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Abstract: Chicken eggs provide essential nutrients to consumers around the world. Although both
genetic and environmental factors influence the quality of eggs, it is unclear how these factors affect
the egg traits including egg metabolites. In this study, we investigated breed and feed effects on 10 egg
traits, using two breeds (Rhode Island Red and Australorp) and two feed conditions (mixed feed and
fermented feed). We also used gas chromatography–mass spectrometry (GC–MS/MS) to analyze 138
yolk and 132 albumen metabolites. Significant breed effects were found on yolk weight, eggshell
weight, eggshell colors, and one albumen metabolite (ribitol). Three yolk metabolites (erythritol,
threitol, and urea) and 12 albumen metabolites (erythritol, threitol, ribitol, linoleic acid, isoleucine,
dihydrouracil, 4-hydroxyphenyllactic acid, alanine, glycine, N-butyrylglycine, pyruvic acid, and
valine) were significantly altered by feed, and a significant interaction between breed and feed was
discovered in one albumen metabolite (N-butyrylglycine). Yolk and albumin had higher levels of
sugar alcohols when hens were fed a fermented diet, which indicates that sugar alcohol content can
be transferred from diet into eggs. Linoleic acid was also enriched in albumen under fermented
feed conditions. This study shows that yolk and albumen metabolites will be affected by breed
and feed, which is the first step towards manipulating genetic and environmental factors to create
“designer eggs.”
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1. Introduction

Approximately 80 million tons of chicken eggs are produced every year, and they are a crucial source
of animal protein in many developing countries [1,2]. Globally, 821 million people are malnourished [3],
so international efforts to increase egg production are of high priority. In more developed countries,
consumers are increasingly concerned with the quality of eggs and the bioavailability of favorable
functional ingredients [4,5]. Increasing the quantity and quality of eggs around the world is key
not only to alleviating hunger, but also to providing important dietary nutrients and keeping up
with a rapidly changing international livestock industry. Currently, huge scientific effort is devoted
to modifying agricultural produce traits to create “designer foods” [6]; eggs are no exception, and
considerable effort is currently underway to modify egg traits and produce “designer eggs” to meet
consumer demand [7,8].

Both genetic and environmental factors influence the quantity and quality of eggs [9–11].
Heritability estimates of egg traits such as overall weight, albumen weight, and yolk weight, are
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around 0.30–0.70 [12–14], which indicates that genetic factors are crucial to the regulation of egg
traits. These general egg traits, which are mass and quality of egg components (yolk, albumen, and
eggshell), are important for quality of egg itself as the product of egg market. Environmental factors
including age, nutrition, stress, disease, medication, and production system also have important roles
in modifying egg traits [9,10]. Thus, studies seeking to enhance egg traits should be cognizant of both
genetic and environmental factors.

Egg enrichment with omega-3 polyunsaturated fatty acids (n-3 PUFA), which provide various
human health benefits, is of current interest [15]. Evidence suggests that fatty acids quantity can be
altered through changes to hens’ diet [16]. Other research suggests that responses to dietary enrichment
and conversion into egg metabolites may be breed-specific [17]. Both breed and feed appear to regulate
the abundance of metabolites in egg yolk and albumen. Recently, we also have reported that egg yolk
amino acid was modified by both breed and feed [18]. This is very likely to be the tip of the iceberg
regarding the effects of genetic and environmental factors on egg composition.

Metabolomics, the study of the set of metabolites present in various tissues, is used to identify
novel metabolites or changes in metabolite ratios in tissues [19]. Metabolomic analyses are used
in a variety of fields, including biomedicine [20,21], plant science [19], food science [22,23], and
ecological/environmental science [24,25]. Typical metabolite analyses use gas chromatography– mass
spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS), capillary electrophoresis–
mass spectrometry (CE–MS), and nuclear magnetic resonance (NMR). Metabolome analyses have
previously been used to identify changes caused by stress and/or feed in mice using CE–MS [26] and
GC–MS [27], so we expect a metabolomics approach to provide useful insight into the role of breed
and feed in determining egg composition.

As studies into the metabolomes of livestock animals accumulate, a central database—the Livestock
Metabolome Database—has been developed to compile this information. Research into cattle metabolic
constitutes a large proportion of this work (76 of 149 articles), as does research into animal health,
nutrition, and production (97 of 149 papers; [28]). For instance, effects of long-distance transportation
in serum metabolites have been studied in cattle [29] and heat stress-induced metabolomic changes
have been investigated in chicks [30]. Relatively few reports target non-major livestock breeds, and
there is a need to populate the Livestock Metabolome Database with basic metabolome data for all
livestock breeds.

In this study, we analyzed the yolk and albumen metabolome of eggs and general egg traits from
two different breeds of hens under two different feed conditions. We used the GC–MS/MS technique to
measure metabolome content, and tested how egg metabolites are influenced by specific genetic and
environmental factors, i.e., breed and feed, respectively.

2. Results

2.1. Egg Traits

To test the effects of breed and feed on egg traits, 10 traits were investigated (Table 1). Two-way
mixed design analysis of variance (ANOVA) revealed a significant effect of breed on yolk weight
(F1,12 = 8.098, P = 0.0147), eggshell weight (F1,12 = 7.287, P = 0.0193), lightness of eggshell color
(F1,12 = 6.022, P = 0.0304), redness of eggshell color (F1,12 = 10.818, P = 0.0065), and yellowness of
eggshell color (F1,12 = 14.394, P = 0.0026). Rhode Island Red (RIR) eggs showed higher yolk weight and
lower eggshell weight than Australorp (AUS) eggs. Eggshell color in RIR eggs had less lightness, and
more redness and yellowness than that of AUS. There were no significant effects of feed or interaction
terms between breed and feed on any of the egg traits.
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Table 1. Egg traits at two stages in Rhode Island Red and Australorp.

Traits
Rhode Island Red (RIR) Australorp (AUS) P-Value from ANOVA Mixed Design

Mixed Fermented Mixed Fermented Main-Effect Interaction-Effect

33 Weeks 41 Weeks 33 Weeks 41 Weeks Breed Feed Breed × Feed

Egg weight (g) 54.2 ± 2.0 55.5 ± 2.5 52.6 ± 4.7 56.7 ± 4.9 0.068 0.573 0.918
Length of long axis of the egg (mm) 56.2 ± 2.4 57.8 ± 1.0 54.8 ± 2.1 57.8 ± 1.6 0.067 0.421 0.563
Length of short axis of the egg (mm) 42.0 ± 0.9 41.8 ± 1.0 41.4 ± 1.4 41.2 ± 1.2 0.065 0.974 0.953

Yolk weight (g) 15.5 ± 0.5 17.0 ± 1.2 13.4 ± 1.1 15.5 ± 1.1 0.015 0.287 0.826
Eggshell weight (g) 6.0 ± 0.4 6.7 ± 0.5 6.8 ± 0.8 6.3 ± 1.4 0.019 0.657 0.186
Albumen weight (g) 29.7 ± 1.7 29.5 ± 2.0 29.5 ± 3.0 31.1 ± 2.7 0.360 0.404 0.971

Eggshell thickness (mm) 0.38 ± 0.01 0.40 ± 0.05 0.42 ± 0.03 0.38 ± 0.03 0.227 0.725 0.667
Eggshell color L * 62.5 ± 5.0 66.3 ± 5.4 68.5 ± 2.0 75.5 ± 1.5 0.030 0.705 0.950
Eggshell color a * 14.3 ± 2.9 12.2 ± 2.6 9.5 ± 1.3 6.3 ± 0.7 0.006 0.376 0.600
Eggshell color b * 22.3 ± 3.5 20.6 ± 3.0 15.2 ± 1.8 12.5 ± 2.1 0.003 0.453 0.886
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2.2. Egg Metabolite Traits

Egg metabolite traits from yolk (138 metabolites) and albumen (132 metabolites) were
semi-quantified using GC−MS/MS. Full results were shown for yolk and albumen in Supplementary
Tables S1 and S2, respectively. Controlling for multiple comparisons in each sample, some metabolites
were found to be metabolome-wide significantly altered by breed and feed (Q < 0.1).

Albumen ribitol was significantly affected by breed (Table 2), with RIR eggs containing significantly
higher ribitol levels than AUS eggs. Three metabolites in yolk and 12 metabolites in albumen had
significant effects of feed (Table 3). Erythritol and threitol were significantly altered by feed in both the
yolk and the albumen. Urea was altered in the yolk samples only, whereas isoleucine, dihydrouracil,
linoleic acid, 4-hydroxyphenyllactic acid, alanine, glycine, N-butyrylglycine, pyruvic acid, ribitol,
and valine were altered in albumen samples only. For threitol, erythritol, dihydrouracil, linoleic acid,
pyruvic acid, and ribitol, the fermented feed group in both chicken breeds showed significantly higher
metabolite content than mixed feed. On the other hand, the fermented feed group had significantly
lower contents of urea, isoleucine, 4-hydroxyphenyllactic acid, alanine, glycine, N-butyrylglycine, and
valine than the mixed feed group. There was a significant interaction between breed and feed on
N-butyrylglycine in the albumen; N-butyrylglycine content in RIR chickens was higher with mixed
feed than with fermented feed, but this effect was reversed in the AUS samples (Table 4).
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Table 2. Metabolite with breed-induced changes (Q < 0.1).

Metabolite HMDB 1

Relative Area (Mean ± Standard Deviation (SD)) Mixed-Design ANOVA

RIR RIR AUS AUS Breed

Mixed Fermented Mixed Fermented P-Value Q-Value

Albumen_Ribitol HMDB0000508 −0.17 ± 0.65 0.59 ± 0.49 −0.84 ± 1.27 0.42 ± 0.59 0.0005 0.0628 *
1 The Human Metabolome Database [31]. * Q < 0.1.

Table 3. Metabolites with feed-induced changes (Q < 0.1).

Metabolite HMDB 1

Relative Area (Mean ± SD) Mixed Design ANOVA

RIR RIR AUS AUS Feed

Mixed Fermented Mixed Fermented P-Value Q-Value

Yolk_Urea HMDB0000294 0.47 ± 0.22 −0.78 ± 0.56 0.81 ± 1.24 −0.50 ± 0.42 0.002 0.085 *

Yolk_Threitol HMDB0004136 −0.84 ± 0.27 0.89 ± 0.33 −1.02 ± 0.13 0.97 ± 0.37 0.001 0.082 *
Yolk_Erythritol HMDB0002994 −0.77 ± 0.34 0.93 ± 0.45 −1.05 ± 0.09 0.89 ± 0.39 0.001 0.075 *

Albumen_Isoleucine HMDB0000172 0.26 ± 0.77 −0.89 ± 0.63 1.20 ± 0.41 −0.57 ± 0.39 0.001 0.020 *
Albumen_Dihydrouracil HMDB0000076 −0.57 ± 0.93 0.69 ± 0.93 −0.77 ± 0.48 0.65 ± 0.43 0.000 0.001 *

Albumen_Erythritol HMDB0002994 −0.67 ± 0.20 1.13 ± 0.72 −1.04 ± 0.12 0.58 ± 0.30 0.001 0.017 *
Albumen_Linoleic acid HMDB0000673 −0.02 ± 0.88 0.81 ± 1.34 −0.75 ± 0.32 −0.04 ± 0.25 0.000 0.008 *

Albumen_4-Hydroxyphenyllactic acid HMDB0000755 0.41 ± 0.79 −1.05 ± 0.52 1.05 ± 0.43 −0.40 ± 0.57 0.007 0.091 *
Albumen_Alanine HMDB0000161 0.54 ± 1.29 −0.75 ± 0.39 0.85 ± 0.55 −0.64 ± 0.18 0.007 0.082 *
Albumen_Glycine HMDB0000123 0.44 ± 1.28 −0.70 ± 0.73 0.83 ± 0.42 −0.57 ± 0.25 0.004 0.066 *

Albumen_N-Butyrylglycine HMDB0000808 0.12 ± 0.78 −0.34 ± 0.72 −0.04 ± 1.02 0.26 ± 1.24 0.000 0.007 *
Albumen_Pyruvic acid HMDB0000243 −0.06 ± 1.36 0.19 ± 0.99 −0.17 ± 1.07 0.04 ± 0.39 0.005 0.083 *

Albumen_Ribitol HMDB0000508 −0.17 ± 0.65 0.59 ± 0.49 −0.84 ± 1.27 0.42 ± 0.59 0.007 0.083 *
Albumen_Threitol HMDB0004136 −0.70 ± 0.17 1.11 ± 0.74 −1.01 ± 0.14 0.59 ± 0.34 0.001 0.020 *
Albumen_Valine HMDB0000883 0.54 ± 1.27 −0.77 ± 0.36 0.89 ± 0.49 −0.67 ± 0.10 0.006 0.088 *

1 The Human Metabolome Database [31]. * Q < 0.1.
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Table 4. Metabolite with breed × feed-induced changes (Q < 0.1).

Metabolite HMDB 1

Relative Area (Mean ± SD) Mixed Design ANOVA

RIR RIR AUS AUS Breed × Feed

Mixed Fermented Mixed Fermented P-Value Q-Value

Albumen_N-Butyrylglycine HMDB0000808 0.12 ± 0.78 −0.34 ± 0.72 −0.04 ± 1.02 0.26 ± 1.24 0.0000 0.0048 *
1 The Human Metabolome Database [31]. * Q < 0.1.
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3. Discussion

This study was designed to test the effects of breed and feed on 10 egg traits, 138 yolk metabolite
traits, and 132 albumen metabolite traits, in RIR/AUS hens fed with either mixed feed or fermented
feed. There were significant breed effects on yolk weight, eggshell weight, eggshell colors, and one
albumen metabolite. Three yolk metabolites and 12 albumen metabolites were significantly altered by
feed, and a significant interaction between breed and feed affected levels of one albumen metabolite.
Using the metabolome technique, this study has demonstrated that certain egg properties, including
metabolites in the yolk and albumen, can be changed by both genetic and environmental factors.

Since general egg traits, which are mass and quality of egg components (yolk, albumen, and
eggshell), are crucial to maintain egg quality, we investigated 10 egg traits in this study. Egg traits
including weight, length, width, albumen weight, and eggshell thickness showed no significant
differences between RIR and AUS hens in this study, although AUS eggshell weight was higher than
RIR. Average body weight at 35 weeks of age in RIR hens was more than twice that of AUS hens
(3.69 and 1.58 kg in RIR and AUS, respectively). Yolk weight in RIR was significantly greater than
that in AUS, corresponding to differences in body weight. We previously reported that Oh-Shamo
(2.91 kg), and classical type of White Leghorn hens (1.54 kg) with average body weight at 36 weeks
of age produced 53.8 ± 4.2 g and 47.4 ± 2.3 g of egg weight at 300 days of age, respectively [32,33].
Egg weight in AUS hens was 56.7 ± 4.9 g at around 300 days (41 weeks). Thus, AUS hens have a
potential to produce eggs that are relatively larger than expected from their body weight [18]. On the
other hand, significant breed effects were found on eggshell colors (lightness, redness, and yellowness),
with RIR hens laying darker brown eggs than AUS hens. White to brown variation in eggshell color is
a heritable quantitative trait [9–11], and eggshell colors of Oh-Shamo, White Leghorn, Hy-line Brown,
and Onagadori chickens were reported [33–35]. Comparing this study to previous work, eggs appear
to decrease in color from brown to white in the order of Hy-Line Brown > RIR > Oh-Shamo > AUS
> Onagadori > White Leghorn [33–35]. Further efforts must be needed to reveal the genetic basis of
eggshell coloration in chickens using population genomics and genome-wide scan.

The present metabolome analyses revealed significant changes in the amount of sugar alcohols
(polyols) present in eggs. Erythritol and threitol in the yolk and albumen appear to be affected by
dietary changes, specifically moving to a fermented diet. Sugar alcohols are naturally found in small
quantities in fruits, vegetables, mushrooms, and fermented foods such as wine, beer, sake, and soy
sauce [36], and can be produced by several yeasts and fungi [37]. The fermented feed used in this
study was made with wheat, pumpkin, yam, soybean, potato, rice bran, fish meal, beet lees, scallop
shell, and other materials, and lactic acid bacteria were used to ferment the mixture [18]; the amount
of sugar alcohols in fermented feed would be higher than in mixed feed. Eggs produced under the
fermented feed treatment had high sugar alcohol content, which is likely due to the transfer of these
nutrients from feed to eggs. The same trend was also apparent for ribitol, which was found at a higher
concentration in eggs produced on the fermented diet. There was also a significant breed effect, and
ribitol levels in RIR eggs were higher than those of AUS eggs. These results indicate that different
genetic backgrounds can affect the transfer of nutrients into eggs.

After 7 weeks on the fermented feed treatment, erythritol contents in both the yolk and albumen
were significantly higher than on mixed feed. Erythritol is a four-carbon sugar alcohol (polyol) that
has a sweetness 60% to 80% that of sucrose, and is used as a low-calorie sweetener [38]. This may
indicate that yolk and albumen taste are affected by feed type. In humans, erythritol is fast absorbed
through the small intestine, and >90% is excreted intact in urine. The remaining 10% is fermented in
the large intestine by colonic microorganisms [36]. Polyols act as probiotics like a fiber, and can help
normalize intestine function [36]. There are massive evidences that the intake of erythritol would not
cause adverse effects in humans [38]. Artificial sweeteners and/or polyols may be helpful in diabetes
and weight control, and eggs enriched with erythritol may be useful as a functional food.

Linoleic acid levels in egg albumen were significantly increased by the fermented feed diet.
Linoleic acid is a long-chain polyunsaturated fatty acid (PUFA), and an essential nutrient in wide
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range of animals including humans. PUFA is vital for body functions and plays an important role
in the formation and functioning of cell membranes, cell physiology, signaling, immunity, and
reproduction [39]. Many animals lack the ability to synthesize linoleic acid de novo, so dietary intake
of linoleic acid is necessary [39]. Enrichment of eggs with PUFAs, including linoleic acid, is relatively
common and increases the nutritional functionality of enriched eggs [15]. Linoleic acid is found at
relatively high levels in seed oils [40]. Fermented feed may derive its high linoleic acid content from
its constituent plant matter, which includes pumpkin seeds, or from its relatively high proportion of
crude fat. However, although isoleucine, alanine, glycine, and valine levels in the fermented feed were
also higher than those of mixed feed, albumin isoleucine, alanine, glycine, and valine contents of eggs
under the fermented feed diet were significantly lower than those of the mixed feed diet. More works
are required to understand the changes to these amino acids levels in albumen.

There was a significant interaction between breed and feed on albumin N-butyrylglycine levels.
N-butyrylglycine is an acylglycine [41], which is formed by the conjugation of acyl-CoA esters with
glycine [42]. Acylglycines are used as diagnostic markers of inborn errors of metabolism [41], and
previous studies have shown that acylglycine levels are sensitive in the urine of spontaneously
hypertensive rats on a high-fat diet [42]. In this study, we found that acylglycine content was higher
under the mixed feed treatment than fermented feed in RIR hens, but the opposite was true for AUS
hens. Since N-butyrylglycine is involved in fatty acid metabolism [42], this may indicate that the
combination of breed and feed can affect fatty acid metabolism. Actually, linoleic acid in albumen was
significantly altered in this study. Such interaction effects of breed and feed have been documented in
the enriched fatty acid levels of yolks in other studies [17]. In the modern chicken industry, hybrid
chickens rather than pure breeds are often used for egg and meat production. This study indicates
that the combination of breed and feed should be considered to modulate metabolite levels in yolk
and albumen.

In conclusion, we found significant breed and feed effects on yolk weight, eggshell weight, eggshell
colors, and several metabolites in the yolk and albumen. Feed alone had a notable impact on sugar
alcohol and fatty acid levels, which were enriched in both yolk and albumen under the fermented feed
treatment. We illustrated that both genetic and environmental factors are critical to determining egg
composition and should be considered in the efforts to meet consumer needs and develop nutritionally
functional designer eggs.

4. Materials and Methods

4.1. Study Animals

Rhode Island Red (RIR; n = 5) and Australorp (AUS; n = 5) hens were procured from the
Animal Research Center of the Hokkaido Research Organization, Japan. They were introduced to
the experimental farm of the Obihiro University of Agriculture and Veterinary Medicine, Japan, at
22 weeks of age. After introduction, all hens were reared in individual cages under a photoperiod
cycle of 16 h light and 8 h dark, with free access to diet and water. Body weight at 35 weeks of
age was 3.69 ± 0.57 and 1.58 ± 0.09 kg (mean ± standard deviation) for RIR and AUS, respectively
(F1,8 = 67.324, P = 3.6 × 10−5). Animal management was carried out following the Guide for the Use of
Experimental Animals in Universities (The Ministry of Education, Science, Sports, and Culture, Tokyo,
Japan 1987) and the Standards Related to the Care and Management of Experimental Animals (Prime
Ministers’ Office, Tokyo, Japan, 1980). This study (authorization number 18–15) was approved from the
Experimental Animal Committee of the Obihiro University of Agriculture and Veterinary Medicine.

4.2. Experimental Conditions and Sampling

To test the effects of breed and feed on egg metabolome, RIR and AUS hens were reared under
two different feed conditions. Mixed feed (Rankeeper; Marubeni Nisshin Feed Co., Ltd., Tokyo, Japan)
was provided for 11 weeks, from introduction until 33 weeks of age. Fermented feed (Kusanagi Farm
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Limited Company, Obihiro, Japan) was provided for 9 weeks, from 34 weeks of age until the end of
the experiment. The fermented feed was made from many feed materials such as potato peel, cottons
and seeds of pumpkin, sake lees, and wheat, especially using a silage preparation additive, WS360
(Protocol Japan Ltd., Obihiro, Japan), which contains lactic acid bacteria and cellulolytic enzyme [18].
The ingredients of both mixed and fermented feeds were analyzed at the Institute of Chemurgy, in the
Tokachi Federation of Agricultural Cooperatives, Japan (Supplementary Table S3). Eggs from each
breed (RIR and AUS) were collected at two stages: at the end of the mixed feed period (33 weeks of
age) and near the end of the fermented feed period (41 weeks of age, see Figure 1). Five eggs were
collected from each breed at each stage, totaling 20 eggs over the course of the study.
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Ten egg traits were measured, including egg weight, length of the long axis, length of the short
axis, eggshell weight, yolk weight, albumen weight, eggshell thickness, and eggshell lightness (L*),
redness (a*), and yellowness (b*). Size was measured using a digital caliper (P01 110–120; ASONE,
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the supernatants (160 µL) were collected and placed in new tubes with 200 µL of H2O and mixed
using a vortex. The tubes were again centrifuged at 16,000× g, 4 ◦C for 5 min. The supernatants
(200 µL) were collected into new tubes and centrifuged at room temperature in a vacuum (Centrifugal
Evaporator RD400; Yamato Scientific Co. Ltd., Tokyo, Japan) for 20 min. Then, the tubes were placed
in −80 ◦C until freezing. The tubes were centrifuged at room temperature in a vacuum for 7−8 h.
Methoxyamine hydrochloride in pyridine (20 mg/mL, 40 µL) was added to each tube and mixed using
the vortex. The tubes were shaken for 90 min at 1200 rpm, 30 ◦C, under dark conditions, for oximation.
N-methyl-N-trimethylsilyltrifluoroacetamine (MSTFA; 20µL) was added to each tube and vortex-mixed.
The tubes were shaken at 1200 rpm at 37 ◦C for 45 min in the dark to prepare trimethylsilyl (TMS)
derivatives. GC−MS/MS analyses were carried out using a GCMS-TQ8050 (Shimadzu, Kyoto, Japan)
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with BPX-5 column (Length 30 m; 0.25 mm I.D.; df = 0.25 µm) (SGE, Melbourne, Australia) according
to the method in Smart Metabolites Database (Shimadzu, Kyoto, Japan).

Data processing was performed with Smart Metabolites Database (Shimadzu, Kyoto, Japan),
MS-DIAL ver 3.08 [43] and MRMPROBS program ver. 2.42 [44]. Peaks of 40 samples (20 eggs ×
2 samples) were recorded over the mass range 45−600 m/z. Peaks were automatically detected via
MS-DIAL with peak detection options that minimum peak height is 2000. A data quality check was
conducted using thresholds, which are −10 < RI < 10, dot prod > 0.8, and presence > 0.6 and then
manually checked. Finally, 138 and 132 metabolites for yolk and albumen were identified, respectively.
Relative quantity of metabolites was calculated using the peak area of each metabolite relative to an
internal standard (2-isopropylmalic acid).

4.5. Statistical Methods

To identify the effects of breed and feed on egg properties, data were analyzed using a two-way
mixed-design analysis of variance (ANOVA) with breed group (RIR and AUS) as the between-subjects
factor and feed group (mixed feed and fermented feed) as the within-subject (repeated) factor [18,45–47].
Main- and interaction-effects of breed and feed on egg properties were tested (P < 0.05). Data are
presented as the mean and standard deviation. Statistical analyses were conducted using R [48].
In metabolites in particular, individual values were standardized with their mean and standard deviation.

To control the P value for multiple comparisons in metabolites, the false discovery rate was
determined using the approach of Benjamini and Hochberg [49]. The P values were adjusted using the
Benjamini−Hochberg correction, and post-adjustment are referred to as Q values. The metabolome-wide
significance threshold was set at Q < 0.1, following previous studies [26,27,50,51].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/224/s1:
Table S1: All yolk metabolites, Table S2: All albumen metabolites, Table S3: Ingredient analysis of mixed feed and
fermented feed.
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