1.15 ^a	10.27 ± 0.15 $^{\rm a}$	4.40 ±0.33 ^a	$9.30 \pm 0.53 \ ^{\rm b}$	23.41 ± 0.99 ^d	46.56 ± 2.09 ^b
BE	9.88 ± 0.68 a	9.41 ± 1.13 $^{\rm a}$	$4.60\pm\!\!0.30$ $^{\rm a}$	11.68 ± 1.56 ^{ab}	$26.89 \pm 0.45 \ ^{\text{b}}$	52.27 ± 0.74 $^{\rm a}$
HP	10.31 ± 1.27 ^a	9.04 ± 0.07 $^{\rm a}$	$3.99\pm\!\!0.64~^a$	$10.18\pm\!\!0.15$ ^{ab}	$24.84\pm\!0.67$ °	47.62 ± 1.61 ^b
BE/HP	11.04 ± 2.18 ^a	9.04 ± 0.63 $^{\rm a}$	$3.90\pm\!\!0.44$ $^{\rm a}$	12.83 ± 2.13 a	$28.64\pm\!\!0.38$ $^{\rm a}$	54.74 ± 0.49 $^{\rm a}$

 Table 2. Soluble sugar content of bread crumbs

Each value is the mean \pm SD (n=4). The ANOVA between the data was evaluated using Tukey's multiple range test of (Excel statistical software 2012). The values followed by the same letter within a column are not significantly different (p<0.05).

BE: bakery enzyme-supplemented bread, HP: high-pressure treated bread, BE/HP: optimal bakery enzyme-supplemented and high-pressure treated bread.

Table 3. Bread making qualities of dough and bread

Bread making	Gassing pov	Gassing power of dough (ml/20 g dough)		Gas retention of dough	SLV	Color of bread crust		t
level	1h	2h	3h	(ml/20 g dough)	(ml/g)	L* (-)	a* (-)	b* (-)
Control	38.73 ±0.56 ª	82.07 ±1.77 ª	119.25 ±2.46 ª	106.11 ±8.43 ª	4.21 ±0.06 ^b	55.19 ±1.47 ª	15.84 ± 0.38 ^b	36.34 ±1.33 ª
BE	$36.93 \pm 0.47 \ ^{\text{b}}$	79.17 ±1.16 ª	116.19 ± 1.63 ^a	111.11 ±1.73 ª	4.37 ± 0.05 $^{\rm b}$	$52.32 \pm 1.81 \ ^{\text{b}}$	$15.98 \pm 0.32 \ ^{ab}$	34.71 ± 1.34 ^b
HP	$37.31 \pm 0.83 \ ^{\text{b}}$	79.51 ±2.59 ª	116.21 ± 3.66 ^a	106.67 ± 0.00 ^a	$4.30\pm\!\!0.10$ b	54.52 ± 1.37 $^{\rm a}$	15.67 ± 0.42 $^{\rm b}$	$35.32 \pm 1.10 \text{ ab}$
BE/HP	$37.72 \pm 0.21 \ ^{ab}$	$80.35\pm\!\!0.66$ a	116.85 ± 0.96 ^a	114.17 ± 5.00 ^a	4.60 ± 0.17 a	52.33 ± 1.06 ^b	16.37 ±0.52 ª	$34.25 \pm\! 1.16^{\ b}$

Each value is the mean \pm SD (Gassing power of dough: n=3, Gas retention of dough: n=4, Specific loaf volume: n=5, Hue of bread crust: n=15). The ANOVA between the data was evaluated using Tukey's multiple range test (Excel statistical software 2012). The values followed by the same letter within a column are not significantly different (p<0.05).

SLV: specific loaf volume, BE: bakery enzyme-supplemented dough and bread, HP: high-pressure treated dough and bread, BE/HP: optimal bakery enzyme-supplemented and high-pressure treated dough and bread.

1

Control

BE

HP

2

3

Figure 1

C ontrol

1 _____бу µт

НP

BE/HP

1 2

Figure 2

Figure 3