1	Revised highlighted
2	Age related and seasonal changes of plasma concentrations of insulin-like
3	peptide 3 and testosterone from birth to early-puberty in Thoroughbred
4	male horses
5	
6	M A Hannan ¹ , Harutaka Murase ² , Fumio Sato ^{2, 3} , Munkhtuul Tsogtgerel ^{1, 3} , Noritoshi
7	Kawate ⁴ , Yasuo Nambo ^{1,3)} *
8	
9	¹ Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and
10	Veterinary Medicine, Hokkaido 080-8555, Japan.
11	² Equine Science Division, Hidaka Training and Research Center, Japan Racing
12	Association, 525-13 Nishicha Urakawa-Cho, Hokkaido, 057-0171, Japan
13	³ United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193,
14	Japan
15	⁴ Department of Advanced Pathobiology, Graduate School of Life and Environmental
16	Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
17	
18	*Corresponding to: Nambo, Y.; ynambo@obihiro.ac.jp
19	Tel: +81-155-49-5394; Fax: +81-155-49-5394; E-mail: <u>ynambo@obihiro.ac.jp</u>
20	

21 Abstract

22	The peripheral blood concentrations of insulin-like peptide 3 (INSL3) have been
23	detected in many mammalian species, but the level of INSL3 in horse remains unknown.
24	The objectives were to develop a time-resolved fluorescence immunoassay (TRFIA) to
25	detect INSL3 concentrations from horse blood as well as to determine the age-related
26	and seasonal changes of plasma concentrations of INSL3 and testosterone from birth to
27	early-puberty in Thoroughbred male horse (n=11). Monthly blood sample and
28	measurement of body weight, height, chest and cannon bone size were done from birth
29	until 16 mo. The TRFIA and EIA were used to measure plasma concentrations of INSL3
30	and testosterone, respectively. An increase in mean body weight, height, chest and
31	cannon bone size was observed throughout the study. The monthly blood sampling
32	revealed an increase in mean plasma INSL3 concentrations up to 2 mo, followed by a
33	decreasing and increasing pattern until the end of experiment at 16 mo. A high
34	testosterone level was detected at birth followed by a sharp decrease to basal level
35	within 1 mo, maintained low level up to10 mo before a gradual rise until 16 mo. In case
36	of seasonality, there was no difference in mean plasma INSL3 concentrations between
37	breeding (March to September) and non-breeding (October to February) seasons,
38	whereas a higher ($P < 0.001$) mean plasma testosterone concentrations in the second

39	breeding season compared to non-breeding season was observed. In age categorized
40	group, an increase ($P < 0.01$) in mean plasma INSL3 concentrations was noticed at
41	pre-puberty (1 to 12 mo) and early-puberty (13 to 16 mo) compared to birth, but a lower
42	$(\mathbf{P} < 0.001)$ mean plasma testosterone concentrations was observed at pre-puberty
43	compared to birth and early-puberty. In conclusion, a TRFIA was developed to measure
44	INSL3 levels in horse. An increase in plasma concentrations of INSL3 and testosterone
45	were observed with the advancement of age, whereas for testosterone a very lower level
46	was detected at the non-breeding season than in the second breeding season after birth
47	in Thoroughbreed male horse. The INSL3 secretions seemed independent of seasonal
48	influence, at least before puberty.
49	Keywords: INSL3; TRFIA; Breeding season; Puberty; Male horse
50	
51	
52	
53	
54	
55	
56	9
	Z

57 1. Introduction

Testicular Leydig cell has been shown as the sole secretory site of insulin-like 58peptide 3 (INSL3) hormone in all studied mammalian males including horse [1-3]. 5960 INSL3 is an essential factor for the trans-abdominal phase of testicular descent during the fetal period in mice [4, 5], and for preventing the germ cells apoptosis during and 61 after puberty in rats [6] and pigs [7]. The levels of INSL3 in peripheral blood have 62 63 already been reported from a wide variety of male species including humans [8–12], rats [13], cattle [14, 15], dogs [16], and goats [17]. However, the blood level of INSL3 is yet 64 65 to determine in horse. Horse is a seasonal breeder animal, which shows maximum reproductive activity 66 during spring and summer [18]. In spring born Thoroughbred colts, the plasma 67 68 concentrations of testosterone, another Leydig cell hormone, has been shown to decrease to basal level at the non-breeding season after birth followed by a dramatic 69 70 increase in the second breeding season [19]. The study related to secretory pattern of INSL3 in seasonally breeding animals is limited. Only a single study in adult Roe deer, 71a seasonally reproducing animal, has demonstrated the changes of INSL3 at mRNA and 7273protein level throughout a reproductive cycle [20]. The association between seasonality and INSL3 secretion is unknown in horse. 74

75	The age at puberty varies widely among horse breeds [21]. Both photoperiod and
76	degree of maturity play roles in the onset of puberty [22]. In colts, the onset of puberty
77	is determined by semen characteristics [23, 24] and the time when first significant
78	increase in testosterone secretion compared to baseline occurs [22, 24]. The peripheral
79	levels of INSL3 have been used as a testis-specific biomarker for the assessment of
80	pubertal development in humans [10–12], male rats [13], dogs [16], bucks [25], and
81	cattle [14]. It was reported that the dynamics of the secretory patterns of plasma INSL3
82	and testosterone during pubertal progress are different in bulls [14], male dogs [16], and
83	humans [10-12]. We speculated that being a seasonal breeder, horse may possess a
84	unique secretory pattern of INSL3 from birth until puberty.
85	The aims of the present study were: (1) to develop a time-resolved fluorescence
86	immunoassay (TRFIA) to measure INSL3 concentrations from horse blood; (2) to
87	determine the age-related changes of plasma concentrations of INSL3 and testosterone
88	from birth to early-puberty in male horse; (3) to observe the seasonal variation of
89	INSL3 secretion and its relationships with testosterone in male horse.
90	
91	2. Materials and methods

92 2.1. Animals

93	Spring born colts ($n = 11$) from Thoroughbred broodmares raised in Hidaka
94	Training and Research Center, Japan Racing Association (JRA), Urakawa, Hokkaido,
95	Japan were used in the present study. Eight out of 11 colts were born in April, 2 in
96	March and 1 in May. Immediately after birth, testicular presence was checked manually
97	to confirm the presence of testes inside the scrotum. The colt that was missing one or
98	both testis was not included, and only the colts having both testes inside the scrotum
99	were considered for the present experiment. The selected colts had no apparent
100	abnormalities of reproductive status and remained healthy throughout the study. From 2
101	days after birth, the newborns were allowed in outdoor pasture with their dams for a few
102	hours a day and their outdoor staying was extended to 7 h from 2 weeks. Colts were fed
103	with a fistful of pellet twice daily from 2 mo of their age and they were weaned at 6 mo
104	before providing a balanced diet (JRA standards, Hiddaka, Japan). The study was
105	approved by the Animal Welfare and Ethics Committees of Obihiro University of
106	Agriculture and Veterinary Medicine.
107	
108	2.2. Blood sampling and measurement of body weight, height, chest and cannon bone
109	Monthly sampling started at day of colts born (blood) and 1 day after birth (body
110	weight, height, chest and cannon bone measurement), and ended at 16 mo. Blood 5

111	samples were collected into heparinized vacutainers by jugular venipuncture between
112	13:00 and 14:00 p.m. and immediately placed in ice before centrifugation (1700 x g for
113	20 min at 4°C). The plasma was collected and immediately stored at -20 °C. The
114	samples were thawed immediately before INSL3 and testosterone assays. Body weight
115	and height were measured by using a standard weighing and height measuring machine
116	for large animals, respectively. The chest and cannon bone size were measured using a
117	measuring tape. Moreover, for the purpose of INSL3 assay validation, a single blood
118	sample from 3 adult intact stallions (age, 7.0 ± 1.7 y) and 3 castrated stallions (age, 7.0
119	\pm 3.0 y) was also collected.
120	
121	2.3. Preparation of testicular tissue homogenates
122	Testicular tissue from a 1-year-old male horse was used for preparing
123	homogenates. A piece of testis tissue weighing 100 mg was homogenized in 500 μ l
124	0.9% NaCL solution. The homogenates were then centrifuged at 1700 x g for 20 min at
125	4°C, and the supernatant was transferred into another tube and stored at -30 °C until
126	used for checking the parallelism of INSL3 assay.

128 2.4. Hormone analyses

2.4.1. INSL3 assay 129

130	The plasma concentrations of INSL3 were measured by a TRFIA, which was
131	developed by minor modifications of a previously reported goat plasma INSL3-TRFIA
132	assay [25]. The DELFIA anti-mouse IgG microtitration strips coated with rabbit
133	anti-mouse antibodies (96 wells per plate; Wallac Oy, Turku, Finland) were used.
134	Immediately before the assay, colts plasma was diluted 5-fold using DELFIA assay
135	buffer (Wallac Oy, Turku, Finland). First, 50 μ L of synthetic bovine INSL3 [26] for the
136	standards or 50 μL of plasma samples followed by 50 μL of anti-bovine INSL3 mouse
137	monoclonal antibody (2-8F) (1: 1,000,000 dilution in the DELFIA assay buffer, Wallac
138	Oy, Turku, Finland) [26] were dispensed in the wells and incubated for 2 h at room
139	temperature. Then, 50 μL of biotinylated canine INSL3 (2 ng/mL in DELFIA assay
140	buffer; Wallac Oy, Turku, Finland) was added and incubated for 1 h at room temperature.
141	After that, the wells were drained and washed three times with 300 μL of DELFIA wash
142	buffer (Wallac Oy, Turku, Finland). After washing, 100 μ L of Eu-labeled streptavidin
143	(100 ng/mL in DELFIA assay buffer; Wallac Oy, Turku, Finland) was added to the wells
144	and incubated for 30 min at room temperature. The wells were then washed three times
145	with 300 μL of DELFIA wash buffer (Wallac Oy, Turku, Finland), and 100 μL of
146	DELFIA enhancement solution (Wallac Oy, Turku, Finland) was dispensed into each 7

147	well. Then, the plate was shaken at 80 rpm for 15 min at room temperature. Finally,
148	time-resolved fluorescence was measured using an ARVO MX Multilabel Counter
149	(PerkinElmer, Wallac Oy, Finland). The minimum detection limit of the INSL3-EIA was
150	0.15 ng/mL, and the detection was reliable in the range from 0.15 to 20 ng/mL. The
151	intra-assay and interassay coefficients of variation (CVs) were 7.5% and 11.5%,
152	respectively.
153	
154	2.4.2. Testosterone assay
155	The plasma concentrations of testosterone were determined by an enzyme
156	immunoassay using a commercially available kit (ST AIA-PACK PROG II, Tosoh
157	Bioscience, Inc., San Francisco, CA, USA) according to manufacturer's instructions.
158	The minimum detectable concentration was 0.008 ng/mL, and the interassay CV was
159	14.13%.
160	
161	2.5. Data analyses
162	We considered the period from March to September as breeding season and the
163	period from October to February as non-breeding season in spring born Thoroughbred
164	colts, according to the classification of a previous study in the same breed in same

165	region of the northern hemisphere [18]. The blood sampling was discontinued after 16
166	mo and none of the colts has any sample beyond July in the second breeding season.
167	The age of the colts was divided into three distinct periods: birth, pre-puberty and
168	early-puberty. The first blood sample was collected within 6 h after foal born (birth).
169	The distinction between pre-puberty and puberty was made based on the monthly
170	changes in plasma testosterone concentrations. Following birth, plasma concentrations
171	of testosterone remained very low from 1 to 12 mo of age. A significant increase in
172	mean plasma testosterone concentrations compared to the previous month was observed
173	between 12 and 13 mo, and the concentrations were then remained high till the end of
174	experiment at 16 mo. Therefore, the period when testosterone remained at basal level (1
175	to 12 mo) was considered as pre-puberty, and from 12 mo onward when testosterone
176	concentrations remained high considered as early-puberty (Fig. 2C).
177	We examined the effects of time on monthly changes in body weight, height,
178	chest and cannon bone size as well as the plasma INSL3 and testosterone concentrations
179	by conducting an analysis of variance (ANOVA) using the General Linear Model
180	(GLM) procedure of SPSS ver. 25 software (IBM, Somers, NY). The effects of time on
181	changes with the three age categories (birth, pre-puberty and early-puberty) and
182	seasonality (breeding and non-breeding seasons) were also examined by the same

183	ANOVA. The differences in hormone concentrations between the birth, pre-puberty and
184	early-puberty periods as well as between the first breeding season, non-breeding season
185	and second breeding seasons were compared by conducting pairwise comparisons of the
186	GLM procedure using Bonferroni as a post hoc test. The data are expressed as mean \pm
187	standard error of the mean. Differences were considered significant at $P < 0.05$.
188	
189	3. Results
190	3.1. Validation of an assay for measuring INSL3 in horse blood
191	A standard curve with the bovine INSL3 was produced in the range from 0.15 to
192	20 ng/mL (Fig. 1). The B/B $_0$ values of a serially diluted 3 y old stallion's plasma, 1 y old
193	male foal plasma as well as testicular tissue homogenates were almost parallel to the
194	standard curve (Fig. 1). Moreover, the plasma concentrations of INSL3 was compared
195	between adult intact stallions and castrated stallions. The mean plasma INSL3
196	concentrations in intact stallions were very high $(39.67 \pm 4.1 \text{ ng/mL}; \text{ n} = 3)$, whereas the
197	concentrations were very low in castrated stallion $(1.93 \pm 0.7 \text{ ng/mL}; \text{ n} = 3)$.
198	
199	3.2. Monthly changes of body weight, height, chest and cannon bone size, and plasma
200	concentrations of INSL3 and testosterone

201	Figure 2 illustrates the age-related changes in the mean body weight, height,
202	chest and cannon bone size as well as the plasma concentrations of INSL3 and
203	testosterone from birth to 16 mo. There was a significant effect ($P < 0.001$) of time on
204	mean body weight, height, chest, cannon bone size and the plasma concentrations of
205	INSL3 and testosterone. A gradual increase in the mean body weight, height, chest and
206	cannon bone size was observed throughout the period (Fig. 2 A and B). An increase in
207	the mean plasma INSL3 concentrations was observed up to 2 mo from birth, followed
208	by a decrease until 4 mo. The INSL3 concentrations then maintained a continual
209	increasing and decreasing pattern until the end of experiment at 16 mo (Fig. 2 C). The
210	mean plasma test osterone concentrations at birth was 0.38 ± 0.07 ng/mL. A sharp
211	decrease to approximately zero level (0.02 ± 0.00) was observed at 1 mo followed by a
212	little increase up to 3 mo before coming to very lower level again at 5 mo, maintained
213	this low level until 10 mo. The concentrations were then increased gradually until the
214	end of study (Fig. 2 C).

- *3.3. Changes of plasma concentrations of INSL3 and testosterone from birth to*

early-puberty

218 The changes in the mean plasma concentrations of INSL3 and testosterone from

219	birth to early-puberty are presented in Figure 4. There was a significant effect ($P < 0.01$)
220	of age on the plasma concentrations of both hormones. The mean plasma INSL3
221	concentrations increased ($P < 0.01$) from birth to pre-puberty and early-puberty, but
222	there was no difference between pre-puberty and early-puberty (Fig. 4A). A significant
223	reduction ($P < 0.001$) in mean plasma testosterone concentrations at pre-puberty
224	compared to both birth and early-puberty was observed. There was no difference in
225	mean plasma testosterone concentrations between birth and puberty (Fig. 4B).
226	
227	3.4. Seasonal changes of plasma concentrations of INSL3 and testosterone
228	The changes in the mean plasma concentrations of INSL3 and testosterone during
229	the breeding and non-breeding seasons are presented in Figure 3. There was a
230	significant effect ($P < 0.01$) of season on the plasma concentrations of INSL3 and
231	testosterone. The mean plasma INSL3 concentrations increased significantly ($P < 0.01$)
232	from the first breeding season after birth to second breeding season, but there was no
233	difference between non-breeding season and breeding seasons (Fig. 3A).
234	The mean plasma testosterone concentrations between first breeding season and
235	non-breeding season did not differ, but a higher ($P < 0.001$) mean plasma testosterone
236	concentrations at second breeding season compared to first breeding season and

237 non-breeding season was observed (Fig. 3B).

239	4. Discussion
240	Insulin-like peptide 3 (INSL3) has been studied extensively in many domestic
241	animals [7, 14–17] and humans [8–12]. Conversely, only a single study was performed
242	to check the expression of INSL3 in equine testis [3], and there has been no other report
243	in terms of detecting blood levels of INSL3 in horse, to the best of our knowledge. Here
244	we developed a TRFIA assay to measure INSL3 concentrations from horse blood using
245	biotinylated canine INSL3 and ant-bovine INSL3 antibody.
246	In the present study, in spring born Thoroughbred colts, a high level of plasma
247	testosterone was noticed at birth followed by a sharp decrease to basal level within 1 mo,
248	and then this lower concentration maintained before a gradual rose from 10 mo onwards.
249	This secretory pattern of testosterone was in accordance with previous report in the
250	Thoroughbred [19, 22] and Warmblood [27] colts. In the present study, the two
251	consecutive months when a statistically significant increase of testosterone secretions
252	occurred were 12 and 13 mo (Fig. 2C). Thus, we assumed that the Thoroughbred colts
253	in the present study reached to puberty at 12 mo. A significant increase in mean plasma
254	testosterone concentrations compared to base line has been used as a determinant of

255	onset of puberty in colts [22, 24]; a significant increase in testosterone compared to
256	basal level in the present and a previously reported study [19, 22] occurred almost in the
257	same period. The increase of body weight, height, chest and cannon bone size with the
258	advancement of age imply a proper growth of male foals throughout the experiment,
259	and the mean body weight at puberty in the present study in spring born Thoroughbred
260	colts was similar with previous reports in the same breed [19, 22].
261	Conversely, the nature of INSL3 secretion compared with testosterone was
262	different. There was an apparent increase in mean plasma INSL3 concentrations during
263	the first 2 mo after birth followed by a continuous rise and fall, comprising few months,
264	until the end of experiment at 16 mo. In fact, there was a tendency to increase the
265	concentrations over the advancement of time, which reflects more clearly when we
266	categorized the data into different age categories (Fig. 4). In a recent report, the
267	biweekly plasma sample from 8 to 52 weeks of male Shiba goats life showed a
268	moderate increase of plasma INSL3 secretions throughout the study, whereas the
269	testosterone secretions fluctuated [25]. Another concern regarding INSL3 secretions in
270	the present study is that there was high individual variation at some points. We speculate
271	that this could be due to individual variation in total Leydig cell mass. Further studies

are needed in order to clarify the correlation between testicular size and INSL3

273 secretions in male horse.

274	When we compared the data between breeding and non-breeding seasons, a very
275	lower level of mean plasma testosterone concentrations in the non-breeding season after
276	birth compared to the second breeding season was observed, which is in accord with a
277	similar study reported [19]. The reason for such reduction of testosterone concentrations
278	in the non-breeding season was because of reduction of gonadotropins output during the
279	winter months as a result of shorter photoperiod and low hypothalamic pituitary output
280	[28]. However, we did not notice such reduction for INSL3 in the non-breeding season,
281	implying that the secretion of INSL3 in horse was probably not influenced by the
282	pituitary gonadotropin (LH), at least before puberty. During puberty, the secretory
283	pattern of INSL3 with frequent blood sampling (15-min intervals for 8 h) has recently
284	been studied in Japanese Black beef bulls and male Shiba goats [15, 17]. Studies in both
285	species have showed that the secretion of INSL3 in peripheral blood during puberty
286	occurs in a pulsatile manner and regulates by pulsatile LH secretion. In a seasonal
287	breeding animal, Roe deer, a peak expression of INSL3 at mRNA and protein levels was
288	observed before the onset of breeding season, followed by a lower expression at late
289	breeding and non-breeding seasons [20]. A significantly lower LH concentration was

290	reported in the first non-breeding season after birth compared to second breeding season
291	in the Thoroughbred colts [19]. Taking these all facts into account, we expected a lower
292	INSL3 levels in the non-breeding season than that of breeding season in the present
293	study in Thoroughbred colts, but which was not the case. The authors also felt that
294	providing LH data in the present study would have helped in describing the roles of
295	gonadotropin on INSL3 secretion more clearly in male horse. Further studies with
296	frequent blood sampling during the breeding and non-breeding seasons in stallion are
297	needed to make a precise clarification of the seasonal secretory pattern of INSL3 and its
298	interrelationships with LH in male horse.
299	After we categorized the present data into three distinct groups of advancing age
300	(birth, pre-puberty and early-puberty), there was a sharp decrease in mean plasma
301	testosterone concentrations at pre-puberty compared to both birth and early-puberty,

- 302 with no difference between birth and early-puberty. The pre-pubertal period in the
- 303 present study mostly comprised the non-breeding season; therefore, the lower
- 304 testosterone concentrations at this period was because of lower gonadotropins output
- 305 during the non-breeding season [28]. And the high testosterone concentrations at birth
- 306 was the carryover from the intra-uterine maternal environment, because fetal gonads of
- 307 horse provide precursor for maternal estrogens [29, 30]. Conversely, we noticed an

308	increase in mean plasma INSL3 concentrations at pre-puberty and early-puberty
309	compared to birth, which is mostly in accord with previous reports in men [10, 12],
310	bulls [14] and male goats [25]; where increasing blood INSL3 secretions during
311	pubertal development were shown.
312	In conclusion, a TRFIA was developed to measure INSL3 levels in horse plasma.
313	An increase in mean plasma INSL3 and testosterone was observed with the
314	advancement of age, whereas for testosterone a lower level was detected at the
315	non-breeding season than in the second breeding season after birth in Thoroughbred
316	male horse. The INSL3 secretions seemed independent of seasonal influence, at least
317	before puberty. Further studies are needed in stallion in order to clarify whether
318	breeding season has any influence on INSL3 secretion after puberty.
319	
320	Acknowledgements
321	We are thankful to Professor Dr. Erika. E. Büllesbach of Medical University of
322	South Carolina, Charleston, USA for kindly providing anti-bovine INSL3 mouse
323	monoclonal antibody (2–8F).
324	

325 References

326 [1] Ivell R, Balvers M, Domagalski R, Ungefroren H, Hunt N, Schulze W. Relaxin-like

- factor: a highly specific and constitutive new marker for Leydig cells in the human
- 328 testis. Mol Hum Reprod 1997;3: 459–66.
- 329 [2] Adham IM, Burkhardt E, Benahmed M, Engel W. Cloning of a cDNA for a novel
- insulin-like peptide of the testicular Leydig cells. J Biol Chem 1993;268:26668–72.
- [3] Klonisch T, Steger K, Kehlen A, Allen WR, Froehlich C, Kauffold J, et al. INSL3
- ligand receptor system in the equine testis. Biol Reprod 2003; 68:1975–1981.
- [4] Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet
- 334 **1999;22:295–9**.
- [5] Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF,
- et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol
- 337 Endocrinol 1999;13:681–91.
- 338 [6] Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine
- regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl
- 340 Acad Sci U S A 2004;101:7323–8.
- [7] Sagata D, Minagawa I, Kohriki H, Pitia AM, Uera N, Katakura Y, et al. The
- insulin-like factor 3 (INSL3)-receptor (RXFP2) network functions as a germ cell
- survival/anti-apoptotic factor in boar testes. Endocrinology 2015;156:1523–39.

345	hormone. Endocrine 1999;10:167–9.
346	[9] Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, Wittert G, et al.
347	Peripheral INSL3 concentrations decline with age in a large population of Australian
348	men. Int J Androl 2006;29:618–26.

[8] Büllesbach EE, Rhodes R, Rembiesa B, Schwabe C. The relaxin-like factor is a

- 349 [10] Ferlin A, Garolla A, Rigon F, Rasi CL, Lenzi A, Foresta C. Changes in serum
- 350 insulin like factor 3 during normal male puberty. J Clin Endocrinol Metab
- 351 2006;91:3426–31.

- 352 [11] Wikstrom AM, Bay K, Hero M, Andersson A-M, Dunkel L. Serum insulin-like
- factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J
- 354 Clin Endocrinol Metab 2006;91:4705–8.
- 355 [12] Johansen ML, Anand-Ivell R, Mouritsen A, Hagen CP, Mieritz MG, Søeborg T, et
- al. Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B and
- testosterone during pubertal transition in healthy boys: a longitudinal pilot study.
- 358 Reproduction 2014;147:529–35.
- 359 [13] Anand-Ivell R, Heng K, Hafen B, Setchell B, Ivell R. Dynamics of INSL3 peptide
- sepression in the rodent testis. Biol Reprod 2009;81:480–7.

361	[14] Kawate N, Ohnari A, Pathirana IN, Sakase M, Büllesbach EE, Takahashi M, et al.
362	Changes of plasma concentrations of insulin-like peptide 3 and testosterone from
363	birth to pubertal age in beef bulls. Theriogenology 2011;76:1632-8.
364	[15] Hannan MA, Fukami Y, Kawate N, Sakase M, Fukushima M, Pathirana IN, et al.
365	Plasma insulin-like peptide 3 concentrations are acutely regulated by luteinizing
366	hormone in pubertal Japanese Black beef bulls. Theriogenology 2015;84:1530-5.
367	[16] Pathirana IN, Yamasaki H, Kawate N, Tsuji M, Büllesbach EE, Takahashi M, et al.
368	Plasma insulin-like peptide 3 and testosterone concentrations in male dogs:
369	changes with age and effects of cryptorchidism. Theriogenology 2012;77:550-7.
370	[17] Hannan MA, Kawate N, Fukami Y, Pathirana IN, Büllesbach EE, Inaba T, et al.
371	Acute regulation of plasma insulin-like peptide 3 concentrations by luteinizing
372	hormone in male goats. Theriogenology 2016:86;749-56.
373	[18] Dhakal P, Tsunoda N, Nakai R, Kitaura T, Harada T, Ito M, et al. Annual changes in
374	day-length, temperature, and circulating reproductive hormones in Thoroughbred
375	stallions and geldings. J Equine Sci 2011;22:29–36.
376	[19] Dhakal P, Hirama A, Nambo Y, Harada T, Sato F, Nagaoka K, et al. Circulating
377	pituitary and gonadal hormones in spring-born Thoroughbred fillies and colts from
378	birth to puberty. J Reprod Dev 2012;58:522–30.

379	[20] Hombach-Klonisch S, Schön J, Kehlen A, Blottner S, Klonisch T. Seasonal
380	expression of INSL3 and Lgr8/Insl3 receptor transcripts indicates variable
381	differentiation of Leydig cells in the roe deer testis. Biol Reprod 2004;71:1079-87.
382	[21] Elis B. Puberty. In: McKinnon AO, Squires EL, Vaala WE, Varner DD (eds.),
383	Equine Reproduction. West Sussex: Wiley-Blackwell;2011:1689-95.
384	[22] Brown-Douglas CG, Firth EC, Parkinson TJ, Fennessy PF. Onset of puberty in
385	pasture-raised Thoroughbreds born in southern hemisphere spring and autumn.
386	Equine Vet J 2004;36:499–504.
387	[23] Skinner JD, Bowen J. Puberty in the Welsh stallion. J Reprod Fert
388	1968;16:133–135.
389	[24] Naden J, Amann RP, Squires EL. Testicular growth, hormone concentrations,
390	seminal characteristics and sexual behaviour in stallions. J Reprod Fert 1990;88:
391	167–76.
392	[25] Hannan MA, Kawate N, Fukami Y, Weerakoon WWPN, Büllesbach EE, Inaba T, et
393	al. Changes of plasma concentrations of insulin-like peptide 3 and testosterone, and
394	their association with scrotal circumference during pubertal development in male
395	goats. Theriogenology 2017;92:51-6.

396	[26] Büllesbach EE, Schwabe C. The primary structure and the disulfide links of the
397	bovine relaxin-like factor (RLF). Biochemistry 2002;41:274-81.
398	[27] Scarlet D, Wulf M, Kuhl J, Kohne M, Ille N, Conley AJ, et al. Anti-Müllerian
399	hormone profiling in prepubertal horses and its relationship with gonadal function.
400	Theriogenology 2018;117:72–7.
401	[28] Hodson DJ, Townsend J, Gregory SJ, Walters C, Tortonese DJ. Role of prolactin in
402	the gonadotroph responsiveness to gonadotrophin-releasing hormone during the
403	equine annual reproductive cycle. J Neuroendocrinol 2010;22:509–17.
404	[29] Tanaka Y, Taniyama H, Tsunoda N, Herath CB, Nakai R, Shinbo H, et al.
405	Localization and secretion of inhibins in the equine fetal ovaries. Biol Reprod
406	2003;68:328–35.
407	[30] Tanaka Y, Taniyama H, Tsunoda N, Shinbo H, Nagamine N, Nambo Y, et al. The
408	testis as a major source of circulating inhibins in the male equine fetus during the
409	second half of gestation. J Androl 2002;23:229–36.
410	
411	
412	
413	

Figure legends

416	Fig. 1. Insulin-like peptide 3 (INSL3) standard curve and a serially diluted stallion (3 y
417	old) and male foal (1 y old) plasma sample, as well as testicular tissue (1 y old)
418	homogenates. Data are shown as percentage of count bound at each concentration of
419	INSL3 standard per count bound at 0 ng/mL (B/B0). The plasma sample of stallion and
420	male foal was diluted at 1, 2, 4, 8 and 16 times. Testicular tissue homogenates were
421	diluted 2, 4, 8 and 16 times, which were equal to 2.5, 1.25, 0.62 and 0.31 mg testis
422	tissue, respectively.
423	
424	Fig. 2. Mean body weight (A), height, chest and cannon bone size (B), and mean
425	plasma concentrations of INSL3 and testosterone (C) from birth (0 mo) to 16 mo in
426	spring born Thoroughbred male horse. Data are expressed as mean \pm SEM (n =11). $\mathbf{P} < \mathbf{P}$
427	0.001 was overall age effects for body weight, height, chest and cannon bone size as
428	well as for INSL3 and testosterone.
429	
430	Fig. 3. Mean plasma concentrations of INSL3 (A) and testosterone (B) from birth until
431	pre-puberty in spring born Thoroughbred male horse (n = 11). Monthly blood samples 23

Highlights

- A time-resolved fluorescence immunoassay was developed to detect INSL3 concentrations in horse blood
- 2. A slow increase in plasma INSL3 concentrations was observed with the advancement of age
- 3. INSL3 secretions seemed independent of seasonal influence
- 4. Testosterone was suppressed in the first non-breeding season after birth

INSL3 (ng/mL)

Fig. 1

Fig. 3

Fig. 4