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Abstract 29 

 30 

Bovine babesiosis is a serious threat to the cattle industry. We prepared blood DNA 31 

samples from 13 cattle with clinical babesiosis from the Badulla (n=8), Jaffna (n=3), and 32 

Kilinochchi (n=2) districts in Sri Lanka. These DNA samples tested positive in PCR assays 33 

specific for Babesia bovis (n=9), B. bigemina (n=9), and B. ovata (n=1). Twelve cattle were 34 

positive for B. bovis and/or B. bigemina. One cow was negative for the tested Babesia species, 35 

but positive for Babesia on microscopic examination; the phylogenetic positions of 18S rRNA 36 

and cytochrome oxidase subunit III gene sequences suggested that the cow was infected with 37 

Babesia sp. Mymensingh, which was recently reported in a healthy cow in Bangladesh. We 38 

then developed a novel Babesia sp. Mymensingh-specific PCR assay, and obtained positive 39 

results for one other sample. Analysis of gene sequences from the cow with positive B. 40 

ovata-specific PCR results demonstrated that the animal was not infected with B. ovata, but 41 

with Babesia sp. Hue-1, which was recently reported in asymptomatic cattle in Vietnam. The 42 

virulence of Babesia sp. Hue-1 is unclear, as the cow was co-infected with B. bovis and B. 43 

bigemina. However, Babesia sp. Mymensingh probably causes severe clinical babesiosis, as it 44 

was the sole Babesia species detected in a clinical case. The present study revealed the 45 

presence of two bovine Babesia species not previously reported in Sri Lanka, plus the first 46 

case of severe bovine babesiosis caused by a Babesia species other than B. bovis, B. bigemina, 47 
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and B. divergens. 48 

 49 
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INTRODUCTION 52 

 53 

Clinical bovine babesiosis is mainly caused by Babesia bovis and B. bigemina in the 54 

tropics and subtropics (1), while B. divergens causes clinical bovine babesiosis in Europe (2). 55 

Babesia sporozoites injected by infected tick vectors directly invade the host’s red blood cells 56 

(RBCs) and develop into merozoites (3, 4). Merozoites egress from the infected RBCs, 57 

causing massive intravascular hemolysis that leads to clinical signs such as fever, anemia, 58 

hemoglobinuria, and jaundice (1). Additionally, bovine babesiosis caused by B. bovis is 59 

characterized by neurological and respiratory syndromes because of the cytoadherence of 60 

infected RBCs in capillary beds of vital organs such as the brain and lungs (1, 5). Early 61 

treatment with anti-babesial agents is essential for recovery, and no or delayed treatment may 62 

result in severe babesiosis that causes death (6, 7). Thus, bovine babesiosis results in huge 63 

economic losses to the cattle industry because of treatment and tick control costs, production 64 

losses, and animal mortality (8). Moreover, babesiosis disrupts international cattle trade, as 65 

the OIE regulations stipulate rules for exporting cattle from countries in which bovine 66 

babesiosis is endemic (9). 67 

Disease development in infected cattle is affected by multiple factors, including age, 68 

management practices, immunity, and breed (1). Young animals less than 9 months old are 69 

usually resistant to clinical babesiosis, while adults are not (10, 11). The immunity acquired 70 
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by young animals protects them from developing clinical babesiosis when they become 71 

infected as adults. In addition, Bos indicus are relatively resistant to clinical babesiosis 72 

compared with Bos taurus (12). 73 

Cattle in several endemic countries are immunized against B. bovis and B. bigemina 74 

via live-attenuated vaccines (13). The attenuation of B. bovis and B. bigemina is performed by 75 

serially passaging the organisms in splenectomized calves (1). However, the global use of live 76 

vaccines is limited due to the expense and time required to produce the vaccines, vaccine 77 

breakthrough due to strain variations, and risk of contamination with other bovine blood 78 

pathogens (14, 15). 79 

In addition to B. bovis, B. bigemina, and B. divergens, several other species of 80 

Babesia are known to infect cattle, such as B. ovata (16), B. occultans (17), B. major (18), and 81 

several unclassified species, including Babesia sp. Oshima (19), Babesia sp. Kashi (20), 82 

Babesia sp. Hue-1 (21), Babesia sp. Mymensingh (22), and Babesia species isolated in South 83 

Africa (23, 24). Most of these Babesia species have low pathogenicity; however, the virulence 84 

of the remaining species is unknown, as they have only been reported in apparently healthy 85 

animals (21, 22). To determine the virulence of the Babesia species with unknown 86 

pathogenicity, there is a need for experimental infections or investigations to identify the 87 

Babesia species present in cattle with clinical babesiosis. 88 

Clinical babesiosis is common among cattle in the tropical country of Sri Lanka. A 89 
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few decades ago, clinical cases of bovine babesiosis were concentrated mainly in the wet zone 90 

of Sri Lanka, whereas the disease was uncommon in the dry zone (25). This discrepancy was 91 

due to the variation in cattle breeds and management practices between the wet and dry zones 92 

(12, 26); most cattle in the wet zone were temperate breeds (Bos taurus) that were managed 93 

intensively, while the dry zone contained mostly extensively managed local cattle (Bos 94 

indicus) (27). However, farmers in the dry zone have recently started to maintain temperate 95 

breeds and their crosses and adopt an intensive management system, leading to an increased 96 

incidence of clinical babesiosis. Hence, clinical babesiosis in cattle is now common in both 97 

the wet and dry zones (28). Although live vaccines against both B. bovis and B. bigemina are 98 

available in Sri Lanka, only a few hundred claves are vaccinated annually (29, 30). 99 

A recent series of molecular epidemiological surveys were conducted in Sri Lanka to 100 

detect and genetically characterize hemoprotozoan parasites in apparently healthy cattle 101 

(31–35). In contrast, genetic techniques have never been used to investigate clinical cases of 102 

bovine babesiosis in Sri Lanka. Therefore, in the present study, we employed molecular tools 103 

to identify the Babesia species present in cattle with clinical babesiosis in Sri Lanka. 104 

 105 

106 
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MATERIALS AND METHODS 107 

 108 

Animals and blood samples. Between June and December 2017, approximately 2 109 

ml samples of whole blood were obtained from the jugular veins of 13 cattle with high fever 110 

and hemoglobinuria in the Badulla (n=8), Jaffna (n=3), and Kilinochchi (n=2) districts of Sri 111 

Lanka (Fig. S1) using Vacutainer tubes containing EDTA (NIPRO, Osaka, Japan) (Table 1). 112 

The Jaffna and Kilinochchi districts are located in the dry zone, while the sampling locations 113 

within the Badulla district were located in the wet zone. The affected animals were either 114 

Friesians, Jerseys, or Jersey and Sahiwal crosses, and their ages ranged from 3 to 6 years. 115 

None of the affected animals were vaccinated against B. bovis and/or B. bigemina. 116 

Immediately after sampling, the animals were treated with diminazene aceturate and 117 

long-acting oxytetracycline. Blood samples were analyzed in a commercial laboratory to 118 

determine the hemoglobin concentration (HGB), hematocrit (HCT), and RBC count. DNA 119 

samples were extracted from blood samples using a commercial kit (QIAamp DNA Blood 120 

Mini Kit; Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions, and 121 

stored at −30ºC until use. All animal procedures were approved by the Animal Care and Use 122 

Committee of Obihiro University of Agriculture and Veterinary Medicine, Japan (approval 123 

number: 29-53). 124 

 125 
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Diagnostic PCR assays. A previously described PCR assay based on the 126 

rhoptry-associated protein 1 gene (36) was used to detect B. bovis, while apical membrane 127 

antigen 1 (ama-1) gene-based PCR assays were employed to detect B. bigemina (37) and B. 128 

ovata (38). All parasite species were detected by single-step PCR, although B. bovis- and B. 129 

bigemina-specific PCR assays were originally described as nested PCR assays. The list of 130 

primer sequences used in the present study is provided in Table S1. 131 

 132 

Cloning and sequencing. An amplicon from the ama-1 PCR assay targeting B. 133 

ovata was cloned and sequenced as previously described (21), as this Babesia species has not 134 

been reported in Sri Lanka. In addition, the 18S rRNA and cytochrome oxidase subunit III 135 

(cox3) gene sequences of babesial origin from a DNA sample that was PCR-positive for B. 136 

ovata and from a sample that was PCR-negative for all three Babesia species tested in the 137 

present study were amplified by PCR using sets of common primers. Briefly, a 25-µl reaction 138 

mix containing 1 µl DNA, 1× PCR buffer (Toyobo, Osaka, Japan), 400 µM of each dNTP 139 

(Toyobo), 0.4 µM of each forward primer (18S rRNA, 140 

5′-CATTACAACAGTTATAGTTTCTTTGG-3′ (21); cox3, 141 

5′-TCAACAAAATGCCAATATGTTCCAA-3′) and reverse primer (18S rRNA, 142 

5′-CTAGGCATTCCTCGTTCATGATTTAG-3′; cox3, 143 

5′-TACAAAGTGCATCTTTGGGAGAAG-3′), 0.5 µl of 1 U/µl KOD FX Neo DNA 144 
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polymerase (Toyobo), and 4 µl of distilled water was subjected to an initial pre-denaturation 145 

step at 94ºC for 2 min and then to 35 cycles of denaturation at 94ºC for 10 s, annealing at 146 

58ºC (18S rRNA) or 64ºC (cox3) for 30 s, and extension at 68ºC for 90 s. The PCR amplicons 147 

were cloned into a PCR 2.1 plasmid vector (TOPO, Invitrogen, Carlsbad, CA), and then 148 

sequenced as previously described (37). 149 

 150 

Development of a PCR assay specific to Babesia sp. Mymensingh. One animal 151 

that produced negative results in the PCR assays for B. bovis, B. bigemina, and B. ovata was 152 

determined to be infected with Babesia sp. Mymensingh (22) based on an 18S rRNA sequence. 153 

A pair of common forward (5′-TGGACCAGGTACATGATCAAGT-3′) and reverse 154 

(5′-AATCATCGTGCTGACGACCCTTC-3′) PCR primers (37) was used to amplify the 155 

1372-bp ama-1 gene fragment from Babesia sp. Mymensingh, as described for 18S rRNA or 156 

cox3 amplification, except that the annealing temperature was changed to 62ºC. The amplicon 157 

was cloned and sequenced. The newly generated ama-1 gene sequence and those already 158 

available in the NCBI GenBank database were subjected to multiple alignment, and a set of 159 

forward (5′-TGGCGCCGACTTCCTGGAGCCCATCTCCAA-3′) and reverse 160 

(5′-AGCTGGGGCCCTCCTTCGATGAACCGTCGG-3′) primers specific to Babesia sp. 161 

Mymensingh was designed. A 10-µl PCR mixture containing 1 µl DNA, 1× PCR buffer 162 

(Applied Biosystems, Branchburg, NJ), 200 µM of each dNTP (Applied Biosystems), 0.5 µM 163 
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of each forward and reverse primer, 0.1 µl of 5 U/µl AmpliTaq Gold DNA polymerase 164 

(Applied Biosystems), and 5.9 µl of distilled water was subjected to initial enzyme activation 165 

at 95ºC for 5 min, followed by 40 cycles of denaturing at 95ºC for 30 s, annealing at 64ºC for 166 

30 s, and extension at 72ºC for 30 s. After a final elongation step at 72ºC for 7 min, the PCR 167 

products were resolved by gel electrophoresis, and then visualized under UV illumination. 168 

Detection of an approximately 371-bp band was considered positive. The specificity of the 169 

PCR assay was evaluated using a panel of DNA samples derived from several bovine blood 170 

pathogens and uninfected cattle (38, 39). The Babesia sp. Mymensingh-specific PCR assay 171 

was then used to screen all 13 cattle DNA samples analyzed in the present study. 172 

 173 

Sequencing and phylogenetic analyses. The identity scores among gene sequences 174 

were determined by the EMBOSS NEEDLE online program 175 

(http://www.bioinformatics.nl/cgi-bin/emboss/needle). The 18S rRNA, cox3, and ama-1 gene 176 

sequences determined in the present study and those retrieved from GenBank were aligned 177 

using the MAFFT software program (40). MEGA software (41) was then used to construct 178 

three separate maximum likelihood phylogenetic trees based on Tamura-Nei (18S rRNA and 179 

cox3) (42) or General Time Reversible (ama-1) (43) substitution models. 180 

 181 

Accession numbers. The gene sequences determined in the present study were 182 
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registered with GenBank under the accession numbers LC385886–LC385894. 183 

184 
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RESULTS 185 

 186 

A total of 13 cattle with high fever and hemoglobinuria were sampled in three 187 

districts: Badulla, Kilinochchi, and Jaffna. Clinical examination determined that five of the 188 

eight animals sampled in the Badulla district were anemic, whereas all five of the animals 189 

sampled in the Kilinochchi and Jaffna districts were anemic (Table 1). Five of the affected 190 

animals also showed nervous system abnormalities such as incoordination. The anemic 191 

animals each had a HGB concentration, HCT, and RBC count below the lower limits of the 192 

reference ranges for these parameters in healthy cattle (8 g/dl, 24%, and 5 × 106/µl, 193 

respectively) (44). Two animals in the Kilinochchi district (C6 and C7) and one animal in the 194 

Badulla district (S) with very low HGB concentrations, HCT, and RBC counts died despite 195 

treatment with diminazene aceturate and oxytetracycline, while the remaining animals 196 

recovered following treatment. PCR assays revealed that 12 of the 13 DNA samples were 197 

positive for B. bovis and/or B. bigemina (Table 2). B. bovis and B. bigemina were each 198 

detected in nine animals, while six animals were positive for both Babesia species. The result 199 

of the B. ovata-specific ama-1 PCR assay was positive in only one animal (C8 in the Jaffna 200 

district). 201 

Cow R from the Badulla district was PCR-negative for all three Babesia species 202 

tested, but microscopic examination revealed Babesia piroplasms in a thin blood smear 203 
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prepared from this animal (Fig. 1). The length and width of the paired pyriforms were 204 

2.25–3.04 µm and 1.58–2.20 µm, respectively, whereas the ring forms were 1.52–1.97 µm in 205 

diameter. The paired pyriforms formed an obtuse angle that reached 180º in some cases. 206 

Single forms were often elongated or irregularly shaped. 18S rRNA is the most commonly 207 

used molecular marker for species identification of eukaryotes, including Babesia (18, 20, 208 

45–47). Therefore, in an attempt to identify the species of Babesia detected in cow R, a 209 

1385-bp 18S rRNA sequence was isolated from cow R (GenBank accession number 210 

LC385886) and compared with the Babesia sequences in the GenBank database. The 211 

analyzed gene sequence shared 99.6% identity values with the Babesia sp. Mymensingh 212 

sequence (GenBank accession number MF576177) that was recently reported from an 213 

asymptomatic cow in Bangladesh (22), followed by 97.8% identity with a B. bigemina 214 

sequence (GenBank accession number FJ426361) (48); this confirmed that the Babesia 215 

species detected in cow R was Babesia sp. Mymensingh. In the 18S rRNA phylogeny based 216 

on a 1310-bp alignment with no gaps, the Babesia sp. Mymensingh sequence determined in 217 

the present study clustered together with that previously reported in Bangladesh (22) and 218 

formed a sister clade to B. bigemina (Fig. 2). 219 

As B. ovata has not been previously reported in Sri Lanka, the amplicon of the PCR 220 

assay targeting B. ovata from cow C8 was cloned and sequenced. The resultant ama-1 gene 221 

fragment (GenBank accession number LC385892) shared only 93.3% identity with the B. 222 
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ovata sequence (GenBank accession number AB634843) (37), while the sequence shared 223 

97.4%–98.4% identity scores with ama-1 sequences (GenBank accession numbers 224 

LC125412–LC125415) from recently reported Babesia sp. Hue-1 in Vietnam (21). The 18S 225 

rRNA amplified from cow C8 included B. bigemina sequences (data not shown), as well as a 226 

1381-bp sequence (GenBank accession number LC385887) that shared a high identity score 227 

(99.0%) with a Babesia sp. Hue 1 sequence (GenBank accession number LC125456) (21). 228 

These findings suggest that cow C8 was infected with Babesia sp. Hue-1, as the identity 229 

scores shared between the 18S rRNA and ama-1 gene sequences from cow C8 and Babesia sp. 230 

Hue-1 are comparable to the identity scores shared among these sequences from different 231 

isolates of other bovine Babesia species (49–52). Phylogenetically, Babesia sp. Hue-1 from 232 

cow C8 formed a sister clade to the common ancestor of the B. bigemina clade and the 233 

Babesia sp. Mymensingh clade (Fig. 2). Moreover, in a phylogeny based on a short alignment 234 

(635 bp) of 18S rRNA, Babesia sp. Hue-1 sequences from cow C8 in Sri Lanka and that 235 

reported in Vietnam occurred together and formed a sister clade to the clade formed by 236 

sequences from Babesia species reported in China (GenBank accession number AY603403) 237 

(18) and Korea (GenBank accession number AY081192) (53) (Fig. S2). 238 

In addition to 18S rRNA, phylogenies based on mitochondrial genes are widely used 239 

for the identification of species, including Babesia species (54–57). Therefore, to further 240 

investigate the phylogenetic positions of Babesia sp. Mymensingh and Babesia sp. Hue-1, 241 
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cox3 gene sequences (556 bp) were amplified from DNA samples that were positive for these 242 

Babesia species (from cows R and C8, respectively). The cox3 sequence from Babesia sp. 243 

Mymensingh (GenBank accession number LC385889) shared 93.5% identity with B. 244 

bigemina (GenBank accession number LK054939) (58) and B. ovata (GenBank accession 245 

number LC146482) (52) sequences, and formed a phylogenetic sister clade to B. bigemina 246 

(Fig. 3). Only the cox3 sequence from Babesia sp. Hue-1 (GenBank accession number 247 

LC385890) was isolated from cow C8. The cox3 sequence from Babesia sp. Hue-1 shared 248 

94.9%, 94.1%, and 93.5% identity with sequences from Babesia sp. (Wenchuan, China) 249 

(GenBank accession number JN859545) (56), B. ovata (GenBank accession number 250 

LC146482), and B. bigemina (GenBank accession number LK054939), respectively, and 251 

formed a sister clade to the clade formed by Babesia species reported in China (Wenchuan) 252 

and Korea (Fig. 3). 253 

The ama-1 gene is an attractive target for the development of species-specific PCR 254 

assays for detecting Babesia parasites, as the gene is conserved within a given Babesia 255 

species, but is diverse between species (37, 59–61). Therefore, a 1372-bp ama-1 gene 256 

fragment (GenBank accession number LC385893) was isolated from Babesia sp. 257 

Mymensingh to develop a specific PCR assay to detect this Babesia species in the DNA 258 

samples. The gene sequence shared 83.9% and 83.3% identity with B. bigemina (GenBank 259 

accession number AB481200) (62) and B. ovata (GenBank accession number AB634843) 260 
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(37) sequences, respectively. The PCR assay developed based on the ama-1 gene amplified 261 

only Babesia sp. Mymensingh, while no amplicons were observed in DNA samples from 262 

several other bovine blood pathogens and cattle DNA, confirming its specificity (Fig. 4A). 263 

When this PCR assay was employed to screen all 13 cattle DNA samples, Babesia sp. 264 

Mymensingh was detected not only in cow R, but also in cow V (Fig. 4B). PCR amplicons 265 

from cows R and V were cloned and sequenced. The 371-bp ama-1 sequences from cows R 266 

and V (GenBank accession number LC385894) were identical to each other and to the long 267 

ama-1 gene fragment initially isolated from cow R (GenBank accession number LC385893). 268 

Phylogenetic trees based on the ama-1 gene are used to investigate the evolutionary 269 

relationships of apicomplexan parasites, such as species of Plasmodium and Babesia (61, 270 

63–65). In a phylogenetic construction used to investigate the positions of Babesia sp. 271 

Mymensingh and Babesia sp. Hue-1, the ama-1 sequences of Babesia sp. Mymensingh 272 

occurred distant to the sequences of B. bigemina (Fig. 5). In addition, the Babesia sp. Hue-1 273 

ama-1 sequence generated in the present study clustered with those previously reported in 274 

Vietnam and formed a sister clade to B. ovata. To further confirm that cow V was infected 275 

with Babesia sp. Mymensingh, 18S rRNA and cox3 sequences were amplified, cloned, and 276 

sequenced. The 18S rRNA sequence (GenBank accession number LC385888) from cow V 277 

shared 99.6% identity with the Babesia sp. Mymensingh sequence from cow R (GenBank 278 

accession number LC385886), whereas the cox3 sequence from cow V (GenBank accession 279 
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number LC385891) was identical to that from cow R (GenBank accession number 280 

LC385889), confirming that cow V was also infected with Babesia sp. Mymensingh. 281 

282 
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DISCUSSION 283 

 284 

Various species of Babesia infect a wide range of host species worldwide, including 285 

wild and domestic animals, humans, birds, and reptiles (66). The Babesia species that infect 286 

cattle are of great economic importance, as they cause severe clinical diseases leading to 287 

significant production losses (1). Among them, B. bovis, B. bigemina, and B. divergens are 288 

highly virulent species that cause a severe form of bovine babesiosis. Although bovine 289 

babesiosis is very common in Sri Lanka, a detailed examination of clinical cases using 290 

molecular techniques has never been carried out in this country. Therefore, in the present 291 

study, we used molecular diagnostic tools to investigate clinical babesiosis in Sri Lanka. 292 

 Anemia was detected in 10 of the 13 animals with fever and hemoglobinuria 293 

investigated in the present study, while three animals from the Badulla district were not 294 

anemic at the time of sampling, suggesting that these animals were sampled in the early stage 295 

of disease development. Three animals with very low RBC indices died even after treatment 296 

with an anti-babesial drug (diminazene aceturate), suggesting that early veterinary 297 

intervention is of paramount importance in bovine babesiosis (7). The neurological signs 298 

observed in five animals might have been due to B. bovis infection, which can cause cerebral 299 

babesiosis in cattle (1, 5). However, such neurological signs can also occur in anemic animals 300 

due to hypoxia-related brain injury caused by low hemoglobin levels (67, 68). Post-mortem 301 
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examination could have clarified whether the actual cause of the neurological signs in cows S 302 

and C7 was cerebral babesiosis or hypoxic brain injury. Unfortunately, however, post-mortem 303 

examinations were not carried out for any of the animals that died. 304 

The PCR assays and sequencing analyses detected B. bovis and B. bigemina, as well 305 

as two other Babesia species (Babesia sp. Mymensingh and Babesia sp. Hue-1) that had not 306 

been previously reported in Sri Lanka. In addition to Babesia parasite species, previously 307 

described species-specific PCR assays (69–72) determined that the samples contained 308 

Theileria annulata, Theileria. orientalis, Trypanosoma theileri, and Anaplasma marginale 309 

(Tables S1 and S2). However, the involvement of these parasite species in the animals’ 310 

clinical disease was unclear, as none of these parasite species induce hemoglobinuria. 311 

Based on morphological observation, Babesia sp. Mymensingh can be classified as a 312 

large Babesia. However, the piroplasms were morphologically different from those of B. 313 

bigemina, as the paired pyriforms of the latter usually form an acute angle (73). In addition, 314 

the size of the ring forms in Babesia sp. Mymensingh was smaller than that in B. bigemina. 315 

Babesia sp. Mymensingh was initially identified based on an 18S rRNA sequence from an 316 

apparently asymptomatic cow in Bangladesh (22). In contrast, the parasite in the present study 317 

was detected as the sole Babesia species in a cow (R) with typical signs of clinical babesiosis, 318 

suggesting that Babesia sp. Mymensingh is a virulent species. 319 

The phylogenetic position of Babesia sp. Mymensingh was further analyzed in a 320 



21 
 

cox3-based phylogeny, in which it formed a sister clade to B. bigemina. The sister clades 321 

formed in 18S rRNA and cox3 phylogenies may identify Babesia sp. Mymensingh as a new 322 

genotype of B. bigemina. However, the low identity scores shared between the 18S rRNA, 323 

cox3, and ama-1 gene sequences from these parasite species, the ama-1 phylogeny in which 324 

Babesia sp. Mymensingh formed a separate clade, and the morphological differences confirm 325 

that Babesia sp. Mymensingh is a distinct Babesia species. The PCR detection of Babesia sp. 326 

Mymensingh in an additional cow suggested that Babesia sp. Mymensingh infection might be 327 

common among cattle in Sri Lanka. Babesia sp. Mymensingh may have a wide distribution, 328 

as this parasite species was also detected in Bangladesh. Therefore, the PCR assay developed 329 

in the present study will be a useful diagnostic tool for specific detection of Babesia sp. 330 

Mymensingh in different geographical territories. 331 

Cow R that was infected with Babesia sp. Mymensingh was reexamined 1 week after 332 

sampling. No hemoglobinuria was present, and the anemia was milder than previously. 333 

Furthermore, laboratory examination showed improvements in the HGB concentration (8 334 

g/dl), HCT (23.4%), and RBC count (4.53 × 106/µl) compared with the first sampling, 335 

indicating that diminazene aceturate is effective against Babesia sp. Mymensingh. However, 336 

Babesia sp. Mymensingh might have implications for the immune control and diagnostics of 337 

bovine babesiosis. For example, live-attenuated vaccines are used in some endemic countries, 338 

including Sri Lanka, to immunize cattle against bovine babesiosis caused by B. bovis and B. 339 
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bigemina (13). If Babesia sp. Mymensingh is not immunologically cross-reactive to these 340 

parasite species, especially to B. bigemina, Babesia sp. Mymensingh may cause clinical 341 

disease in vaccinated animals. However, if they are immunologically cross-reactive parasites, 342 

the sero-diagnostic techniques commonly used in epidemiological surveys might generate 343 

unreliable data. 344 

 The PCR assay targeting B. ovata detected Babesia sp. Hue-1. Phylogenetically, 18S 345 

rRNA from Babesia sp. Hue-1 formed a clade that was clearly separate from the other Babesia 346 

species, identifying Babesia sp. Hue-1 as a separate Babesia species. The morphology of 347 

Babesia sp. Hue-1 was not analyzed, as the blood smear from the infected cattle was unfit for 348 

microscopic examination. Even if high-quality blood smears had been available, microscopic 349 

detection might have been impossible, as the animal was co-infected with B. bovis and B. 350 

bigemina. Babesia sp. Hue-1 was recently reported in Vietnam based on 18S rRNA and ama-1 351 

sequences from healthy cattle (21). Therefore, the clinical significance of Babesia sp. Hue-1 352 

remains unknown. 353 

 In conclusion, the present study demonstrated the presence of two Babesia species 354 

not previously detected in Sri Lanka, and also identified severe clinical bovine babesiosis 355 

caused by a Babesia species other than B. bovis, B. bigemina, and B. divergens. Priorities in 356 

Babesia research include isolation of the newly detected Babesia species, experiments to 357 

investigate their virulence in different cattle breeds and immunological cross reactivity with B. 358 
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bovis and B. bigemina, and identification of specific tick vectors. 359 

 360 
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FIGURE LEGENDS 593 

 594 

Fig. 1. Morphology of the Babesia parasites in cow R. A Giemsa-stained thin blood smear 595 

prepared from cow R was observed under a light microscope. (A) Paired pyriforms, (B) ring 596 

forms, and (C) elongated and irregularly shaped single forms of Babesia parasites were 597 

detected in cow R. 598 

 599 

Fig. 2. Phylogeny of 18S rRNA. A maximum-likelihood phylogeny was constructed using 18S 600 

rRNA sequences determined in the present study and those retrieved from GenBank. The gene 601 

sequences determined in the present study are indicated by the boldface type letters. Note that 602 

the Babesia sp. Mymensingh sequence determined in the present study and that previously 603 

reported from Bangladesh clustered together and formed a sister clade to B. bigemina. 604 

Additionally, the Babesia sp. Hue-1 occurred separately, forming a sister clade to the 605 

common ancestor of Babesia sp. Mymensingh and B. bigemina. 606 

 607 

Fig. 3. Phylogeny of cox3. A maximum-likelihood phylogeny was constructed using cox3 608 

sequences from Babesia sp. Mymensingh and Babesia sp. Hue-1 and those available in the 609 

GenBank database. The gene sequences determined in the present study are indicated by the 610 

boldface type letters. Note that Babesia sp. Mymensingh formed a sister clade to B. bigemina, 611 
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whereas Babesia sp. Hue-1 formed a sister clade to Babesia sp. (Wenchuan, China)/Babesia 612 

sp. (Lushi, China). 613 

 614 

Fig. 4. Development of a Babesia sp. Mymensingh-specific PCR assay. A PCR assay specific 615 

to Babesia sp. Mymensingh was developed. (A) Specificity testing. The specificity of the 616 

newly developed PCR assay was tested using DNA samples from Babesia sp. Mymensingh, B. 617 

bigemina, B. bovis, B. ovata, B. divergens, Babesia sp. Hue-1, Theileria annulata, Th. parva, 618 

Th. orientalis, Trypanosoma evansi, Tr. theileri, Tr. brucei, Anaplasma marginale, A. bovis, 619 

and uninfected cattle (lanes 1–15, respectively). M indicates the 100-bp DNA marker. Note 620 

that the amplicon with the expected size was observed only with Babesia sp. Mymensingh. 621 

(B) Screening of 13 clinical samples for Babesia sp. Mymensingh. The PCR assay specific to 622 

Babesia sp. Mymensingh was used to screen DNA samples from 13 clinical cases. M and NC 623 

indicate the 100-bp DNA marker and non-template control, respectively. Note that Babesia sp. 624 

Mymensingh was also detected in cow V. 625 

 626 

Fig. 5. Phylogeny of ama-1. The ama-1 sequences from Babesia sp. Mymensingh from cows 627 

R and V (amplified by Babesia sp. Mymensingh-specific PCR) and from Babesia sp. Hue-1 628 

from cow C8 (amplified by B. ovata PCR) together with those retrieved from GenBank were 629 

used to construct a maximum-likelihood phylogeny. The gene sequences determined in the 630 
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present study are indicated by the boldface type letters. Note that the Babesia sp. Hue-1 631 

sequences clustered with those previously reported in Vietnam and formed a sister clade to B. 632 

ovata, while the Babesia sp. Mymensingh formed a separate clade. 633 



Table 1. Clinical presentation of bovine babesiosis in Sri Lanka 
No. District Animal ID Breed Sex Age (years) Clinical signs 

    
RBC indicesa 

 
      Temperature (ºC) Anemia Hemoglobinuria Nervous signs   HGB HCT RBC 
1 Badulla I Jersey F 4 40.6 Y Y Y  NT NT NT 
2 Badulla L1 Friesian F 3 41.4 N Y N  8.4 22.6 5.65 
3 Badulla L2 Jersey F 4 41.1 N Y N  9.6 27.6 5.94 
4 Badulla R Friesian F 4 41.1 Y Y N  6.8 19.6 3.94 
5 Badulla Sb Jersey F 5 39.4 Y Y Y  2.8 7.9 1.38 
6 Badulla T1 Jersey F 4 41.1 Y Y Y  8.7 24 5.59 
7 Badulla T2 Jersey F 4 41.1 N Y N  9.4 25.7 5.51 
8 Badulla V Jersey F 5 42.2 Y Y N  NT NT NT 
9 Jaffna C2 Jersey F 4 40.6 Y Y N  6.8 21.9 3.88 
10 Jaffna C5 Jersey F 5 40 Y Y Y  6.7 21.5 3.5 
11 Kilinochchi C6b Jersey × Sahiwal F 6 39.4 Y Y N  2.83 10.6 2.22 
12 Kilinochchi C7b Jersey F 3 41.1 Y Y Y  4.8 13.3 3.03 
13 Jaffna C8 Jersey × Sahiwal F 6 40 Y Y N  NT NT NT 
 

ID, identification; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; F, female; Y, yes (observed); N, no (not observed); NT, not tested. 

a RBC indices, including the HGB concentration (g/dl), HCT (%), and RBC count (× 106/µl), were measured for 10 of the 13 animals. 

b These animals (S, C6, and C7) died despite treatment with diminazene aceturate. 

 



Table 2. PCR detection of B. bovis, B. bigemina, and B. ovata in clinical cases of 
bovine babesiosis in Sri Lanka 
 

No. Animal ID Babesia bovis                 Babesia bigemina Babesia ovata 
1 I + – – 
2 L1 – + – 
3 L2 – + – 
4 R

a – – – 
5 S + + – 
6 T1 + + – 
7 T2 + + – 
8 V + + – 
9 C2 – + – 
10 C5 + – – 
11 C6 + – – 
12 C7 + + – 
13 C8 + + + 
Total  9 9 1 
 

PCR, polymerase chain reaction; ID, identification; +, positive; –, negative 

aAnimal R was negative for all three Babesia species tested in the present study. 
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