1	Epidemiological survey of hemoprotozoan parasites in cattle from low-country wet zone
2	in Sri Lanka
3	
4	Erandi Gunasekara ^{a,b} , Thillaiampalam Sivakumar ^a , Hemal Kothalawala ^b , Thuduwege Sanath
5	Abeysekera ^c , Amitha Sampath Weerasingha ^d , Singarayar Caniciyas Vimalakumar ^e , Ratnam
6	Kanagaratnam ^f , Palitha Rohana Yapa ^g , Atambekova Zhyldyz ^a , Ikuo Igarashi ^a , Seekkuge Susil
7	Priyantha Silva ^b , and Naoaki Yokoyama ^{a,*}
8	
9	^a National Research Center for Protozoan Diseases, Obihiro University of Agriculture and
10	Veterinary Medicine, Hokkaido, Japan
11	^b Veterinary Research Institute, Peradeniya, Sri Lanka
12	^c Government Veterinary Surgeon's Office, Akmeemana, Galle, Sri Lanka
13	^d Government Veterinary Surgeon's Office, Ambalangoda, Galle, Sri Lanka
14	^e Deputy Director's Office, Department of Animal Production and Health, Mannar, Sri Lanka
15	^f Government Veterinary Surgeon's Office, Kandavalai, Kilinochchi, Sri Lanka
16	^g Government Veterinary Surgeon's Office, Haputale, Badulla, Sri Lanka
17	
18	* Corresponding author at: N. Yokoyama, National Research Center for Protozoan
19	Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro,

- 20 Hokkaido 080-8555, Japan. Tel.: +81 155 49 5649; Fax: +81 155 49 5643
- 21 E-mail: yokoyama@obihiro.ac.jp

- 23 ABSTRACT

25	The diseases caused by hemoprotozoan parasites in cattle often result in economic
26	losses. In Sri Lanka, previous studies found that the up-country wet zone, which is located in
27	central Sri Lanka, was characterized by a high rate of T. orientalis and a low rate of T.
28	annulata compared with the dry zone. In this study, DNA samples were prepared from the
29	blood of 121 cattle in Galle, a coastal district located in low-country wet zone in Sri Lanka,
30	and were PCR-screened for B. bovis, B. bigemina, T. annulata, T. orientalis, and Tr. theileri.
31	All the parasite species, except B. bovis, were detected among the surveyed cattle. The
32	animals had a high rate of <i>T. orientalis</i> (100%) and a low rate of <i>T. annulata</i> (1.6%), as in the
33	up-country wet zone. Babesia bigemina and Tr. theileri were detected in 19.0% and 20.6% of
34	the animals, respectively, and their infection rates were higher in the animals reared in
35	extensive management systems (32.8% and 27.9%, respectively) than in those managed in
36	intensive/semi-intensive systems (5.0% and 13.3%, respectively). Genotypic analyses found
37	that the <i>T. orientalis mpsp</i> type 5 was predominant similar to up-country wet zone, and that <i>Tr</i> .
38	theileri consisted of seven catl genotypes, including two new genotypes (IL and IM) and four
39	previously detected genotypes (IA, IB, II, and IK). These findings suggest that the
40	hemoprotozoan infection profiles are largely conserved within the wet zone, despite
41	differences in the geography, cattle breeds, and management practices between the up-country

42 and low-country wet zones.

43

44 Keywords: Cattle, Epidemiology, Hemoprotozoa, Low-country wet zone, Sri Lanka

1. Introduction

48	Hemoprotozoan parasites, including species of Babesia, Theileria, and Trypanosoma
49	parasites, infect cattle and cause clinical diseases, leading to economic losses in the cattle
50	industry worldwide. Although various species of Babesia infect cattle, severe clinical
51	babesiosis is caused by <i>B. bovis</i> and <i>B. bigemina</i> in the tropics and subtropics and by <i>B.</i>
52	divergens in Europe [1, 2]. On the other hand, bovine theileriosis is caused by several species
53	of Theileria, including T. parva, T. annulata, and T. orientalis, which cause east coast fever in
54	Eastern, Central, and Southern Africa, tropical theileriosis in North Africa, Southern Europe,
55	and Asia, and oriental theileriosis worldwide, respectively [3-6]. Although T. parva and T.
56	annulata are more virulent than T. orientalis, the latter sometimes causes severe disease,
57	especially when newly introduced into an area [7, 8]. The clinical signs of bovine theileriosis
58	are similar to those of bovine babesiosis, except for the lack of hemoglobinuria and the
59	presence of enlarged lymph nodes [9]. The virulence of Trypanosoma parasites differs among
60	the species of the genus. Trypanosoma congolense, Tr. vivax, and Tr. brucei, which are only
61	endemic to Africa, are more virulent than Tr. evansi and Tr. theileri, which have wide
62	distributions. However, Tr. evansi often induces a chronic wasting disease in several host
63	animals, including cattle [10], and T. theileri can also cause clinical disease, especially when
64	it coinfects animals with other hemoparasites [11, 12].

65	Once they infect their hosts, these hemoprotozoan parasites persist in the hosts'
66	bodies for a long period [13-15]. Therefore, they can be acquired by their vectors and
67	complete their life cycles. The detection of these carrier animals is vital in estimating the risks
68	they pose, because the vectors can transmit the parasites from these animals to their next hosts,
69	where the infection may result in clinical disease.
70	Sri Lanka is a tropical island in the Indian Ocean. The cattle farming systems in this
71	country differ significantly among the climatic zones [16]. Throughout the dry zone, which is
72	characterized by low annual rainfall, cattle breeds and management practice are similar, and
73	predominantly local cattle breeds are managed with an extensive management system [17].
74	However, different cattle breeds and management systems are used in the wet zone [17]. In
75	the up-country wet zone, which covers the high-altitude regions in central Sri Lanka, pure
76	European breed cattle are reared with an intensive management system [17]. In contrast, in
77	the low-country wet zone, which is situated around the low-elevation coastal areas in western
78	and southern Sri Lanka, European and zebu hybrid cattle are managed with an intensive or
79	semi-intensive system in urban areas and with an extensive system in rural areas [17].
80	In our previous studies in Sri Lanka, we surveyed cattle populations representing the
81	dry zone (Jaffna, Polonnaruwa, and Amapara districts) and the up-country wet zone (Nuwara
82	Eliya district) for infection with species of Babesia, Theileria, and Trypanososma parasites
83	[15, 18, 19]. These studies indicated that the infection rates of some hemoprotozoan parasites,

84	particularly species of <i>Theileria</i> , differed between the dry and up-country wet zones [15, 18].
85	These differences were attributed to the variations in the species, densities, and activities of
86	the tick vectors in the climatic zones [15]. However, the cattle in the low-country wet zone
87	were not considered in these studies, although the geography, cattle breeds, and management
88	practices vary between the up-country and low-country wet zones [17]. Therefore, in the
89	present study, we surveyed the cattle in Galle, a coastal district located in the low-country wet
90	zone, for infection with bovine Babesia, Theileria, and Trypanosoma parasites.
91	

2. Materials and methods

96 2.1. Blood samples and DNA extraction

97	A total of 121 blood samples were collected from cattle in 16 farms in Akmeemana
98	(n = 60) and 22 farms in Rathgama $(n = 61)$ veterinary ranges in Galle in May 2017. Galle is a
99	coastal district of southern Sri Lanka, located in the low-country wet zone. The animals
100	sampled in both locations were cross-bred cattle. The cattle in Rathgama, a rural area, are
101	usually reared in an extensive system, whereas those in Akmeemana are maintained in
102	intensive or semi-intensive systems. In addition to cattle, seven buffaloes that were reared
103	with cattle (five from Akmeemana and two from Rathgama) were also sampled. From each
104	animal, approximately 2 ml of blood was collected from the jugular vein into a Vacutainer
105	tube containing EDTA (Nipro, Osaka, Japan). The DNA samples were prepared from 200 μ l
106	of the whole blood from each animal with a commercial DNA extraction kit (QIAamp DNA
107	Blood Mini Kit, Qiagen, Hilden, Germany), and then stored at -30 °C until analysis. All
108	animal procedures were approved by the Committee on the Ethics of Animal Experiments,
109	Obihiro University of Agriculture and Veterinary Medicine (Approval number 29-53). In
110	addition, approval for the blood sampling was obtained from the Department of Animal
111	Production and Health, Peradeniya, Sri Lanka.

113 2.2. PCR detection of Babesia, Theileria, and Trypanosoma parasites

114	All the DNA samples prepared from the cattle and buffaloes were screened for B .
115	bovis, B. bigemina, T. annulata, T. orientalis, and Tr. theileri, with previously described PCR
116	assays based on the rhoptry-associated protein 1 (rap-1) [20], apical membrane antigen 1
117	(ama-1) [21], merozoite-piroplasm surface antigen (tams-1) [22], major piroplasm surface
118	protein (mpsp) [23], and cathepsin L-like protein (catl) [24] genes, respectively. The reaction
119	mixtures and cycling conditions for the PCR assays have been described previously [18, 19].
120	
121	2.3. Type-specific PCR assays for T. orientalis
122	All the T. orientalis-positive DNA samples were screened with PCR assays specific
123	for mpsp genotypes 1, 3, 5, and 7, which are known to be endemic to cattle in Sri Lanka,
124	essentially as previously described [25].
125	
126	2.4. Cloning, sequencing, and phylogenetic analyses
127	The PCR amplicons from selected samples of each of the parasite species were
128	gel-extracted and then cloned into the PCR [™] 2.1 plasmid vector (TOPO, Invitrogen, Carlsbad,
129	CA). The inserts were sequenced with an ABI Prism 3100 Genetic Analyzer (Applied
130	Biosystems, Branchburg, NJ, USA). The B. bovis rap-1 and Tr. theileri catl gene sequences
131	obtained in the present study, together with those retrieved from GenBank, were used to

construct maximum likelihood and neighbor-joining phylogenetic trees, respectively, based
on the Tamura 3-parameter substitution model [26], using the MEGA version 6.0 software
[27].

135

136 2.5. Statistical analyses

The confidence intervals for infection rates were calculated based on the Wilson 137[28] OpenEpi 138using the software program score (http://www.openepi.com/Proportion/Proportion.htm). The P values for the differences 139 χ^2 between the infection calculated using "N-1" test 140 rates were an (https://www.medcalc.org/calc/comparison of proportions.php) [29, 30]. A P value < 0.05 141 was considered to indicate a statistically significant difference between the infection rates. 142

144

3. Results and discussion

147	The findings of the present study indicated that the cattle in the Galle district were
148	infected with B. bigemina, T. annulata, T. orientalis, and Tr. theileri, whereas B. bovis was
149	not detected among the cattle surveyed. The commonest parasite was T. orientalis, which was
150	detected in all 121 animals (100%), followed by Tr. theileri (20.6%), B. bigemina (19.0%),
151	and T. annulata (1.6%) (Table 1). Of 121 cattle, 46 (38.0%) had co-infections with two or
152	three parasite species. Among these co-infected animals, four had co-infections with T .
153	orientalis, B. bigemina, and Tr. theileri, while 21, 19, and two were co-infected with T.
154	orientalis and Tr. theileri, T. orientalis and B. bigemina, and T. orientalis and T. annulata,
155	respectively. These observations are in agreement with the results of previous studies, which
156	clearly showed that the cattle in the up-country wet zone had high T. orientalis and low T.
157	annulata infection rates, compared with the infection rates for both these parasite species in
158	cattle in the dry zone [15, 18]. Therefore, our present findings indicate that, despite the
159	differences in the cattle-farming systems and geography of up-country and low-country wet
160	zones, the rates of hemoprotozoan parasites displayed similar patterns in both regions,
161	suggesting that the major factor influencing the hemoprotozoan parasitic epidemiology in Sri
162	Lanka is climate, not geographic location.

The animals in the up-country wet zone are managed exclusively with an intensive

management system [16]. However, the present study provided an opportunity to compare the 164165infection rates between cattle managed with intensive/semi-intensive and extensive management systems in the wet zone. We found that the infection rates for *Tr. theileri* and *B*. 166bigemina were higher in Rathgama (27.9% and 32.8%, respectively) than in Akmeemana 167(13.3% and 5.0%, respectively) (Table 1). The risk of exposure to vectors is higher for cattle 168in Rathgama than for those in Akmeemana, because the animals in these two areas are 169maintained with extensive and intensive/semi-intensive management systems, respectively, 170171which explains why the Tr. theileri- and B. bigemina-positive rates were higher in Rathgama than in Akmeemana [31]. Thus, the prevalence of bovine hemoprotozoan parasites is 172173influenced by climate, as well as management practices, in Sri Lanka. However, no comparison of the T. annulata-positive rates in the two sampling locations was possible 174because only two animals in Rathgama were positive for this parasite. All the animals 175sampled at both locations were positive for T. orientalis. A previous study conducted in Sri 176Lanka found that the animals had high T. orientalis infection rates, despite its low 177transmission rate, because the infection displays pronounced persistence [15]. This could 178explain the high infection rates for T. orientalis in both sampling locations in the present 179study, despite the differences in the management practices there. 180

181 *Theileria orientalis* consists of 11 *mpsp* genotypes, including types 1–8, N1, N2, and 182 N3, and four of these (types 1, 3, 5, and 7) have been detected in Sri Lankan cattle [25].

183	Therefore, we screened all 121 cattle DNA samples, all of which were PCR-positive for T .
184	orientalis, using previously established PCR assays specific for mpsp genotypes 1, 3, 5, and 7.
185	The commonest genotype was type 5 (40.4%), followed by types 7 (30.5%), 1 (20.6%), and 3
186	(10.3%). These findings are also consistent with the previous observation that type 5 was
187	predominant in the up-country wet zone [25]. However, of the 121 cattle DNA samples tested,
188	only 52 were positive in at least one type-specific PCR assay, suggesting the presence of other
189	genotypes. Therefore, we cloned and sequenced the amplicons from the screening PCR assays
190	of 28 (18 from Akmeemana and 10 from Rathgama) of the 59 samples that were negative in
191	the type-specific PCR assays. The newly generated sequences represented either type 1 ($n =$
192	5; GenBank accession numbers LC438466–LC438470), type 5 ($n = 15$;
193	LC438471–LC438485), or type 7 (n = 7; LC438486–LC438492). Therefore, the low DNA
194	concentrations of individual genotypes in the DNA samples might explain the initial negative
195	results for the type-specific PCR assays of the <i>T. orientalis</i> -positive DNA samples.

Although buffalo farming is uncommon in the up-country wet zone, buffaloes are sometimes reared together with cattle in the low-country wet zone. In the present study, DNA samples from seven buffaloes that were reared together with cattle at the sampling sites were also screened for hemoprotozoan parasites with PCR. *Babesia bovis*, *T. orientalis*, and *Tr. theileri* infections were detected among these animals. In common with the cattle, all seven buffaloes were positive for *T. orientalis*, and one and three animals were infected with *B*.

202	bovis and	Tr. theileri,	respectively.	One of	the Tr.	<i>theileri</i> -positive	buffalo w	vas co-infected
-----	-----------	---------------	---------------	--------	---------	---------------------------	-----------	-----------------

with *T. orientalis* and *B. bovis*, and the remaining two were co-infected with *T. orientalis*.

204	To confirm the PCR findings, the PCR amplicons were cloned and sequenced. One
205	resultant sequence of <i>B. bovis rap-1</i> (buffalo; GenBank accession number LC438493), seven
206	sequences of <i>B. bigemina ama-1</i> (cattle; LC438494–LC438500), two sequences of <i>T.</i>
207	annulata tams-1 (cattle; LC438501 and LC438502), and eight sequences of Tr. theileri catl
208	(one from buffalo and seven from cattle; LC438503-LC438510) shared high identity scores
209	with those previously reported in Sri Lanka [18, 19, 32], confirming the PCR findings in this
210	study. In a previous study, B. bovis rap-1 variants were shown to differ between cattle and
211	buffaloes in Sri Lanka [32]. The buffalo-derived rap-1 sequence generated in the present
212	study (LC438493) clustered together with previously reported buffalo-derived sequences
213	from Sri Lanka (AB845432-AB845437) and those from GenBank in the phylogeny, whereas
214	the previously determined cattle-derived sequences from Sri Lanka (AB690859-AB690861)
215	occurred in a separate clade (Fig. 1). This finding confirms that the <i>B. bovis</i> populations differ
216	between the cattle and buffaloes in this country. Therefore, the detection of B. bovis in a
217	buffalo may not necessarily indicate that the cattle in Galle are infected with this parasite
218	species. However, further studies with large number of samples are essential to rule out B .
219	bovis infection in the cattle in Galle.

220

Trypanosoma theileri can be divided into several genotypes, based on the catl gene

221	sequences [33, 34]. In Sri Lanka, 12 catl genotypes have been reported, including IA, IB, and
222	ID-IK within major phylogenetic clade TthI and IIE and IIF within major phylogenetic clade
223	TthII [19]. In contrast, the <i>catl</i> sequences determined in the present study were classified into
224	seven genotypes, including two new genotypes (IL and IM) and four genotypes (IA, IB, II,
225	and IK) that were previously detected in Sri Lanka (Fig. 2). Investigations using large number
226	of samples from different geographic regions are required to confirm whether the newly
227	detected <i>catl</i> genotypes are unique to the low-country wet zone.
228	In conclusion, in this study, we analyzed infections of several hemoprotozoan
229	parasite species among the cattle population in the low-country wet zone of Sri Lanka, and
230	found that the infection profiles were similar to those observed in the up-country wet zone,
231	despite the variations in cattle breeds, management practices, and geography between these
232	two regions. Therefore, the major factor that influences the epidemiology of bovine
233	hemoprotozoan parasites in Sri Lanka is not geography, but the local climatic zones.
234	

237 Acknowledgments

239	We thank the owners of the cattle farms involved in this study. We also thank the staff
240	at the Veterinary Research Institute, Peradeniya, Sri Lanka, and Ms. Hiroko Yamamoto
241	(National Research Center for Protozoan Diseases, Obihiro University of Agriculture and
242	Veterinary Medicine, Japan) for their excellent technical assistance. This study was
243	financially supported by Grants-in-Aid for Scientific Research (JSPS KAKENHI numbers
244	26257417, 16H05033, 18K19257, and 18H02337), the Open Partnership Joint Projects of the
245	JSPS Bilateral Joint Research Projects of the Japan Society for Promotion of Science (JSPS),
246	and a grant from the AMED/JICA Science and Technology Research Partnership for
247	Sustainable Development (SATREPS) project (grant number 17jm0110006h0005).
248	

250 References

251	1.	R. Bocl	k, L.	Jackson,	A.	de	Vos,	W.	Jorgensen,	Babesiosis	of	cattle,	Parasitology	129
252		(2004)	S247	–S269.										

- A. Zintl, G. Mulcahy, H.E. Skerrett, S.M. Taylor, J.S. Gray, *Babesia divergens*, a bovine
 blood parasite of veterinary and zoonotic importance, Clin. Microbiol. Rev. 16 (2003)
 622–636.
- A.D. Irvin, Characterization of species and strains of *Theileria*, Adv. Parasitol. 26 (1987)
 145–97.
- 4. D.J. McKeever, Bovine immunity a driver for diversity in *Theileria* parasites?, Trends
 Parasitol. 25 (2009) 269–276.
- 5. T. Sivakumar, K. Hayashida, C. Sugimoto, N. Yokoyama, Evolution and genetic
 diversity of *Theileria*, Infect. Genet. Evol. 27 (2014) 250–263.
- 6. W. Weir, T. Karagenc, M. Baird, A. Tait, B. R. Shiels, Evolution and diversity of
 secretome genes in the apicomplexan parasite *Theileria annulata*, BMC Genomics 11
 (2010) 42.
- 265 7. M.M. Izzo, I. Poe, N. Horadagoda, A.J. De Vos, J.K. House, Haemolytic anaemia in
 266 cattle in NSW associated with *Theileria infections*, Aust. Vet. J. 88 (2010) 45–51.
- 267 8. A.M.J. McFadden, T.G. Rawdon, J. Meyer, J. Makin, C.M. Morley, R.R. Clough, K.
- 268 Tham, P. Mullner, D. Geysen, An outbreak of haemolytic anaemia associated with

269		infection of <i>Theileria orientalis</i> in naive cattle, N. Z. Vet. J. 59 (2011) 79-85.
270	9.	B.S. Gill, Y. Bhattacharyulu, D. Kaur, Symptoms and pathology of experimental bovine
271		tropical theileriosis (Theileria annulata infection), Ann Parasitol Hum Comp. 52 (1977)
272		597–608.
273	10.	R. Brun, H. Hecker, Z. Lun, Trypanosoma evansi and T. equiperdum: distribution,
274		biology, treatment and phylogenetic relationship (a review), Vet. Parasitol. 79 (1998)
275		95–107.
276	11.	J.M. Mansfield, Nonpathogenic trypanosomes of mammals, in: J.P. Kreier (Ed.), Parasitic
277		Protozoa, Academic Press, London, 1977, pp. 297–327.
278	12.	E.A. Wells, Subgenus Megatrypanum, in: W.H.R. Lumsden, D.A. Evans (Eds.), Biology
279		of the kinetoplastida, Academic Press, London, 1976, pp. 257–275.
280	13.	D.R. Allred, Babesiosis: persistence in the face of adversity, Trends Parasitol. 19 (2003)
281		51–55.
282	14.	M. Desquesnes, P. Holzmuller, D.H. Lai, A. Dargantes, Z.R. Lun, S. Jittaplapong,
283		Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution,
284		taxonomy, morphology, hosts, and pathogenic effects, Biomed. Res. Int. 2013 (2013)
285		194176.
286	15.	T. Sivakumar, H. Kothalawala, G. Weerasooriya, S.S.P. Silva, S. Puvanendiran, T.

Munkhjargal, I. Igarashi, N. Yokoyama, A longitudinal study of Babesia and Theileria 287

288		infections in cattle in Sri Lanka, Vet. Parasitol. Reg. Stud. Rep. 6 (2016) 20-27.
289	16.	H. Abeygunawardena, D. Rathnayaka, W.M.A.P. Jayathilaka, Characteristics of cattle
290		farming systems in Sri Lanka, J. Natn. Sci. Found. 25 (1997) 25-38.
291	17.	M.N.M. Ibrahim, S.J. Staal, S.L.A. Daniel, W. Thorpe, Appraisal of the Sri Lanka dairy
292		sector. Colombo, Sri Lanka: Ministry Livestock Development and Estate Infrastructure
293		(1999).
294	18.	T. Sivakumar, H. Kothalawala, A.S. Abeyratne, S.C. Vimalakumar, A.S. Meewawe, D.T.
295		Hadirampela, T. Puvirajan, S. Sukumar, K. Kuleswarakumar, A.D.N. Chandrasiri, I.
296		Igarashi, N. Yokoyama, A PCR-based survey of selected Babesia and Theileria parasites
297		in cattle in Sri Lanka, Vet. Parasitol. 190 (2012) 263–267.
298	19.	N. Yokoyama, T. Sivakumar, S. Fukushi, M. Tattiyapong, B. Tuvshintulga, H.
299		Kothalawala, S.S.P. Silva, I. Igarashi, N. Inoue, Genetic diversity in Trypanosoma
300		theileri from Sri Lankan cattle and water buffaloes, Vet. Parasitol. 207 (2015) 335–341.
301	20.	J.V. Figueroa, L.P. Chieves, G.S. Johnson, G.M. Buening, Multiplex polymerase chain
302		reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma
303		marginale DNA in bovine blood, Vet. Parasitol. 50 (1993) 69-81.
304	21.	T. Sivakumar, K. Altangerel, B. Battsetseg, B. Battur, M. AbouLaila, T. Munkhjargal, T.
305		Yoshinari, N. Yokoyama, I. Igarashi, Genetic detection of Babesia bigemina from
306		Mongolian cattle using apical membrane antigen-1 gene based PCR technique, Vet

307 Parasitol 187 (2012) 17–22.

308	22. E. Kirvar, T. Ilhan, F. Katzer, P. Hooshmand-Rad, E. Zweygarth, C. Gerstenberg, P
309	Phipps, C.G.D. Brown, 2000. Detection of <i>Theileria annulata</i> in cattle and vector ticks by
310	PCR using the Tams1 gene sequences, Parasitology 120 (2000) 245-254.
311	23. N. Ota, D. Mizuno, N. Kuboki, I. Igarashi, Y. Nakamura, H. Yamashina, T. Hanzaike, K
312	Fujii, S. Onoe, H. Hata, S. Kondo, S. Matsui, M. Koga, K. Matsumoto, H. Inokuma, N
313	Yokoyama, Epidemiological survey of Theileria orientalis infection in grazing cattle in
314	the eastern part of Hokkaido, Japan, J. Vet. Med. Sci. 71 (2009) 937-944.
315	24. A.C. Rodrigues, H.A. Garcia, P.A. Ortiz, A.P. Cortez, F. Martinkovic, F. Paiva, J.S.
316	Batista, A.H. Minervino, M. Campaner, E.M. Pral, S.C. Alfieri, M.M. Teixeira, Cysteine
317	proteases of Trypanosoma (Megatrypanum) theileri: cathepsin L-like gene sequences a
318	targets for phylogenetic analysis, genotyping diagnosis, Parasitol. Int. 59 (2010) 318-325
319	25. T. Sivakumar, T. Yoshinari, I. Igarashi, H. Kothalawala, A.S. Abeyratne, S.C.
320	Vimalakumar, A.S. Meewawe, K. Kuleswarakumar, A.D.N. Chandrasiri, N. Yokoyama
321	Genetic diversity within Theileria orientalis parasites detected in Sri Lankan cattle, Tick
322	Tick Borne. Dis. 4 (2013) 235–241.
323	26. K. Tamura, 1992. Estimation of the number of nucleotide substitutions when there are
324	strong transition-transversion and G+Ccontent biases. Mol. Biol. Evol. 9, 678–687.

325 27. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular

326	evolutionary genetics analysis version 6.0, Mol. Biol. Evol. 30 (1992) 2725-2729.
327	28. E.B. Wilson, Probable inference, the law of succession, and statistical inference, J. Am
328	Stat. Assoc. 22 (1927) 209–212.
329	29. I. Campbell, Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample
330	recommendations, Stat. Med. 26 (2007) 3661-3675.
331	30. J.T. Richardson, The analysis of 2 \times 2 contingency tables—yet again, Stat. Med. 30
332	(2011) 890.
333	31. A. Rehman, A.M. Nijhof, C. Sauter-Louis, B. Schauer, C. Staubach, F.J. Conraths,
334	Distribution of ticks infesting ruminants and risk factors associated with high tick
335	prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan
336	Parasit. Vectors 10 (2017) 190.
337	32. T. Sivakumar, M. Tattiyapong, S. Fukushi, K. Hayashida, H. Kothalawala, S.S. Silva
338	S.C. Vimalakumar, R. Kanagaratnam, A.S. Meewewa, K. Suthaharan, T. Puvirajan, W.K
339	de Silva, I. Igarashi, N. Yokoyama, Genetic characterization of Babesia and Theileria
340	parasites in water buffaloes in Sri Lanka, Vet. Parasitol. 200 (2014) 24-30.
341	33. H.A. Garcia, K. Kamyingkird, A.C. Rodrigues, S. Jittapalapong, M.M. Teixeira, M
342	Desquesnes, High genetic diversity in field isolates of Trypanosoma theileri assessed by
343	analysis of cathepsin Llike sequences disclosed multiple and new genotypes infecting
344	cattle in Thailand, Vet. Parasitol. 180 (2011) 363-367.

345	34. H.A. Garcia, A.C. Rodrigues, F. Martinkovic, A.H. Minervino, M. Campaner, V.L.
346	Nunes, F. Paiva, P.B. Hamilton, M.M. Teixeira, Multilocus phylogeographical analysis of
347	Trypanosoma (Megatrypanum) genotypes from sympatric cattle and water buffalo
348	populations supports evolutionary host constraint and close phylogenetic relationships
349	with genotypes found in other ruminants, Int. J. Parasitol. 41 (2011) 1385–1396.
350	
351	

353 Figure legends

354

Fig. 1. Phylogeny of Babesia bovis rap-1 gene. A buffalo-derived B. bovis rap-1 sequence 355(indicated in boldface type) determined in this study and those retrieved from the GenBank 356database were used to construct a maximum likelihood phylogenetic tree. Note that the 357buffalo-derived sequence from Galle occurs in clade 1, together with the buffalo-derived 358 sequences previously determined in Sri Lanka, and that the previously determined 359360 cattle-derived sequences from Sri Lanka occur in clade 2. 361 Fig. 2. Phylogeny of Trypanosoma theileri catl gene. The catl sequences from seven cattle 362and one buffalo from Galle (indicated in boldface type) and those previously reported in Sri 363

Lanka and other countries were used to construct a neighbor-joining phylogenetic tree. Note that the newly determined sequences occur in six clades within the major TthI clade, including IA, IB, II, IK, IL, and IM, and that genotypes IL and IM are reported for the first time in Sri Lanka.

Fig. 1

Cattle, Philippines (JX860298) Buffalo, Sri Lanka (AB930146) Cattle, Vietnam (AB742559) Cattle, Vietnam (AB742559) Cattle, Sri Lanka (AB930153) Cattle, Sri Lanka (AB930153) Cattle, Sri Lanka (AB930153) Cattle, Sri Lanka (AB930153) Cattle, Vietnam (LC125451) Cattle, Vietnam (LC125447) Cattle, Vietnam (LC125447) Cattle, Brazil (GU299405) Cattle, Brazil (GU299405) Cattle, Brazil (GU299405) Cattle, Sri Lanka (LC438508) Cattle, Galle, Sri Lanka (LC438504) Cattle, Sri Lanka (AB930163) Buffalo, Sri Lanka (AB930163) Cattle, Sri Lanka (AB930164) Buffalo, Sri Lanka (AB930164) Cattle, Sri Lanka (AB930163) Cattle, Sri Lanka (AB930164) Buffalo, Sri Lanka (AB930164) Cattle, Sri Lanka (AB930151) Cattle, Sri Lanka (AB930151) Cattle, Sri Lanka (AB930151) Cattle, Sri Lanka (AB930151) Buffalo, Sri Lanka (AB930161) Buffalo, Sri Lanka (AB930161) Buffalo, Sri Lanka (LC438505) Cattle, Galle, Sri Lanka (LC438505) Buffalo, Sri Lanka (HQ543057) Buffalo, Sri Lanka (LC438506) Buffalo, Sri Lanka (LC438506) Buff	TthI
Blue duiker, Cameroon (HQ6647,43) IID Blue duiker, Cameroon (HQ6647,43) IIC Fallow deer, Germany (GU299415) IIC Cattle, Vietnam (LC125452) IIG Cattle, Sri Lanka (AB930158) IIE Tabanid fly, Brazil (GU299407) Cattle, Brazil (GU299354) Cattle, Brazil (GU299354) Gattle, Brazil (GU299352) IIA Cattle, Brazil (GU299367) Cattle, Brazil (GU299367) Cattle, Sri Lanka (AB930159) Buffalo, Vietnam (LC125455) Cattle, Vietnam (LC125455) Gattle, Vietnam (AB742558) IIF Cattle, Vietnam (AB742558) LIF Cattle, Vietnam (AB742578) Cattle, Vietnam (AB742578) Cattle, Vietnam (AB742578)	TthII

Fig. 2

Parasite	Akmeemana ((n=60)	Rathgama (n=61)	P value	Total		
	No. positive	% (CI)	No. positive	% (CI)	_	No. positive	% (CI)	
B. bigemina	3	5.0 (1.6-12.7)	20	32.8 (22.3-45.2)	0.0001	23	19.0 (13.0-26.9)	
T. annulata	0	0 (0.0-5.6)	2	3.3 (1.7-13.5)	0.1576	2	1.6 (0.45-5.82)	
T. orientalis	60	100 (94.4-100)	61	100 (94.1-100)		121	100 (96.9-100)	
T. theileri	11	13.3 (9.7-27.8)	17	27.9 (18.2-40.2)	0.0483	25	20.6 (14.4-28.7)	
$CI_050/confi$	lance interval							

Table 1. PCR detection of *Babesia*, *Theileria*, and *Trypanosoma* in 121 cattle from Galle in Sri Lanka

CI, 95% confidence interval