1	Prospective survey of Aspergillus species isolated from clinical specimens and their
2	antifungal susceptibility: A five-year single-center study in Japan
3	
4	Takahito Toyotome ^{a,b,c*} , Shunpei Saito ^d , Yusuke Koshizaki ^d , Ryoichi Komatsu ^d ,
5	Tetsuhiro Matsuzawa ^e , Takashi Yaguchi ^f
6	
7	^a Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary
8	Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
9	^b Diagnostic Center for Animal Health and Food Safety, Obihiro University of
10	Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido,
11	080-8555, Japan
12	^c Division of Clinical Research, Medical Mycology Research Center, Chiba University,
13	1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
14	^d Department of Medical Technologist, Obihiro-Kosei General Hospital, West 14 South
15	10-1, Obihiro, Hokkaido, 080-0016, Japan
16	^e Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan
17	^f Division of Bio-resources, Medical Mycology Research Center, Chiba University,
18	1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan

20 ***Correspondence:**

- 21 Takahito Toyotome
- 22 Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary
- 23 Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
- 24 TEL/FAX: +81-155-49-5888
- 25 E-mail address: tome@obihiro.ac.jp
- 26

27 Authorship statement:

- 28 All authors meet ICMJE authorship criteria.
- 29

31 Abstract¹

Aspergillus fumigatus is the most prevalent species that causes aspergillosis. A. 32fumigatus strains with tandem repeats in the cyp51A promoter have emerged in the 33 environment. Aspergillus species other than A. fumigatus have also been recognized as 34causative agents of aspergillosis; however, they show lower susceptibility to antifungals 3536 compared with A. fumigatus. Therefore, it is important to precisely identify Aspergillus species and determine their antifungal susceptibility. Herein, we collected 119 mold 3738strains isolated from clinical specimens collected at a hospital between November 2013 and December 2018. The collected strains were identified by sequencing several regions, 39 including internal transcribed spacers, and determined their susceptibility to the 40 antifungals itraconazole, voriconazole, and amphotericin B. Of 119 strains, 107 were 41Aspergillus species, which were identified as A. fumigatus (67), Aspergillus section 42Nigri (21), A. flavus (7), A. terreus (6), and A. nidulans (6). In Aspergillus section Nigri, 4344the number of A. niger was less than the number of A. welwitschiae and A. tubingensis. Two azole-resistant A. fumigatus samples were included among the isolates. Four of the 45eight A. tubingensis isolates showed less susceptibility to voriconazole; however, all 46

¹ Abbreviations	
MIC	Minimum inhibitory concentrations
TR	Tandem repeat

47	isolates of A. niger and A. welwitschiae were susceptible to itraconazole and
48	voriconazole. Because of lack of susceptibility data for non-fumigatus Aspergillus and
49	an increasing frequency of antifungal resistance among A. fumigatus, our data along
50	with further surveillance may contribute to determining the frequency and susceptibility
51	of Aspergillus spp. clinical isolates in Japan.
52	
53	Keywords: Aspergillus species, antifungal susceptibility, clinical specimens,

54 filamentous fungus

55	The Aspergillus genus is well-known as the causative agent of aspergillosis, a major
56	mycosis in humans. A. fumigatus is the most prevalent species in the genus that acts as a
57	causative agent of aspergillosis [1,2]. Non-fumigatus Aspergillus species, such as A.
58	niger, A. flavus, and A. terreus, are also important causative agents of aspergillosis.
59	Although azoles have long been used for the treatment of aspergillosis, less susceptible
60	or resistant Aspergillus strains have recently emerged. During treatment with azoles,
61	substitution(s) can occur in the cyp51A gene in A. fumigatus, leading to antifungal
62	resistance [3,4]. In addition to strains that acquire resistance within a host,
63	azole-resistant A. fumigatus with a tandem repeat (TR) in the cyp51A promoter have
64	been isolated from the environment. These environmental strains are a cause of
65	aspergillosis in azole-naïve patients, which can lead to a delay in selecting the
66	appropriate antifungal for treatment. Furthermore, a proportion of non-Aspergillus
67	fumigatus strains show reduced susceptibility to antifungals, including azoles [5]. As
68	described above, the precise identification of Aspergillus species, their prevalence, and
69	determination of their antifungal susceptibility has become increasingly important. In
70	this study, we prospectively surveyed mold strains isolated from clinical specimens
71	collected in a hospital (number of beds: 651) between November 2013 and December

2018. The study was approved by the Ethics Committee of Obihiro-Kosei GeneralHospital.

74	A total of 119 mold isolates including 22 A. fumigatus clinical isolates reported
75	previously [6], were collected from a hospital in Obihiro (the city population was
76	approxymately 166,000 at the end of May in 2019), Japan (Supplementary Table 1). The
77	sources of isolates were sputum samples (45 strains), otorrhea samples (27), bronchial
78	aspirates (14), wounds samples (10), bronchoalveolar lavage fluid samples (3), pleural
79	effusion samples (3), fecal samples (3), bronchial brushing (2), drain samples (2), pus
80	samples (2), pharyngeal mucus sample (1), urine sample (1), nasal discharge sample (1),
81	lung abscess sample (1), postnasal cavity sample (1), tonsil sample (1), respiratory
82	sample (1), and unknown source sample (1). Genomic DNA from these isolates was
83	prepared using phenol:chloroform:isoamyl alcohol extraction and ethanol precipitation
84	[7]. The internal transcribed spacer regions were amplified and sequenced. Partial gene
85	sequences of β -tubulin, calmodulin, and/or hydrophobin (<i>rodA</i>) were determined to
86	identify the species in Aspergillus section Fumigati. Partial gene sequences of β -tubulin
87	were determined to identify the species in Aspergillus sections Flavi, Nigri, and
88	Nidulantes. To confirm whether an isolate belonged to A. welwitschiae or A. niger,

partial calmodulin sequences were analyzed. Primers used for PCR and sequencing are
shown in Supplementary Table 2.

91	Minimum inhibitory concentrations (MICs) of amphotericin B (AMPH-B), itraconazole
92	(ITCZ), and voriconazole (VRCZ), against Aspergillus isolates (with the exception of
93	one A. fumigatus isolate and one A. nidulans isolate) were determined using the broth
94	microdilution method based on CLSI M38-A2 with a slight modification using Dry
95	Plate Eiken (Eiken Chemical Co., Ltd., Tokyo, Japan) [7]. The excepted strains did not
96	show spore formation. As recommended by the European Committee on Antimicrobial
97	Susceptibility Testing Antifungal Clinical Breakpoint Table v. 9.0 for A. fumigatus, an
98	MIC of more than 2 $\mu\text{g/mL}$ for AMPH-B, ITCZ, and VRCZ was used for the breakpoint
99	to define resistance. Although breakpoints were not suggested for other Aspergillus spp.
100	because of insufficient evidence, an MIC of more than 2 μ g/mL was also used as a
101	breakpoint.
102	Aspergillus was the most frequent genus isolated in this study (107 isolates) (Figure 1).
103	Thirty-four Aspergillus strains were isolated from 13 patients at different times
104	(Supplementary Table 1). A further 12 isolates were identified: Rhizomucor (2 isolates),

105 Mucor (3 isolates), Scopulariopsis (Microascus) (2 isolates), Fusarium (1 isolate),

106 Lichtheimia (2 isolates), Rhizopus (1 isolate), and Arthrographis (1 isolate). Species of

107	Aspergillus were identified as A. fumigatus (67 isolates), Aspergillus section Nigri (21
108	isolates), A. flavus (7 isolates), A. terreus (6 isolates), and A. nidulans (6 isolates), as
109	shown in Figure 1. Consistent with earlier studies [1,8], A. fumigatus was the major
110	Aspergillus species isolated. Among the A. fumigatus strains, 52 were isolated from
111	respiratory specimens. The others were isolated from samples from wounds (8),
112	otorrhea samples (3), pus samples (2), a faces sample, and a sample from drain. Among
113	isolates, 12 isolates of Aspergillus section Nigri, 7 strains of A. flavus, and 3 isolates of
114	A. terreus were obtained from otorrhea samples, indicating that otorrhea samples are
115	another major source of Aspergillus spp. Sibling species of Aspergillus section Fumigati,
116	such as A. lentulus and A. udagawae, were recently recognized as causative agents of
117	aspergillosis $[9,10]$; this is problematic because of their morphological similarity to A.
118	fumigatus and their differences in antifungal susceptibility compared with A. fumigatus
119	[11]. The isolates collected in this study did not contain these sibling species of
120	Aspergillus section Fumigati. Aspergillus section Nigri was the second most prevalent,
121	with 21 strains of Aspergillus section Nigri identified as A. welwitschiae (10 isolates), A.
122	tubingensis (8 isolates), and A. niger (3 isolates). In an earlier study [12], 118 strains of
123	Aspergillus section Nigri isolated in Japan were used, and were found to comprise 50%

124	A. welwitschiae, 33.1% A. tubingensis, and 16.9% A. niger. Although only 21 strains
125	were included in this study, the ratio is similar to that of the previous study [12].
126	The MICs of AMPH-B were less than 4 μ g/mL against all <i>Aspergillus</i> strains (Table 1).
127	Two isolates (3%) of A. fumigatus OKH34 (= IFM 64159) and OKH50 (=IFM 64160)
128	were resistant to VRCZ and both VRCZ and ITCZ (Table 1). The A. fumigatus OKH34
129	strain was previously reported to be resistant to VRCZ, but not ITCZ [6]. This strain
130	contained a G448S substitution in Cyp51A, which led to VRCZ resistance. Another A.
131	fumigatus OKH31, which was susceptible to VRCZ and ITCZ, were isolated from same
132	patient earlier than OKH34 strain, suggesting that VRCZ treatment of a patient might
133	lead to the development of resistance [6]. Another strain, A. fumigatus OKH50, was also
134	previously reported to contain TR ₃₄ /L98H in Cyp51A, which led to resistance to ITCZ
135	and VRCZ [13]. Tsuchido recently reported the isolation of TR ₃₄ /L98H strains in the
136	Shiga/Kyoto region of Japan [8]. The region is approximately 1000 km from Obihiro,
137	Hokkaido. Although the TR ₄₆ /Y121F/T289A strain was not isolated in this study,
138	Hagiwara et al. reported an isolate of A. fumigatus from Tokyo, Japan, that carried the
139	TR and mutations [14]. These results indicate that TR-type strains are not locally
140	isolated in Japan and might be hidden among most A. fumigatus isolates.

141	The MIC values of VRCZ against four <i>A. tubingensis</i> isolates were high (> $2 \mu g/mL$).
142	One of the three strains showed high MICs (> 2 μ g/mL) with both VRCZ and ITCZ. We
143	sequenced the cyp51A gene from eight A. tubingensis strains. Sequences of cyp51A
144	genes in these resistant strains had amino acid substitutions identical to the sequences of
145	A. tubingensis IFM62856 and IFM62857, which show resistance to ITCZ and VRCZ
146	[12], suggesting that these substitutions in <i>cyp51A</i> play a pivotal role in azole resistance
147	in these strains. As discussed by Howard [15] and Hashimoto [12], further studies are
148	necessary to unravel the azole-resistance mechanism.
149	In summary, we performed a prospective, single-center survey of mold isolates, in
150	particular Aspergillus spp., in Japan. A. fumigatus was the most frequently isolated
151	species, and included two azole-resistant strains. Four A. tubingensis strains were
152	resistant to azoles. A resistant strain carrying a TR ₃₄ /L98H mutation was found in the
153	survey. This study had limitations, for example all isolates were collected locally, and
154	the number collected included only around 100 isolates. Continuous nationwide
155	surveillance will be important to determine the current status of the frequency and
156	susceptibility of clinical Aspergillus isolates in Japan.
157	

158 Acknowledgments

- 159 This study was supported by intramural funding of Obihiro University of Agriculture
- 160 and Veterinary Medicine, by the National BioResource Project, Japan
- 161 (http://www.nbrp.jp/), and by AMED under Grant Number JP19fm0208024. We also
- 162 thank Mr. Hideyuki Kida and Ms. Terumi Wada, former medical technologists of
- 163 Obihiro-Kosei General Hospital, for their research assistance. The authors would like to
- 164 thank Enago (<u>www.enago.jp</u>) for the English language review.
- 165
- 166 **Conflict of interest**
- 167 None

169 **References**

	r-Fuoli L, Rivero-Menéndez O, Ayats J, Castro C,	L	lcazar-Fuoli	A, Al	quierdo	ey-Iz	Alastrue	[1]	170
--	--	---	--------------	-------	---------	-------	----------	-----	-----

- 171 García-Rodríguez J, et al. Molecular identification and susceptibility testing of
- molds isolated in a prospective surveillance of triazole resistance in Spain
- 173 (FILPOP2 Study). Antimicrob Agents Chemother 2018;62.
- 174 https://doi.org/10.1128/AAC.00358-18.
- 175 [2] Castro C, Galán-Sanchez F, Linares MJ, Tejero R, Ruiz M, Serrano ML, et al. A
- 176 prospective survey of *Aspergillus* spp. in respiratory tract samples: Species
- identification and susceptibility patterns. Med Mycol 2018;57(4):412–20.
- 178 https://doi.org/10.1093/mmy/myy080.
- 179 [3] Tashiro M, Izumikawa K, Hirano K, Ide S, Mihara T, Hosogaya N, et al.
- 180 Correlation between triazole treatment history and susceptibility in clinically
- 181 isolated *Aspergillus fumigatus*. Antimicrob Agents Chemother 2012;56:4870–5.
- 182 https://doi.org/10.1128/AAC.00514-12.
- 183 [4] Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S,
- 184 Kamei K, et al. Whole-genome comparison of *Aspergillus fumigatus* strains
- serially isolated from patients with aspergillosis. J Clin Microbiol
- 186 2014;52:4202–9. https://doi.org/10.1128/JCM.01105-14.

187	[5]	Bok JW, Keller NP. Fast and easy method for construction of plasmid vectors
188		using modified quick-change mutagenesis. Methods Mol Biol 2012;944:163-74.
189		https://doi.org/10.1007/978-1-62703-122-6_11.
190	[6]	Onishi K, Muhammad Sarumoh B, Hagiwara D, Watanabe A, Kamei K,
191		Toyotome T. Azole-resistant Aspergillus fumigatus containing a 34-bp tandem
192		repeat in <i>cyp51A</i> promoter is isolated from the environment in Japan. Med Mycol
193		J 2017;58:E67-70. https://doi.org/10.3314/mmj.17-00002.
194	[7]	Tsuchido Y, Tanaka M, Nakano S, Yamamoto M, Matsumura Y, Nagao M.
195		Prospective multicenter surveillance of clinically isolated Aspergillus species
196		revealed azole-resistant Aspergillus fumigatus isolates with TR34/L98H mutation
197		in the Kyoto and Shiga regions of Japan. Med Mycol 2019.
198		https://doi.org/10.1093/mmy/myz003.
199	[8]	Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp.
200		nov., a New Sibling Species of A. fumigatus. Eukaryot Cell 2005;4:625–32.
201		https://doi.org/10.1128/EC.4.3.625.
202	[9]	Balajee SA, Nickle D, Varga J, Marr KA. Molecular studies reveal frequent
203		misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell
204		2006;5:1705-12. https://doi.org/10.1128/EC.00162-06.

205	[10]	Tamiya H, Ochiai E, Kikuchi K, Yahiro M, Toyotome T, Watanabe A, et al.
206		Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus
207		fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae,
208		and Aspergillus viridinutans. J Infect Chemother 2015;21:385–91.
209		https://doi.org/10.1016/j.jiac.2015.01.005.
210	[11]	Hashimoto A, Hagiwara D, Watanabe A, Yahiro M, Yikelamu A, Yaguchi T, et
211		al. Drug sensitivity and resistance mechanism in Aspergillus section Nigri strains
212		from Japan. Antimicrob Agents Chemother 2017;61:1-10.
213		https://doi.org/10.1128/AAC.02583-16.
214	[12]	Toyotome T, Fujiwara T, Kida H, Matsumoto M, Wada T, Komatsu R. Azole
215		susceptibility in clinical and environmental isolates of Aspergillus fumigatus
216		from eastern Hokkaido, Japan. J Infect Chemother 2016;22:648–50.
217		https://doi.org/10.1016/j.jiac.2016.03.002.
218	[13]	Toyotome T, Hagiwara D, Kida H, Ogi T, Watanabe A, Wada T, et al. First
219		clinical isolation report of azole-resistant Aspergillus fumigatus with
220		TR ₃₄ /L98H-type mutation in Japan. J Infect Chemother 2017;23:579–81.
221		https://doi.org/10.1016/j.jiac.2016.12.004.
222	[14]	Hagiwara D, Takahashi H, Fujimoto M, Sugahara M, Misawa Y, Gonoi T, et al.

223		Multi-azole resistant Aspergillus fumigatus harboring Cyp51A
224		TR ₄₆ /Y121F/T289A isolated in Japan. J Infect Chemother 2016;22:577–9.
225		https://doi.org/10.1016/j.jiac.2016.01.015.
226	[15]	Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and
227		azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother
228		2011;55:4802-9. https://doi.org/10.1128/AAC.00304-11.

230 Figure Legends

- Figure 1. Frequency of fungal species isolated. Pie charts graphically show the
- proportion of fungal species isolated at the single center for 5 years. The number of
- 233 isolates is indicated in parentheses.

234

				No. of i	isolates				
Antifungal				MIC (µ	ıg/mL)				Geometric mean
Speciesa	0.125	0.25	0.5	1	2	4	8	>8	WIIC (µg/IIIL)
Amphotericin B									
A. fumigatus (66)	0	2	22	34	8	0	0	0	0.89
A. welwitschiae (10)	0	1	6	3	0	0	0	0	0.57
A. tubingensis (8)	0	2	4	2	0	0	0	0	0.50
<i>A. niger</i> (3)	0	0	1	2	0	0	0	0	0.71
A. flavus (7)	0	0	0	5	2	0	0	0	1.3
A. terreus (6)	0	0	1	4	1	0	0	0	1.2
A. nidulans (5)	0	0	0	3	2	0	0	0	1.3
Itraconazole									
A. fumigatus (66)	3	31	21	10	0	0	0	1	0.39^{b}
A. welwitschiae (10)	0	4	3	3	0	0	0	0	0.47
A. tubingensis (8)	0	1	0	4	2	1	0	0	1.1
<i>A. niger</i> (3)	0	0	1	2	0	0	0	0	0.71
A. flavus (7)	0	4	2	1	0	0	0	0	0.40
A. terreus (6)	3	2	1	0	0	0	0	0	0.21
A. nidulans (5)	3	2	0	0	0	0	0	0	0.16
Voriconzole									
A. fumigatus (66)	1	21	36	5	1	1	1	0	0.44
A. welwitschiae (10)	0	2	5	3	0	0	0	0	0.53
A. tubingensis (8)	0	1	0	2	1	3	1	0	1.8
<i>A. niger</i> (3)	0	0	2	1	0	0	0	0	0.50
A. flavus (7)	0	0	4	1	2	0	0	0	0.89
A. terreus (6)	0	4	2	0	0	0	0	0	0.30
A. nidulans (5)	4	1	0	0	0	0	0	0	0.14

Table 1. MIC distributions and the geometric means of AMPH-B, ITCZ, and VRCZ against Aspergillus isolates.

^a The number of isolates is indicated in each parenthesis.

 $^{\rm b}$ MIC above 8 $\mu g/mL$ was considered as 16 $\mu g/mL$ for calculation of the geometric mean.

Supplementary Table 2. Primers used in this study.

Primer name	Sequence (5' to 3')	References and Notes
ITS4	TCCTCCGCTTATTGATATGC	Used to amplify and sequence ITS region [1]
ITS5	GGAAGTAAAAGTCGTAACAAGG	Used to amplify and sequence ITS region [1]
NL1	GCATATCAATAAGCGGAGGAAAAG	Used to amplify and sequence D1/D2 region [2]
NL4	GGTCCGTGTTTCAAGACGG	Used to amplify and sequence D1/D2 region [2]
Bt2a	AATAGGTGCCGCTTTCTGG	Used to amplify and sequence partial β -tubulin gene [3]
Bt2b	AGTTGTCGGGACGGAAGAG	Used to amplify and sequence partial β -tubulin gene [3]
rodA1	GCTGGCAATGGTGTTGGCAA	Used to amplify and sequence partial hydrophobin gene of A. fumigatus [3]
rodA2	AGGGCAATGCAAGGAAGACC	Used to amplify and sequence partial hydrophobin gene of A. fumigatus [3]
cmd5	CCGAGTACAAGGAGGCCTTC	Used to amplify and sequence partial calmodulin gene [4]
cmd6	CCGATAGAGGTCATAACGTGG	Used to amplify and sequence partial calmodulin gene [4]
AnBt2a	GGTAACCAAATCGGTGCTGCTTTC	Used to amplify and sequence partial β -tubulin gene of Aspergillus section Nigri [5]
AnBt2b	ACCCTCAGTGTAGTGACCCTTGGC	Used to amplify and sequence partial β -tubulin gene of Aspergillus section Nigri [5]
AnigCMF	CCCCACTTTGCGGGGGCAGAT	Used to amplify and sequence partial calmodulin gene
AnigCMR	TCACCGTCCTGGTCCGCCTC	Used to amplify and sequence partial calmodulin gene
cyp51Aup-F	GAATATATACGTCGATCTGTGTGAC	Used to amplify and sequence cyp51A gene of A. fumigatus [6]
cyp51Adown-R	ATCCCAGCAGATACGCTGGTCTCTGC	Used to amplify and sequence cyp51A gene of A. fumigatus [6]
cyp51Aup-F	ACAGAATACTGGGCAGCGGGCTGGAG	Used to sequence cyp51A gene of A. fumigatus [6]
cyp51A-F	ATGGTGCCGATGCTATGGCTTACGG	Used to sequence cyp51A gene of A. fumigatus [6]
cyp51A-F2	TTAGAGTCTCATGTGCCACTTATTGAGAAGG	Used to sequence cyp51A gene of A. fumigatus [6]
cyp51A-F3	CTCACAGCCAAAAGTCCTCGAAGAGC	Used to sequence cyp51A gene of A. fumigatus [6]
cyp51A-F4	TTTTCAACGTGGATGGAAAGAAAGGAGTCC	Used to sequence cyp51A gene of A. fumigatus [6]
cyp51Adown-R2	ACTATCAAAAACAGGTTTTCGCACGAGC	Used to amplify and sequence cyp51A gene of A. fumigatus [6]
cyp51AFrc	CCGTAAGCCATAGCATCGGCACCAT	Used to amplify and sequence cyp51A gene of A. fumigatus [6]
cyp51Aup-F2rc	CTCCAGCCCGCTGCCCAGTATTCTGT	Used to amplify and sequence cyp51A gene of A. fumigatus [6]
Nigri_erg11-upF	TGCTGGTTTCTGTCGGATGGAACCG	Used to amplify and sequence cyp51A gene of A. tubingensis
Nigri_erg11-downR	GGATGCTTCCTCCGGGCTTCGTATTCC	Used to amplify and sequence cyp51A gene of A. tubingensis

Nigri_erg11-upF2	GCGGGCGTATCCAATACGATGGC	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F1	CTACGCTTTCGCAGCGTTGCTCG	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F2	CGACTATCTCCGGGACTCTCCAC	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F3	CGAGCCGCTGCAGTATCAGGAC	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F4	CCCAACTAGTACCTTGTAATAAGCATC	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F5	TAGAACAGCGAGGATAAGGCTAG	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-R1	CGAGCAACGCTGCGAAAGCGTAG	Used to sequence cyp51A gene of A. tubingensis
Nigri_erg11-F2r	GTGGAGAGTCCCGGAGATAGTCG	Used to amplify and sequence cyp51A gene of A. tubingensis

Supplementary References

- [1] White TJ, Bruns S, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guid. to Methods Appl., Academic Press; 1990, p. 315–22.
- [2] O'Donnell K. *Fusarium* and its near relatives. In: Reynolds D, Taylor J, editors. fungal Holomorph Mitotic, Meiotic Pleomorphic Speciat. Fungal Syst., CAB International; 1993, p. 225–33.
- [3] Geiser DM, Frisvad JC, Taylor JW. Evolutionary relationships in *Aspergillus* section *Fumigati* inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 1998;90:831–45. doi:10.1080/00275514.1998.12026977.
- [4] Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA. Polyphasic taxonomy of *Aspergillus fumigatus* and related species. Mycologia 2005;97:1316–29.
- [5] Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323–30.
- [6] Toyotome T, Fujiwara T, Kida H, Matsumoto M, Wada T, Komatsu R. Azole susceptibility in clinical and environmental isolates of *Aspergillus fumigatus* from eastern Hokkaido, Japan. J Infect Chemother 2016;22:648–50. doi:10.1016/j.jiac.2016.03.002.

