PIROPLASMOSIS $\mathbf{2}$ A SEROEPIDEMIOLOGICAL SURVEY OF THEILERIA EQUI AND BABESIA 3 **CABALLI IN HORSES IN MONGOLIA** 4 Punsantsogvoo Myagmarsuren¹, Thillaiampalam Sivakumar², Batsaikhan $\mathbf{5}$ Enkhtaivan¹, Batdorj Davaasuren¹, Myagmar Zoljargal¹, Sandagdorj 6 Narantsatsral¹, Batbold Davkharbayar¹, Bayasgalan Mungun-Ochir³, Banzragch 7 Battur^{1,4}, Noboru Inoue⁵, Ikuo Igarashi², Badgar Battsetseg¹, and Naoaki 8 Yokoyama² 9 ¹Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian 10 University of Life Sciences, Zaisan 17024, Ulaanbaatar, Mongolia. 11 ² National Research Center for Protozoan Diseases, Obihiro University of Agriculture 12

MYAGMARSUREN ET AL - SERO-EPIDEMIOLOGY OF EQUINE

- 13 and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
- ¹⁴ ³ Laboratory of Pathology, Institute of Veterinary Medicine, Mongolian University of
- 15 Life Sciences, Zaisan 17024, Ulaanbaatar, Mongolia.
- ⁴ Graduate School, Mongolian University of Life Science, Zaisan 17024, Ulaanbaatar,
- 17 Mongolia.

1

⁵ Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro,

19 Hokkaido 080-8555, Japan.

20 Correspondence should be sent to Naoaki Yokoyama at: *yokoyama@obihiro.ac.jp*

21 ABSTRACT

22	Equine piroplasmosis caused by <i>Theileria equi</i> and <i>Babesia caballi</i> is an economically
23	important disease with a worldwide distribution. The objective of the present study was
24	to investigate the seroepidemiology of <i>T. equi</i> and <i>B. caballi</i> in horses reared in various
25	Mongolian provinces. Serum samples prepared from blood collected from horses in 19
26	Mongolian provinces were screened for antibodies specific to T. equi and B. caballi
27	using enzyme-linked immunosorbent assays based on recombinant forms of T. equi
28	merozoite antigen-2 and the <i>B. caballi</i> 48-kDa merozoite rhoptry protein, respectively.
29	Of 1,282 horses analyzed, 423 (33%) and 182 (14.2%) were sero-positive for <i>T. equi</i>
30	and <i>B. caballi</i> , respectively. Additionally, 518 (40.4%) were positive for at least 1
31	parasite species, of which 87 (16.8%) were co-infected with both parasites. Both T. equi
32	and <i>B. caballi</i> were detected in all surveyed provinces, and on a per province basis the
33	positive rates ranged from 19.0%-74.2% and 4.5%-39.8%, respectively. Theileria equi-
34	and <i>B. caballi</i> -positive rates were comparable between male (31.9% and 14.1%,
35	respectively) and female horses (34.5% and 14.3%, respectively). However, the positive
36	rates were higher in the >3-yr-old age group (37.7% and 15.6%, respectively) compared

 $\mathbf{2}$

37	with the 1–3-yr-old age group (19.4% and 10.0%, respectively). These findings
38	confirmed that T. equi and B. caballi infections are widespread among horses all over
39	Mongolia, and that horse age is a risk factor for infection in this country. Our results
40	will be useful for designing appropriate control measures to minimize <i>T. equi</i> and <i>B</i> .
41	caballi infections among Mongolian horses.
42	
43	KEY WORDS
44	Babesia caballi, ELISA, Epidemiological Mapping, Equine Piroplasmosis, Horses,
45	Mongolia, Theileria equi
46	
47	Equine piroplasmosis is an acute, subacute, or chronic tick-borne disease of the
48	Equidae (horses, donkeys, mules, and zebras) caused by hemoprotozoan parasites
49	Theileria equi and Babesia caballi (Bruning, 1996). It is generally characterized by
50	fever, anemia, jaundice, edema, and, in some cases, death (Schein, 1988; de Waal,
51	1992; Bruning, 1996). Although both T. equi and B. caballi cause clinical disease, the
52	former is associated with more severe disease (Camacho et al., 2005).
53	Equine piroplasmosis is common in tropical and subtropical regions, including
54	parts of Africa, the Middle East, Asia, Central and South America, the Caribbean, and

55	Europe, with 27 countries reporting disease incidence according to the World
56	Organisation for Animal Health (OIE, 2017). Once infected with <i>T. equi</i> and <i>B. caballi</i> ,
57	horses become persistent carriers for a long period (Knowles et al., 1997). Detection of
58	these carrier animals is vital because they can be a source of infection for transmission
59	to uninfected horses. Therefore, epidemiological surveys have been conducted in
60	several endemic countries to identify such chronically infected carrier animals (Butler et
61	al., 2012; Oduori et al., 2015; Sumbria et al., 2016; Guven et al., 2017; Díaz-Sánchez et
62	al., 2018).
63	Mongolia is an agricultural country in which the livestock sector is key to its
64	economic growth. The horse population in Mongolia was estimated to be about 3.9
65	million head in 2017 (National Statistics Office of Mongolia, 2017). However, the
66	productivity of Mongolian horses has been severely undermined for various reasons,
67	including the presence of infectious diseases (Odontsetseg et al., 2005; Pagamjav et al.,
68	2011; Suganuma et al., 2017). This also limits the export market for Mongolian horses
69	and their products (World Bank., 2009).
70	The causative agents of equine piroplasmosis, <i>T. equi</i> and <i>B. caballi</i> , have been
71	reported in Mongolia using microscopy (Rüegg et al., 2007), the indirect fluorescence
72	antibody test (IFAT) (Avarzed et al., 1997, Rüegg et al., 2007), enzyme-linked

73	immunosorbent assays (ELISAs) (Ikadai et al., 2000; Boldbaatar et al., 2005;
74	Munkhjargal et al., 2013), and PCR assays (Rüegg et al., 2007; Sloboda et al., 2011;
75	Munkhjargal et al., 2013). However, these studies were limited to only a few provinces
76	and no countrywide survey has been conducted, despite the fact that such investigations
77	will equip the veterinary authorities in Mongolia with the means of designing and
78	implementing a risk-based control strategy. In the present study, therefore, we prepared
79	serum samples from blood collected from horses in 19 of 21 Mongolian provinces, and
80	screened for <i>T. equi</i> - and <i>B. caballi</i> -specific antibodies using parasite-specific ELISAs.
81	MATERIALS AND METHODS
82	Serum samples
83	Blood samples were collected from a total of 1,282 horses in 19 of 21
84	Mongolian provinces in 2013–2017 (Table I). Sampling was not carried out in Orkhon
85	and Darkhan-Uul provinces, as the livestock farming is uncommon in these 2 urban
86	areas. Approximately 2 ml of blood was collected from each animal into a vacutainer
87	tube, without anticoagulant (Zhejiang Gongdong Medical Technology Co. Ltd., Taizhou,
88	Zhejiang, China). All sampled animals were apparently healthy during sampling. Serum
89	samples were prepared from blood and stored at -20 C until use. All animal procedures
00	were approved by the Animal Care and Use Committee of Obihiro University of

 $\mathbf{5}$

91 Agriculture and Veterinary Medicine, Japan (approval number: 29-1).

ELISAs

92

93	All serum samples were screened for T. equi- and B. caballi-specific antibodies
94	using previously described ELISAs (Huang et al., 2003; Ikadai et al., 1999). Briefly, the
95	truncated form of <i>T. equi</i> merozoite antigen-2 (EMA-2t) and the 48-kDa merozoite
96	rhoptry protein (BC48) of <i>B. caballi</i> were expressed as GST-fusion proteins
97	(rGST-EMA-2t and rGST-BC48, respectively) in Escherichia coli, then purified as
98	described by Huang et al. (2003) and Ikadai et al. (1999), respectively. Each well in
99	96-well ELISA microplates was coated with 5 μ g/ml of rGST-EMA-2t, rGST-BC48, or
100	rGST antigen diluted in a carbonate-bicarbonate buffer, then incubated at 4 C overnight
101	After discarding unabsorbed antigens, each well was blocked with 100 μl of 3%
102	skimmed milk in phosphate-buffered saline (PBS) with 0.05% Tween 20 (blocking
103	solution) at room temperature for 1 hr. After washing once with 200 μl of PBS
104	containing 0.05% Tween 20 (wash buffer), 100 μ l of horse serum sample diluted 1:200
105	in blocking solution was added to each well. The ELISA plates were incubated at 37 C
106	for 1 hr, then each well was washed 6 times with wash buffer. Next, 100 μl of
107	horseradish peroxidase-conjugated goat anti-horse immunoglobulin G (Sigma-Aldrich,
108	St. Louis, Missouri) diluted 1:5,000 in blocking solution was added to each well, and

109	the plates were incubated at 37 C for 1 hr. After washing 6 times with wash buffer, 50
110	μ l of tetramethylbenzidine (TMB) substrate solution (Sigma-Aldrich) was added to each
111	well, then incubated at 37 C for 30 min. After adding 50 μl of TMB stop solution
112	(Sigma-Aldrich), the optical density (OD) value was measured at 450 nm.
113	For each serum sample, the net OD value was calculated by subtracting the OD
114	value of the rGST-coated well from that of rGST-EMA2t- or rGST-BC48-coated wells.
115	A sample was considered to be positive for the <i>T. equi</i> or <i>B. caballi</i> antibody if the net
116	OD value was higher than the mean OD value + 3 standard deviations of 10 negative
117	serum samples.
118	Statistical analyses
118 119	Statistical analyses The 95% confidence intervals for positive rates were calculated using an
118 119 120	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based
 118 119 120 121 	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based on the Wilson score interval (Wilson, 1927). P values to compare positive rates between
 118 119 120 121 122 	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based on the Wilson score interval (Wilson, 1927). P values to compare positive rates between female and male horses, as well as between 1–3-yr-old and >3-yr-old age groups, were
 118 119 120 121 122 123 	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based on the Wilson score interval (Wilson, 1927). <i>P</i> values to compare positive rates between female and male horses, as well as between 1–3-yr-old and >3-yr-old age groups, were calculated using an "N-1" chi-squared test
 118 119 120 121 122 123 124 	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based on the Wilson score interval (Wilson, 1927). <i>P</i> values to compare positive rates between female and male horses, as well as between 1–3-yr-old and >3-yr-old age groups, were calculated using an "N-1" chi-squared test (https://www.medcalc.org/calc/comparison_of_proportions.php) (Campbell, 2007;
 118 119 120 121 122 123 124 125 	Statistical analyses The 95% confidence intervals for positive rates were calculated using an OpenEpi software program (http://www.openepi.com/Proportion/Proportion.htm) based on the Wilson score interval (Wilson, 1927). <i>P</i> values to compare positive rates between female and male horses, as well as between 1–3-yr-old and >3-yr-old age groups, were calculated using an "N-1" chi-squared test (https://www.medcalc.org/calc/comparison_of_proportions.php) (Campbell, 2007; Richardson, 2011). A <i>P</i> value < 0.05 was considered to indicate a significant difference

 $\overline{7}$

RESULTS

128	We screened a total of 1,282 horses in 19 Mongolian provinces for the presence
129	of antibodies to <i>T. equi</i> and <i>B. caballi</i> using ELISAs (Table I). Among them, 423
130	(33.0%) and 182 (14.2%) were positive for <i>T. equi</i> and <i>B. caballi</i> , respectively. In
131	addition, 518 (40.4%) horses were positive for at least 1 parasite species, and 87
132	(16.8%) among them had co-infection with <i>T. equi</i> and <i>B. caballi</i> . The overall positive
133	rate of <i>T. equi</i> was significantly higher than that of <i>B. caballi</i> ($P < 0.0001$). On a per
134	province basis, the positive rates of <i>T. equi</i> and <i>B. caballi</i> ranged from 19.0%–74.2%
135	and 4.5%–39.8%, respectively. In each province, except for Dundgovi, the positive rate
136	of <i>T. equi</i> was higher than that of <i>B. caballi</i> (Table I). Although the reason for the
137	higher rate of <i>B. caballi</i> positivity compared with that of <i>T. equi</i> in Dundgovi is not very
138	clear, the finding may not be conclusive as the sample size was relatively small.
139	Geographically, high rates of <i>T. equi</i> positivity (>25%) were observed in all
140	provinces in central (Arkhangai, Tov, and Ovorkhangai) and Govi (Bayankhongor,
141	Dundgovi, Govisumber, Omnogovi, and Dornogovi) regions, as well as in Bayan-Ulgii
142	in the western region, Bulgan and Selenge in the northern region, and Dornod and
143	Sukhbaatar in the eastern region (Fig. 1). The geographical variation of <i>B</i> .
144	caballi-positive rates was comparable with that of T. equi (Fig. 1). All provinces with

high rates of T. equi positivity (>25%) also had relatively high rates of B. caballi 145146positivity (>10%). However, *B. caballi*-positive rate in Govisumber was <10%, compared with >25% T. equi positivity, while in Khovsgol, B. caballi-positive rate was 147148>10%, compared with <25% *T. equi* positivity (Fig. 1). We next compared the positive rates between male and female horses, and 149between 1-3-yr-old and >3-yr-old age groups. Between males and females, the overall 150151positive rates of both T. equi (31.9% and 34.5%) and B. caballi (14.1% and 14.3%, respectively) were comparable (Table II). In addition, positive rates of these parasite 152species in each surveyed province were also comparable between males and females. 153On the other hand, overall positive rates of *T. equi* and *B. caballi* were significantly 154higher (P < 0.0001 and 0.012, respectively) in the >3-yr-old age group (37.7% and 15515615.6%, respectively) compared with those in the 1–3-yr-old age group (19.4% and 10.0%, respectively) (Table III). 157**DISCUSSION** 158Seroepidemiological surveys of T. equi and B. caballi are very important to 159estimate the risk of infections in horses in endemic countries. The objective of the 160161 present study was to investigate the seroepidemiology of T. equi and B. caballi infections in horses reared throughout Mongolia. ELISA based on BC48 is widely used 162

163	for sero-diagnosis of <i>B. caballi</i> , while EMA-1 and EMA-2 are the 2 most commonly
164	used antigens in <i>T. equi</i> -specific ELISA (Salim et al., 2008; Munkhjargal et al., 2013;
165	Rosales et al., 2013). However, a previous study found that EMA-2-based ELISA could
166	detect T. equi-specific antibodies in infected horses 6-12 days earlier compared with
167	EMA-1 ELISA (Huang et al., 2003). In the present study, therefore, BC48- and
168	EMA-2-based ELISAs were employed for the sero-survey of <i>B. caballi</i> and <i>T. equi</i> ,
169	respectively. Our findings demonstrated that horses in all of the surveyed provinces had
170	been exposed to both <i>T. equi</i> and <i>B. caballi</i> . The overall positive rate of <i>T. equi</i>
171	infection was significantly higher than that of <i>B. caballi</i> . This observation is an
172	agreement with the findings from previous studies conducted in Mongolia (Boldbaatar
173	et al., 2005; Munkhjargal et al., 2013).
174	The virulence of <i>T. equi</i> is known to be higher than that of <i>B. caballi</i> (Camacho
175	et al., 2005). Therefore, the high rate of <i>T. equi</i> positivity suggests that horse
176	populations throughout Mongolia are at risk of clinical piroplasmosis. Indeed, a recent
177	study found evidence to suggest T. equi is the causative agent of severe equine
178	piroplasmosis among Mongolian wild horses (Przewalski's horse) (Tarav et al., 2017).
179	Possible reasons for observed differential positive rates of <i>T. equi</i> and <i>B. caballi</i> include
180	differences in the density of infected tick vectors and waning of immunity following

181	parasite clearance. A previous study identified Dermacentor nuttalli, the most abundant
182	tick species in Mongolia, as a vector of both T. equi and B. caballi in Mongolia
183	(Battsetseg et al., 2001). Notably, however, the rate of <i>T. equi</i> -infected <i>D. nuttalli</i> was
184	higher than that of <i>B. caballi</i> -infected ticks (Battsetseg et al., 2001). Compared with <i>B</i> .
185	caballi, the T. equi infection usually persists in the host for longer, probably throughout
186	its life, acting as a source of infection for ticks vectors (Zweygarth et al., 1996;
187	Mehlhorn and Schein, 1998). Moreover, complete elimination of <i>T. equi</i> from such
188	chronically infected horses is extremely difficult (Friedhoff and Soule, 1996). These
189	observations could explain why the <i>T. equi</i> -positive rate was higher than the <i>B</i> .
190	caballi-positive rate in the present study.
191	We also observed differences in the positive rates of <i>T. equi</i> and <i>B. caballi</i>
192	infections among Mongolian provinces. Differences in the density of D. nuttalli in
193	different Mongolian regions might explain these geographical variations; however, the
194	geographical distribution of <i>D. nuttalli</i> in Mongolia is not completely understood.
195	Therefore, future studies should focus on analyzing the relative abundance of <i>D. nuttalli</i>
196	in various provinces of this country. As well as D. nuttalli, several other species of ticks
197	are known to exist in Mongolia (Tuvshintulga et al., 2015; Boldbaatar et al., 2017).
198	Thus, the investigation of T. equi and B. caballi infections in other tick species could

199 help understand the epidemiology of these parasite species in Mongolian horses.

200	Our findings also showed that the positive rates of both <i>T. equi</i> and <i>B. caballi</i>
201	infections were comparable between male and female horses. In Mongolia, both horse
202	sexes are reared together under the same management system, which may explain the
203	comparable positive rates of infection (Munkhjargal et al., 2013). In contrast, T. equi-
204	and <i>B. caballi</i> -positive rates of infection were higher in older horses compared with
205	younger animals. This is likely to reflect the greater chance of being exposed to infected
206	ticks with increasing horse age (Rüegg et al., 2007).
207	A limitation of the present study is relatively small sample size, which was not
208	defined statistically, compared with the horse population in each province. Previous
209	studies found potential strain variations among T. equi and B. caballi isolates (Bhoora,
210	et al., 2009; Munkhjargal et al., 2013). The genetic variations were also observed
211	among gene sequences encoding EMAs in T. equi and BC48 in B. caballi (Bhoora, et al.
212	2010a, 2010b). However, impact of such genetic variations on our ELISA results was
213	not considered, and this is also a limitation of the present study.
214	In summary, the present study found that horses bred throughout Mongolia
215	were exposed to both <i>T. equi</i> and <i>B. caballi</i> infections. We also found that the positive
216	rates of both T. equi and B. caballi varied among the surveyed provinces. The present

217 findings must be useful for designing a risk-based control strategy with the objective of

- 218 minimizing *T. equi* and *B. caballi* infections in horses in Mongolia.
- 219 ACKNOWLEDGMENTS
- 220 The authors assert all applicable international, national, and/or institutional
- guidelines for the care and use of animals were followed. We thank the owners and staff
- of the horse farms involved in the present study. We also thank the local veterinarians
- for their kind support in sampling. This study was supported by a grant from the Japan
- Agency for Medical Research and Development in collaboration with Japan
- 225 International Collaboration Agency (AMED/JICA) Science and Technology Research
- 226 Partnership for Sustainable Development (SATREPS) project (grant number
- 17jm0110006h0005). All authors declare no conflicts of interest associated with the
- 228 present study.

229 LITERATURE CITED

- 230 Avarzed, A., D. T. De Waal, I. Igarashi, A. Saito, T. Oyamada, Y. Toyoda, and N.
- 231 Suzuki. 1997. Prevalence of equine piroplasmosis in Central Mongolia. Onderstepoort
- Journal of Veterinary Research 64: 141–145.
- 233 Battsetseg, B., X. Xuan, H. Ikadai, J. L. Bautista, B. Byambaa, D. Boldbaatar, B. Battur,
- G. Battsetseg, Z. Batsukh, I. Igarashi, et al. 2001. Detection of *Babesia caballi* and

- Babesia equi in Dermacentor nuttalli adult ticks. International Journal for Parasitology
 31: 384–386.
- 237 Bhoora, R., L. Franssen, M. C. Oosthuizen, A. J. Guthrie, E. Zweygarth, B. L. Penzhorn,
- 238 F. Jongejan, and N. E. Collins. 2009. Sequence heterogeneity in the 18S rRNA gene
- 239 within Theileria equi and Babesia caballi from horses in South Africa. Veterinary
- 240 Parasitology 159: 112–120.
- 241 Bhoora, R., M. Quan, P. T. Matjila, E. Zweygarth, A. J. Guthrie, and N. E. Collins.
- 242 2010a. Sequence heterogeneity in the equi merozoite antigen gene (ema-1) of Theileria
- 243 equi and development of an ema-1-specific TaqMan MGB assay for the detection of T.
- *equi*. Veterinary Parasitology 172: 33–45.
- 245 Bhoora, R., M. Quan, E. Zweygarth, A. J. Guthrie, S. A. Prinsloo, and N. E. Collins.
- 246 2010b. Sequence heterogeneity in the gene encoding the rhoptry-associated protein-1
- 247 (RAP-1) of Babesia caballi isolates from South Africa. Veterinary Parasitology 169:
- 248 279–288.
- 249 Boldbaatar, B., R. R. Jiang, M. E. Von Fricken, S. Lkhagvatseren, P. Nymadawa, B.
- 250 Baigalmaa, Y. W. Wang, B. D. Anderson, J. F. Jiang, and G. C. Gray. 2017.
- 251 Distribution and molecular characteristics of rickettsiae found in ticks across Central
- 252 Mongolia. Parasites & Vectors 10: 61. 10.1186/s13071-017-1981-3

- 253 Boldbaatar, D., X. Xuan, B. Battsetseg, I. Igarashi, B. Battur, Z. Batsukh, B. Bayambaa,
- and K. Fujisaki. 2005. Epidemiological study of equine piroplasmosis in Mongolia.
- 255 Veterinary Parasitology 127: 29–32.
- 256 Bruning, A. 1996. Equine piroplasmosis an update on diagnosis, treatment and
- prevention. The British Veterinary Journal 152: 139–151.
- 258 Butler, C. M., M. M. Sloet van Oldruitenborgh-Oosterbaan, T. A. Stout, J. H. van der
- 259 Kolk, L. V. Wollenberg, M. Nielen, F. Jongejan, A. H. Werners, and D. J. Houwers.
- 260 2012. Prevalence of the causative agents of equine piroplasmosis in the South West of
- 261 The Netherlands and the identification of two autochthonous clinical *Theileria equi*
- infections. Veterinary Journal 193: 381–385.
- 263 Camacho, A. T., F. J. Guitian, E. Pallas, J. J. Gestal, A. S. Olmeda, M. A. Habela, S. R.
- 264 Telford, and A. Spielman. 2005. Theileria (Babesia) equi and Babesia caballi infections
- in horses in Galicia, Spain. Tropical Animal Health and Production 37: 293–302.
- 266 Campbell, I. 2007. Chi-squared and Fisher-Irwin tests of two-by-two tables with small
- sample recommendations. Statistics in Medicine 26: 3661–3675.
- de Waal, D. T. 1992. Equine piroplasmosis: A review. British Veterinary Journal 148:
- 269 6–14.
- 270 Díaz-Sánchez, A. A., M. S. Pires, C. Y. Estrada, E. V. Cañizares, S. L. Del Castillo

- 271 Domínguez, A. Cabezas-Cruz, E. L. Rivero, A. H. da Fonseca, C. L. Massard, and B.
- 272 Corona-González. 2018. First molecular evidence of Babesia caballi and Theileria equi
- infections in horses in Cuba. Parasitology Research 117: 3109–3118.
- 274 Friedhoff, K. T., and C. Soule. 1996. An account on equine babesioses. Revue
- 275 Scientifique et Technique 15: 1191–1201.
- Guven, E., H. Avcioglu, A. Deniz, I. Balkaya, U. Abay, Ş. Yavuz, and M. Akyüz. 2017.
- 277 Prevalence and molecular characterization of Theileria equi and Babesia caballi in
- 278 jereed horses in Erzurum, Turkey. Acta Parasitologica 62: 207–213.
- Huang, X., X. Xuan, N. Yokoyama, L. Xu, H. Suzuki, C. Sugimoto, H. Nagasawa, K.
- 280 Fujisaki, and I. Igarashi. 2003. High-level expression and purification of a truncated
- 281 merozoite antigen-2 of Babesia equi in Escherichia coli and its potential for
- immunodiagnosis. Journal of Clinical Microbiology 41: 1147–1151.
- 283 Ikadai, H., C. R. Osorio, X. Xuan, I. Igarashi, T. Kanemaru, H. Nagasawa, K. Fujisaki,
- N. Suzuki, and T. Mikami. 2000. Detection of *Babesia caballi* infection by
- enzyme-linked immunosorbent assay using recombinant 48-kDa merozoite rhoptry
- protein. International Journal for Parasitology 30: 633–635.
- 287 Ikadai, H., X. Xuan, I. Igarashi, S. Tanaka, T. Kanemaru, H. Nagasawa, K. Fujisaki, N.
- 288 Suzuki, and T. Mikami. 1999. Cloning and expression of a 48-kilodalton Babesia

289	caballi merozoite rhoptry protein and potential use of the recombinant antigen in an
290	enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 37: 3475–3480.
291	Knowles, D. P., L. S. Kappmeyer, and L. E. Perryman. 1997. Genetic and biochemical
292	analysis of erythrocyte-stage surface antigens belonging to a family of highly conserved
293	proteins of Babesia equi and Theileria species. Molecular and Biochemical Parasitology
294	90: 69–79.
295	Mehlhorn, H., and E. Schein. 1998. Redescription of Babesia equi Laveran, 1901 as
296	Theileria equi Mehlhorn, Schein 1998. Parasitology Research 84: 467–475.

- 297 Munkhjargal, T., T. Sivakumar, B. Battsetseg, T. Nyamjargal, M. Aboulaila, B.
- 298 Purevtseren, D. Bayarsaikhan, B. Byambaa, M. A. Terkawi, N. Yokoyama, et al. 2013.
- 299 Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia.
- 300 Infection, Genetics and Evolution 16: 178–185.
- 301 National Statistics Office of Mongolia, 2017. Livestock. Available at:
- 302 http://www.en.nso.mn/index.php. Accessed 12 October 2018.
- 303 Odontsetseg, N., A. S. Mweene, and H. Kida. 2005. Viral and bacterial diseases in
- 304 livestock in Mongolia. Japanese Journal of Veterinary Research 52: 151–162.
- 305 Oduori, D. O., S. C. Onyango, J. N. Kimari, and E. T. MacLeod. 2015. A field survey
- 306 for the seroprevalence of *Theileria equi* and *Babesia caballi* in donkeys from Nuu

- 307 Division, Kenya. Ticks and Tick Borne Diseases 6: 683–688.
- 308 OIE, 2017. World Animal Health Information Database Interface. Available at:
- 309 http://www.oie.int/wahis 2/public/wahid.php/Wahidhome/Home. Accessed on 11
- 310 October 2018.
- 311 Pagamjav, O., K. Kobayashi, H. Murakami, Y. Tabata, Y. Miura, B. Boldbaatar, and H.
- 312 Sentsui. 2011. Serological survey of equine viral diseases in Mongolia. Microbiology
- and Immunology 55: 289–292.
- Richardson, J. T. 2011. The analysis of 2×2 contingency tables—yet again. Statistics
- in Medicine 30: 890. doi: <u>10.1002/sim.4116</u>
- 316 Rosales, R., A. Rangel-Rivas, A. Escalona, L. S. Jordan, M. I. Gonzatti, P. M. Aso, T.
- 317 Perrone, A. Silva-Iturriza, and A. Mijares. 2013. Detection of Theileria equi and
- 318 Babesia caballi infections in Venezuelan horses using Competitive-Inhibition ELISA
- and PCR. Veterinary Parasitology 196: 37–43.
- 320 Rüegg, S. R., P. Torgerson, P. Deplazes, and A. Mathis. 2007. Age-dependent dynamics
- 321 of Theileria equi and Babesia caballi infections in southwest Mongolia based on IFAT
- and/or PCR prevalence data from domestic horses and ticks. Parasitology 134: 939–947.
- 323 Salim, B. O., S. M. Hassan, M. A. Bakheit, A. Alhassan, I. Igarashi, P. Karanis, and M.
- B. Abdelrahman. 2008. Diagnosis of *Babesia caballi* and *Theileria equi* infections in

- horses in Sudan using ELISA and PCR. Parasitology Research 103: 1145–1150.
- 326 Schein, E. 1988. Equine babesiosis in Babesiosis of domestic animals and man. CRC
- 327 Press, Boca Raton, Florida, 255 p. p.
- 328 Sloboda, M., M. Jirků, D. Lukešová, M. Qablan, Z. Batsukh, I. Fiala, P. Hořín, D.
- 329 Modrý, and J. Lukeš. 2011. A survey for piroplasmids in horses and Bactrian camels in
- North-Eastern Mongolia. Veterinary Parasitology 179: 246–249.
- 331 Suganuma, K., S. Yamasaki, N. I. Molefe, P. S. Musinguzi, B. Davaasuren, E. Mossaad,
- 332 S. Narantsatsral, B. Battur, B. Battsetseg, and N. Inoue. 2017. The establishment of in
- 333 vitro culture and drug screening systems for a newly isolated strain of Trypanosoma
- 334 *equiperdum*. International Journal for Parasitology Drugs and Drug Resistance 7:
- 335 200–205.
- 336 Sumbria, D., L. D. Singla, S. Kumar, A. Sharma, R. K. Dahiya, and R. Setia. 2016.
- 337 Spatial distribution, risk factors and haemato-biochemical alterations associated with
- 338 Theileria equi infected equids of Punjab (India) diagnosed by indirect ELISA and
- nested PCR. Acta Tropica 155: 104–112.
- 340 Tarav, M., M. Tokunaga, T. Kondo, Y. Kato-Mori, B. Hoshino, U. Dorj, and K.
- 341 Hagiwara. 2017. Problems in the protection of reintroduced Przewalski's horses (Equus
- 342 *ferus przewalskii*) caused by piroplasmosis. Journal of Wildlife Diseases 53: 911–915.

- 343 Tuvshintulga, B., T. Sivakumar, B. Battsetseg, S. O. Narantsatsaral, B. Enkhtaivan, B.
- Battur, K. Hayashida, K. Okubo, T. Ishizaki, N. Inoue, et al. 2015. The PCR detection
- and phylogenetic characterization of *Babesia microti* in questing ticks in Mongolia.
- 346 Parasitology International 64: 527–532.
- 347 Wilson, E. B. 1927. Probable inference, the law of succession, and statistical inference.
- Journal of the American Statistical Association 22: 209–212.
- 349 World Bank. 2009. Mongolia Livestock Sector Study Volume I Synthesis Report
- 350 (English). Washington, DC: World Bank, 45 p. Available at:
- 351 http://documents.worldbank.org/curated/en/299141468323712124/pdf/502770ESW0P0
- 352 <u>960phesis0Report0final.pdf</u>. Accessed 10 October 2018.
- 353 Zweygarth, E., M. C. Just, and D. T. de Waal. 1996. In vitro cultivation of Babesia
- 354 equi: detection of carrier animals and isolation of parasites. Onderstepoort Journal of
- 355 Veterinary Research 56: 51–56.
- 356
- 357 **FIGURE 1.** Epidemiological mapping of *Theileria equi* and *Babesia caballi*.
- 358 Epidemiological maps were prepared to illustrate geographical variations of the
- seropositive rates of (A) T. equi and (B) B. caballi infections among Mongolian horses,
- 360 using ArcGIS v10.1 software program (Environmental Systems Research Institute,

Redlands, California). The differential prevalence rates are indicated by different colors.

Province	No. samples	No. samples T. eq	equi B. c		caballi	Co-i	nfection [†]
		No. positive	% (CI*)	No. positive	% (CI)	No. positive	% (CI)
Arkhangai	54	20	37.0 (25.4-50.4)	7	13.0 (6.4-24.4)	5	22.7 (10.1-43.4)
Bayankhongor	57	18	33.3 (21.0-44.5)	7	12.3 (6.1-23.3)	4	19.0 (7.7-40.0)
Bayan-Ulgii	105	45	43.0 (33.8-52.4)	17	16.2 (10.4-24.4)	10	19.2 (10.8-31.9)
Bulgan	20	6	30.0 (14.5-51.9)	2	10.0 (2.8-30.1)	0	0.0 (0.0-32.4)
Dornod	93	69	74.2 (64.5-82.0)	37	39.8 (30.4-49.9)	30	39.5 (29.3-50.7)
Dornogovi	57	16	28.1 (18.1-40.8)	9	16.0 (8.5-27.4)	4	19.0 (7.7-40.0)
Dundgovi	33	10	30.3 (17.4-47.3)	12	36.3 (22.2-53.4)	4	22.2 (9.0-45.2)
Govi-Altai	29	17	59.0 (40.7-74.5)	7	24.1 (12.2-42.1)	4	20.0 (8.1-41.6)
Govisumber	25	7	28.0 (14.3-47.6)	2	8.0 (2.2-24.9)	2	28.6 (8.2-64.1)
Khentii	98	24	24.5 (17.1-33.9)	7	7.1 (3.5-14.02)	1	3.3 (0.6-16.7)
Khovd	110	21	19.0 (12.8-27.4)	5	4.5 (1.9-10.2)	3	13.0 (4.5-32.1)
Khovsgol	62	15	24.1 (15.2-36.1)	9	14.5 (7.8-25.3)	3	14.3 (5.0-34.6)
Omnogovi	57	20	35.0 (24.0-48.1)	12	21.0 (12.5-33.3)	6	23.1 (11.0-42.1)
Ovorkhangai	26	11	42.3 (25.6-61.1)	3	11.5 (4.0-28.9)	0	0.0 (0.0-21.5)
Selenge	64	13	26.5 (12.3-31.7)	9	14.0 (7.6-24.6)	1	4.8 (0.8-22.7)
Sukhbaatar	136	42	31.0 (23.8-39.1)	15	11.0 (6.8-17.4)	4	7.5 (3.0-17.9)
Tov	48	23	48.0 (34.5-61.7)	6	12.5 (5.8-24.7)	3	11.5 (4.0-29.0)
Uvs	75	17	23.0 (14.7-33.3)	5	6.6 (2.9-14.7)	2	10.0 (2.8-30.1)
Zavkhan	133	29	22.0 (15.6- 29.6)	11	8.2 (4.7-14.2)	1	2.6 (0.5-13.2)
Total	1,282	423	33.0 (30.5-35.6)	182	14.2 (12.4-16.2)	87	16.8 (13.8-20.3)

Table I. Positive rates of *Theileria equi* and *Babesia caballi* infections in horses in 19 Mongolian provinces.

* 95% confidence interval

[†]Expressed as a percentage of the number of animals infected with at least one parasite species (No. *T. equi*-positive + No. *B. caballi*-positive – No. co-infected).

Province	No. Samples				T. equi		B. caballi					
	Male	Female	Male		Female		P value	Male		Female		P value
			No. positive	% (CI*)	No. positive	% (CI)		No. positive	% (CI)	No. positive	% (CI)	-
Arkhangai	30	24	10	33.3 (19.2-51.2)	10	41.7 (24.5-61.2)	0.5292	4	13.3 (5.3-29.7)	3	12.5 (4.3- 31.0)	0.9313
Bayankhongor	28	29	10	36.0 (20.7-54.2)	8	27.6 (14.7-45.7)	0.4996	5	17.8 (7.9-35.6)	2	6.9 (1.9- 21.9)	0.2137
Bayan- Ulgii	40	65	13	32.5 (20.1-47.9)	32	49.2 (37.5-61.1)	0.0947	7	17.5 (8.7-31.9)	10	15.4 (8.6- 26.0)	0.7777
Bulgan	12	8	5	42.0 (19.3-68.0)	1	12.5 (2.2-47.1)	0.1700	1	8.3 (1.5-35.4)	1	12.5 (2.2-47.1)	0.7648
Dornod	65	28	49	75.4 (63.7-84.2)	20	71.4 (52.9-84.7)	0.6875	24	36.9 (26.2-49.1)	13	46.4 (29.5-64.2)	0.3931
Dornogovi	32	25	4	12.5 (4.9-28.1)	12	48.0 (30.0-66.5)	0.0033	5	15.6 (6.9-31.7)	4	16.0 (6.4-34.6)	0.9675
Dundgovi	4	29	2	50.0 (15.0-85.0)	8	27.6 (14.7-45.7)	0.3682	2	50.0 (15.0-85.0)	10	34.5 (19.9-52.6)	0.5520
Govi- Altai	22	7	14	63.6 (42.9-80.3)	3	42.8 (15.8-74.9)	0.3390	5	22.7 (10.1-43.4)	2	28.6 (8.2-64.1)	0.7548
Govisumber	17	8	3	17.6 (6.2-41.0)	4	50.0 (21.5-78.5)	0.0990	1	5.9 (1.0-26.9)	1	12.5 (2.2-47.1)	0.5785
Khentii	55	43	12	21.8 (12.9-34.4)	12	27.9 (16.7-42.7)	0.4881	5	9.1 (3.9-19.6)	2	4.6 (1.3-15.4)	0.3926
Khovd	79	31	13	16.4 (9.9-26.1)	8	25.8 (13.7-43.2)	0.2609	5	6.3 (2.7-13.9)	0	0.0 (0-11.0)	0.1545
Khovsgol	35	27	7	20.0 (10.0-35.9)	8	29.6 (15.8-48.5)	0.3853	5	14.3 (6.3-29.4)	4	14.8 (5.9-32.5)	0.9562
Omnogovi	47	10	17	36.2 (12.1-64.6)	3	30.0 (10.8-60.3)	0.7116	8	17.0 (8.9-30.1)	4	40.0 (16.8-68.7)	0.1086
Ovorkhangai	9	17	3	33.3 (23.9-50.5)	8	47.0 (26.2-69.0)	0.5094	1	11.1 (1.9-43.5)	2	11.8 (3.3-34.3)	0.9685
Selenge	40	24	8	20.0 (10.5-34.8)	5	20.8 (9.2-40.5)	0.9370	5	12.5 (5.4-26.1)	4	16.7 (6.7-35.9)	0.6426
Sukhbaatar	78	58	20	25.6 (17.3-36.3)	22	37.9 (26.6-50.8)	0.1259	10	12.8 (7.1-22.0)	5	8.6 (3.7-18.6)	0.4407
Tov	9	39	7	77.8 (45.3-93.7)	16	41.0 (27.1-56.6)	0.0487	1	11.1 (1.9-43.5)	5	12.8 (5.6-26.7)	0.8857
Uvs	46	29	12	26.1 (15.6-40.3)	5	17.2 (7.6-34.5)	0.3731	2	4.3 (1.2-14.5)	3	10.3 (3.6-26.4)	0.3120
Zavkhan	66	67	18	27.3 (18.0-39.0)	11	16.4 (9.4-27.1)	0.1295	5	7.6 (3.3-16.5)	6	8.9 (4.2-18.2)	0.7861
Total	714	568	228	31.9 (28.6-35.4)	196	34.5 (30.7-38.5)	0.3258	101	14.1 (11.8-16.9)	81	14.3 (11.6-17.4)	0.9188

Table II. Positive rates of *Theileria equi* and *Babesia caballi* infection in male and female horses in 19 Mongolian provinces.

* 95% confidence interval

Province	ovince No. Samples		T. equi						B. caballi					
	1-3 years	>3 years	1-3 years		>3 years		P value	1-3 years		>3 years		P value		
			No. positive	% (CI*)	No. positive	% (CI)		No. positive	% (CI)	No. positive	% (CI)	-		
Arkhangai	15	39	10	66.7 (41.7-84.8)	10	25.6 (14.6-41.1)	0.0055	4	26.7 (10.9-51.9)	3	7.7 (2.6-20.3)	0.0652		
Bayankhongor	11	46	0	0.0 (0-25.9)	18	39.1 (26.4-53.5)	0.0130	0	0.0 (0-25.9)	7	15.2 (7.6-28.2)	0.1712		
Bayan- Ulgii	17	88	2	11.8 (3.3-34.3)	43	48.9 (38.7-59.1)	0.0049	1	5.9 (1.0-26.9)	16	18.2 (11.5-27.5)	0.2099		
Bulgan	11	9	4	36.4 (15.2-64.6)	2	22.2 (6.3-54.7)	0.5017	1	9.1 (1.6-37.7)	1	11.1 (1.9-43.5)	0.8851		
Dornod	24	69	18	75.0 (55.1-88.0)	51	73.9 (62.5-82.8)	0.9160	10	41.7 (24.5-59.3)	27	39.1 (28.5-50.9)	0.8236		
Dornogovi	18	39	3	16.7 (5.8-39.2)	13	33.3 (20.6-49.0)	0.1987	0	0.0 (0-17.6)	9	23.1 (12.6-38.3)	0.0276		
Dundgovi	6	27	2	33.3 (9.7-70.0)	8	29.6 (15.8-48.5)	0.8605	1	16.7 (3.0-56.3)	11	40.7 (24.5-59.3)	0.2763		
Govi- Altai	10	19	3	30.0 (10.8-60.3)	14	73.7 (51.2-88.2)	0.0256	0	0.0 (0-27.8)	7	36.8 (19.1-58.9)	0.0305		
Govisumber	10	15	0	0.0 (0-27.8)	7	46.7 (24.8-69.9)	0.0126	0	0.0 (0-27.8)	2	13.3 (3.7-37.9)	0.2388		
Khentii	11	87	2	18.2 (5.1-47.7)	22	25.3 (17.3-35.3)	0.6078	0	0.0 (0-25.9)	7	8.0 (3.9-15.7)	0.2388		
Khovd	23	87	1	4.3 (0.8-20.9)	20	22.9 (15.4-32.9)	0.0442	0	0.0 (0-14.3)	5	5.7 (2.5-12.8)	0.2435		
Khovsgol	13	49	2	15.4 (4.3-42.2)	13	26.5 (16.2-40.3)	0.5593	5	38.5 (17.7-64.5)	4	8.2 (4.4-21.8)	0.0063		
Omnogovi	22	35	3	13.6 (4.7-33.3)	17	48.6 (33.0-64.4)	0.0075	3	13.6 (4.7-33.3)	9	25.7 (13.4-40.1)	0.2794		
Ovorkhangai	7	19	1	14.3 (2.6-51.3)	10	52.6 (31.7-72.7)	0.0855	0	0.0 (0-35.4)	3	15.8 (5.5- 37.6)	0.2729		
Selenge	20	44	2	10.0 (2.8-30.1)	11	25.0 (14.6-39.4)	0.1702	3	15.0 (5.2-36.0)	6	13.6 (6.4-26.7)	0.8821		
Sukhbaatar	42	94	5	11.9 (5.2-25.0)	37	39.4 (30.1-49.5)	0.0014	1	2.4 (0.4-12.3)	14	14.9 (9.1-23.5)	0.0323		
Tov	11	37	2	18.2 (5.1-47.7)	21	56.7 (40.9-71.3)	0.0264	1	9.1 (1.6-37.7)	5	13.5 (5.9-27.9)	0.7014		
Uvs	26	49	2	7.7 (2.1-24.1)	15	30.6 (19.5-44.5)	0.0251	2	7.7 (2.1-24.1)	3	6.1 (2.1-16.5)	0.7927		
Zavkhan	32	101	2	6.2 (1.7-20.1)	27	26.7 (19.1-36.1)	0.0147	1	3.1 (0.5-15.7)	10	9.9 (5.5-17.3)	0.2252		
Total	329	953	64	19.4 (15.5-24.0)	359	37.7 (34.6-40.8)	< 0.0001	33	10.0 (7.2-13.7)	149	15.6 (13.5-18.1)	0.0120		

Table III. Positive rates of *Theileria equi* and *Babesia caballi* infection in 1–3-year-old and >3-year-old horse age groups in 19 Mongolian provinces.

* 95% confidence interval

