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Abstract

UDP-glycosyltransferase (UGT) catalyzes the transfer of glycosyl groups (e.g., glucuronic

acid) to exogenous or endogenous chemicals and plays an important role in conjugation

reactions. In vertebrates, UGT genes are divided into 5 families: UGT1, UGT2, UGT3,

UGT5, and UGT8. Among these UGT enzymes, UGT1 and UGT2 enzymes are known to

be important xenobiotic metabolizing enzymes in mammals. However, little is known about

UGT1 and UGT2 genes in avian species. In this study, we therefore aimed to classify avian

UGT1 and UGT2 genes based on their evolutionary relationships. We also investigated the

association between UGT molecular evolution and ecological factors, specifically feeding

habits, habitat, and migration. By examining the genomes of 43 avian species with differing

ecology, we showed that avian UGT1E genes are divided into 6 groups and UGT2 genes

into 3 groups. Correlations between UGT gene count and ecological factors suggested that

the number of UGT1E genes is decreasing in carnivorous species. Estimates of selection

pressure also support the hypothesis that diet influenced avian UGT1E gene evolution, simi-

lar to mammalian UGT1A and UGT2B genes.

Introduction

UDP-glycosyltransferase (UGT) catalyzes the transfer of glycosyl groups (including glucuronic

acid, glucose, glycoside, and galactose) to exogenous or endogenous chemicals [1]. Vertebrate

UGT genes are classified into 5 groups: 1, 2, 3, 5, and 8 [2–4]. In each UGT subfamily, genes

were amplified by tandem duplication, with some of them specifically amplified (or even

absent) of in lineages. For instance, UGT5 family genes are only in teleost fishes [3], while the

UGT3 family is absent in chicken, turkey, and zebra finch [4], suggesting that avian species

have 3 UGT families (UGT1, UGT2, and UGT8). Among these UGT enzymes, UGT1, UGT2,

and UGT5 family enzymes were reported to catalyze the exogenous chemicals in zebrafish [5].
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UGT1 and UGT2 family enzymes are known to be related to xenobiotic metabolism in mam-

mals as well[6]. Therefore, UGT1 and UGT2 enzyes would be considered to be related to xeno-

biotic metabolism also in avian species.

UGT1 enzymes use UDP-glucronic acid (UDPGA) to engage in glucronic-acid transfer

[1, 6]. Functional differences in UGT1As derive from a variable first exon among the 5 exons

that constitute these genes (exon2-5 are conserved), with a prime example being immunoglob-

ulin variation generating a robust immune defense[7]. In humans, UGT1A genes are divided

into two functional groups, although this division is imperfect because of the genes’ complex

roles. Bilirubin-like-associated enzymes (UGT1A1, UGT1A3, UGT1A4, UGT1A5) comprise

the first group, whereas phenol-like-associated enzymes (UGT1A6, UGT1A7, UGT1A8,

UGT1A9, UGT1A10) comprise the second [6]. Although nearly all mammals possess

UGT1A1 for conjugating bilirubin, mammalian UGT1A6 (important for xenobiotic metabo-

lism) has become a pseudogene in carnivorous mammals, including cats, brown hyenas, and

northern fur seals [8, 9], likely because their diet does not contain harmful plant compounds.

Moreover, our previous study indicated that the number of UGT1A genes is decreasing in car-

nivorous mammals [9].

Similar to UGT1, UGT2 enzymes use UDP-glucronic acid (UDPGA) [1]. In humans, 6

exons encode UGT2A1, 2A2, and 2A3; exons 2-6 are shared in UGT2A1 and 2A2, whereas

UGT2A3 has only unique exons [2]. Although UGT2A1 and UGT2A2 are highly active in bile

acid glucuronidation [10], UGT2A genes are mainly expressed in the nasal epithelium [11, 12]

and are also known to metabolize steroids [13]. Mammalian UGT2Bs are composed of 6 sepa-

rately coded exons [2] and are abundantly expressed in the liver [1]. Human UGT2B enzymes

conjugate endogenous compounds such as steroid hormones, retinoids, and fatty acids, as well

as exogenous compounds including morphine, zidovudine, and nonsteroidal anti-inflamma-

tory drugs [6]. Previously, we reported that a UGT2B31-like gene in Felidae has become a

pseudogene and that similar to UGT1A, UGT2B genes have decreased in carnivorous mam-

mals [14].

Several reports have examined the relationship of UGT1 and UGT2 genes among verte-

brates [3, 4] to obtain a better understanding of molecular evolution. For instance, zebra finch

UGT genes were evaluated to determine the evolutionary relationships of vertebrate UGT1

and UGT2 [3]. Similarly, the genomic structures of vertebrate UGT1 and UGT2 genes [4]

were uncovered using data from chicken, turkey, zebra finch, and other vertebrate genomes.

However there is no report on the classification of comprehensive avian UGT genes based on

the evolutionary relationship to other vertebrate UGTs.

In this study, we performed phylogenetic and synteny analyses to classify avian UGT1 and

UGT2 genes, using data from 43 avian species representing 32 orders. Moreover, we aimed to

clarify UGT evolution in birds by investigating the influence of key ecological factors (feeding

habit, habitat, and migration). Our analyses yielded the first comprehensive classification of

UGT1 and UGT2 genes in birds and confirmed that feeding habit (specifically carnivory)

influenced the evolution of this gene family.

Materials and methods

UGT gene sequences

To characterize evolutionary diversity in avian UGT genes, we performed TBLASTN searches

[15] on 43 sequenced avian RNA sequences (S1 Table, S1 Fig). Each species’ genome was

obtained from the March 2017 GenBank refseq database with e-value < 1e-2 as the identity

threshold. Query sequences were 154 individual UGT protein sequences (S1 Data), annotated

in Ensembl [16] (release 87) as UDP-glucuronosyltransferase, UDP-glycosyltransferase, or

Evolution of avian UGT1Es and UGT2s
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UDP-galactosetransferase for zebrafish (Danio rerio), western clawed frog (Xenopus tropicalis),
green anole (Anolis carolinensis), mouse (Mus musculus) and human (Homo sapiens). We

excluded genes with obviously different annotation from BLAST results. Sequences containing

multiple genes in one annotation were divided into multiple genes (S2 Table). Names of UGT

genes followed the guidelines from the UGT nomenclature committee (https://prime.vetmed.

wsu.edu/resources/udp-glucuronsyltransferase-homepage).

Synteny analysis

The chromosomal location of annotated genes was determined using genomic data from 43

bird species in Genbank (accession numbers in S2 Table). Human, mouse, green anole, west-

ern clawed frog, and zebrafish Ensembl gene locations were also used. Graphical representa-

tions of gene location were generated with the genoPlotR package [17] in R version 3.3.2

(R Core Team 2016).

Phylogenetic analysis

Gene location, maximum likelihood (ML) phylogenetic analysis, and BLASTn searches were

used for classifying UGT families and selecting UGT1 and UGT2 genes for Bayesian phyloge-

netic analysis. UGT1 and UGT2 genes were divided into exon1 and other exons, and then ana-

lyzed separately for phylogeny construction. Amino acid sequences were aligned in MAFFT

version 7.2 [18] with the auto option and trimmed in trimAl [19] with the automated1 option.

For model selection and phylogenetic analysis of UGT1 exon1, sequences with>200 bp and

no gaps above 15 bp were chosen (see supplementary information: S1–S4 Files). The best-fit

model was selected using the Bayes information criterion (BIC) calculated by CodeML on

Aminosan [20, 21]. Phylogenetic analysis on each UGT family (UGT1 and UGT2) was per-

formed in MrBayes5D [22–25] using 4 chains (3 heated, 1 cold). Models, MCMC generations,

and burn-in generations are shown in S3 Table. Tracer 1.6 [26] was used to check for stabiliza-

tion and convergence between runs.

Phylogenetic generalized least square analysis

To determine whether the UGT gene count was correlated with ecology, the feeding habit,

habitat, and migration status of each bird species was first classified based on Almeida et al.

(S1 Table) [27]. To correct for autocorrelation, phylogenetic generalized least square (PGLS)

regression was performed [28, 29] in R, with the gls function under a Brownian motion corre-

lation structure (corBrownian). The ape [30], phytools [31], and geiger [32] packages were

employed. The avian phylogenetic tree constructed by Prum et al. [33] was modified and used

for PGLS analysis (S1 Fig). Model selection was performed with the Akaike information crite-

rion (AIC).

Estimating selection pressure

Feeding habits may have exerted differing levels of selective pressure on UGT1 genes. To

examine these potential differences, the omega (nonsynonymous and synonymous; dN/dS)

ratios of phylogenetic branches were estimated with CodeML in PAML4.9 [20], using codon

alignment and tree topology from phylogenetic analysis (S2 Data). An omega ratio greater

than, equal to, or less than one indicates positive, neutral, or negative selection pressure,

respectively. The F3×4 codon frequency was applied for estimating omega and kapper (transi-

tion and transversion) ratios. Three models were applied for estimating omega ratio: homoge-

nous the omega ratio in all feeding habits (carnivory, omnivory, and herbivory); different

Evolution of avian UGT1Es and UGT2s
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omega ratio between carnivorous species and other feeding habits; and different omega ratios

across all feeding habits. Likelihood ratio tests were performed to determine model fit.

Omega ratios of UGT1 sites were also estimated, and those under positive selection were

predicted using the Bayes-Empirical-Bayes (BEB) test implemented with CodeML in

PAML4.9 [20].

Results

Classification of UGT families in bird lineages

The results of TBLASTN for 43 bird species using UGT genes from 5 other vertebrates (zebra-

fish, western clawed frog, green anole, mouse, and human) as queries, yielded 196 UGT1 and

108 UGT2 gene sequences (S2 Table). Nearly every tested bird species possessed UGT1 and

UGT2 family genes.

UGT1 family genes

We chose “UGT1E” as the name for identified avian UGT1 genes, following guidelines from

the UGT nomenclature committee (http://prime.vetmed.wsu.edu/resources/udp-

glucuronsyltransferase-homepage). UGT1E family genes were divided into 6 groups with sev-

eral subgroups, identified as “bird_UGT1E_group” based on gene location. Phylogenetic anal-

ysis revealed 6 clades based on the variable UGT1E exon1 regions (Fig 1), which were syntenic

across birds (Fig 2). The remaining 4 exons (exon2-5) were shared across nearly all avian

UGT1E genes (Fig 2); pigeons (Columba livia) were the only tested birds to possess duplicate

exon2-5 (S2 Fig). Thus, in contrast to UGT1E exon1, UGT1E exons2-5 were generally con-

served and reflected bird phylogeny. The phylogram of UGT1 exon2-5 indicated two clades:

Palaeognathae and Neognathae. Among the Neognathae, crow (Corvus brachyrhynchos), zebra

finch (Taeniopygia guttata), and Galapagos finch (Geospiza fortis) were divided from other

species, but their posterior probability was<0.6, indicating that exons2-5 in Neognathae did

not reflect avian phylogeny (S2 Fig).

UGT2 family genes

Avian UGT2 genes contain 6 exons, with exons2-6 being shared (Fig 3b). In the phylogram of

exons2-6, the mammalian UGT2A and UGT2B genes formed one clade, whereas avian UGT2

genes formed another (S3 Fig). In the latter clade, UGT2 exons2-6 did not correspond to avian

phylogeny, including Palaeognathae and Neognathae. Avian UGT2 exon1 regions resulted in

3 clades (Fig 3a), termed “bird_UGT2_group.” Bird_UGT2_group_III genes formed one clade

with mammalian UGT2A1 and UGT2A2 in the UGT2 exon1 phylogram. TBLASTN failed to

detect UGT2 in Tauraco erythrolophus only. Two genes located around UGT2, “YTHDC1”

and “SULT1,” were detected but had incomplete assembly.

Relationships between the number of UGT genes and ecological factors of

birds

Our analyses indicated that habitat and migration did not significantly impact the number of

UGT genes, but feeding habits did (Fig 4). The best PGLS model (lowest AIC) indicated that

carnivorous species had a lower UGT1E count than omnivorous and herbivorous species

(Table 1). However, the number of UGT2 genes had no clear relationship to feeding habits.

Evolution of avian UGT1Es and UGT2s
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Estimating the selection pressure exerted by feeding habit on UGT1E exon1

The homogenous model estimated the omega ratio to be 0.392. In the model separating carniv-

ory and other feeding habits, omega ratios were estimated as 0.329 (carnivores) and 0.436 (her-

bivores, omnivores). In the third model separating all three feeding habits, omega ratios were

estimated as 0.329 (carnivores), 0.409 (omnivores), and 0.469 (herbivores). The likelihood

ratio test indicated that omega ratios were significantly different across feeding habitats

(p< 0.05).

Detecting positive selection sites on UGT1E exon1

The results of the BEB analysis [34] on estimated omega ratios (dN/dS) of UGT1A exon1

revealed 13 amino acid sites that were exposed to positive selection (Fig 5). Five of these 13

sites were located in a region related to aglycone variation in human UGT1As [35].

Discussion

Our classification of avian UGT1 and UGT2 family genes clarified the evolutionary relation-

ship of genes in bird lineages. First, UGT2 family genes were classified into 3 groups (Fig 3,

Fig 1. Phylogenetic classification of UGT1s in bird species. The phylogenetic tree of avian UGT1 exon1 was

constructed in mrbayes5d, using sequences with>200 bp and without gaps>15 bp. Avian UGT1 exon1 were divided

into 6 major groups. Groups III and IV were further divided into 6 and 2 subgroups, respectively.

https://doi.org/10.1371/journal.pone.0205266.g001
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S4 Fig). Mammalian UGT2B genes all exhibit variable exons1-6, whereas mammalian

UGT2A1 and UGT2A2 genes share exons2-6 [2]. Simlarly to mammalian UGT2A1 and

UGT2A2, avian UGT2 genes share exons2-6. Thus, depending on what exons are used to con-

struct the phylogram, different interpretations of mammalian and avian relationships arise.

Phylograms of UGT2 exons2-6 indicate that mammal and avian UGT2 genes are distinct (S3

Fig). This suggests that the ancestor of birds and mammals possessed one avian UGT2 exon2-

6 set and it was duplicated in the mammalian lineage. In contrast, phylograms of UGT2 exon1

implied similarity between bird_UGT2_group_III and mammalian UGT2A1 and 2A2 genes

(Fig 3). In humans, UGT2A1 and UGT2A2 are mainly expressed in the nasal epithelium [11,

12] in stable amounts. In contrast, UGT2B genes are abundantly expressed in the liver in vari-

able amounts based on feeding habits [14]. Here, we observed relatively stable amounts of

avian UGT2 genes, suggesting that in birds, UGT2 enzymes likely conjugate endogenous com-

pounds and are more similar to mammalian UGT2A than UGT2B.

Our phylogram of UGT2 genes also appeared to be different from that of the previous

study. A previous report indicated that mammalian UGT2A genes formed one clade, and each

gene in humans has an orthologue in mice and other mammals [2, 12]. The reason why

UGT2A3 genes did not form one clade in this study could involve differences in the exon

region used.

Fig 2. Synteny of UGT1s in bird species. Bird phylogeny and gene locations of UGT1 exon1 were visualized in

genoplotR. Species are color-coded based on feeding habits: red, carnivorous; yellow, omnivorous; and green,

herbivorous. UGT1 information was retrieved from a single contig. Avian UGT1Es were located between “USP40” and

“SH3BP4”. Roman numbers on the arrows indicate the UGT1 group number, “Ps” indicates pseudogenes and “XXX”

indicates unclassified (<200 bp) genes. Synteny of UGT1 exon1 was well conserved among bird species.

https://doi.org/10.1371/journal.pone.0205266.g002
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Some controversy exists in terms of nomenclature for avian UGT1 genes. Zebra finch

UGT1 genes were named UGT1As based on evolutionary relationships [3]. However, the

UGT nomenclature committee named UGT1 genes in chicken as UGT1Es based on their

sequence similarity (https://prime.vetmed.wsu.edu/resources/udp-glucuronsyltransferase-

homepage/current-nomenclature). In this study, we followed the second nomenclature

Fig 3. Classification of UGT2s in bird species. a) The phylogenetic tree based on avian UGT2 exon1 was constructed

in mrbayes5d. Avian UGT2 exon1s are divided into 3 major groups (indicated with Roman numerals on arrows), with

Group_I and Group_II forming a clade distinct from mammalian UGT2. However, bird UGT2 Group_III genes

formed a single clade with mammalian UGT2A1 and UGT2A2. b) Avian phylogeny and gene locations of avian UGT2

genes were visualized in genoplotR. All UGT2 information was retrieved from a single contig. Avian UGT2s were

located between “SULT1” and “YTHDC1.” Exons2-5 were shared across every avian species. Synteny of UGT2 exon1

was well conserved in birds.

https://doi.org/10.1371/journal.pone.0205266.g003
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guidelines and named UGT1 genes as UGT1Es. Our phylogenetic and synteny analyses classi-

fied UGT1 family genes into 6 major groups (Figs 1, 2 and 6). The results suggest that the

avian common ancestor would have possessed 6 UGT1 genes that were subsequently dupli-

cated in each lineage. Genomic organization also showed that some UGT1Es became pseudo-

genes in each lineage (Fig 2). This suggests that UGT1E genes underwent frequent duplication

and loss in birth-and-death evolution. Notably, the number of UGT1E_group_III varies

among birds and may be important for conjugating different exogenous compounds.

Our analysis found a significant relationship between UGT1E gene count and avian feeding

habits, with carnivores possessing fewer UGT1Es than herbivores or omnivores Figs 6 and 4

and Table 1). When we examined the selection pressure on UGT1 exon1 to determine whether

such differences were due to natural selection, we did not find evidence of positive selection

on any phylogenetic branches (omega ratio > 1). However, the higher omega ratio in herbivo-

rous species suggests that UGT1E enzymes play an important role in metabolizing toxic chem-

icals synthesized by plants.

However, few data on UGT1 structure are available to corroborate this potential function,

even in humans. Available reports found a variable region around residues 105-131 in human

UGT1As that appears to confer aglycone specificity [35] (Fig 5). This region is similar to the

positively selected sites in avian UGT1Es, suggesting a link to aglycone specificity.

Indeed, some reports have described a similar relationship between xenobiotic metaboliz-

ing enzymes and feeding habits. Consistent with our study, carnivorous mammals, for

Fig 4. Relationship between the number of avian UGTs and ecological factors (feeding habit, habitat, and

migration). The number of UGT1 genes differed across feeding habits (carnivory, herbivory, and omnivory).

https://doi.org/10.1371/journal.pone.0205266.g004

Table 1. Phylogenetic generalized least square (PGLS) analysis.

Model The number of parameters Coefficients AIC

Carivorous, Omnivorous = Herbivorous 2 4.311210, 6.487261 198.6751

Carivorous, Omnivorous, Herbivorous 3 4.390776, 6.150674, 7.182295 199.3981

Carivorous = Omnivorous, Herbivorous 2 5.443538, 7.229325 201.2292

Carivorous = Omnivorous = Herbivorous 1 5.798011 203.3232

Carivorous = Herbivorous, Omnivorous 2 5.586517, 6.022803 205.0414

The best-fit model (lowest Akaike Information Criterion, AIC) showed a significant effect of feeding habit, with carnivorous species possessing fewer avian UGT1 genes

than omnivorous or herbivorous species.

https://doi.org/10.1371/journal.pone.0205266.t001
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Fig 5. Positive selection on UGT1E exon1 sites in avian species. The sequences are chicken UGT1E genes. �: Positive

selection sites estimated with Bayes Empirical Bayes (BEB) analysis using CodeML in PAML4.9; p< 0.05. Orange

square indicates sites related to aglycone variation in human UGT1As [35].

https://doi.org/10.1371/journal.pone.0205266.g005

Fig 6. Classified UGT1E genes in bird species. Avian phylogenetic tree classifying UGT1 family genes (excluding

those with sequences<200 bp). Species are color-coded based on feeding habits: red, carnivorous; yellow, omnivorous;

and green, herbivorous. Illustrations of Anas platyrhynchos, Aptenodytes forsteri, Columba livia, Gallus gallus,
Meleagris gallopavo, Struthio camelus, and Taeniopygia guttata were modified from the Togo picture gallery (http://

togotv.dbcls.jp/ja/pics.html), licensed under CC-BY 4.0 Togo picture gallery by the Database Center for Life Science

(DBCLS), Japan. Other illustrations were modified from public domain resources.

https://doi.org/10.1371/journal.pone.0205266.g006
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example, also have fewer UGT1A genes [9]. However, we did not observe a correlation

between UGT2 gene count and avian feeding habit, in contrast with mammalian UGT2 genes.

Among mammals, the number of UGT2B genes in carnivorous species was lower than that in

herbivorous and omnivorous species[14]. This difference suggests that UGT2 gene evolution

in birds and mammals experienced different selective pressures.

Here, we did not find any link between other ecological factors (habitat, migration) and

UGT gene count. Our findings on the influence of ecology thus partially contradict existing

avian studies on the relationship between ecological factors and genes related to xenobiotic

metabolism. For example, carnivorous birds or those living in wet habitats tend to possess

fewer sensitive aryl hydrocarbon receptors (AhR), which regulate the expression of genes

encoding xenobiotic metabolizing enzymes (e.g., UGT1s and CYP1s). Avian AhRs are divided

into three genetic types: highly sensitive (Ile-324 and Ser-380), moderately sensitive (Ile-324

and Ala-380), and less sensitive to dioxin (Val-324 and Ala-380) [36, 37]. Certain species may

have more of the third genetic type because they receive elevated levels of naturally occurring

dioxins through the food web in specific habitats or under specific diets [38]. The lack of any

observed relationship between UGTs and habitat in this study could be because UGTs are not

directly involved in dealing with toxicity from dioxin-like compounds [36].

Previous research has also found that the omega ratio of avian cytochrome P450 (CYP),

CYP2C23 (classically called CYP2H) and CYP2J_2, differs across feeding habits [27]; these

enzymes are important for functionalization reactions in xenobiotic metabolism reactions.

Among passerines, insectivores and granivores exhibit differing levels of ethoxyresorufin-O-

deethylase (EROD) activity, which itself reflects CYP1A activity. Specifically, EROD activity is

higher in insectivores than in granivores, possibly because some insects use defensive com-

pounds from plants [39]. Still other reports have suggested that conjugation enzymes are

important in nectar-eating birds for metabolizing nicotine, a process that varies in mechanism

across avian species [40]. Together, these studies indicate that increased granularity in feeding

classifications may yield a clearer picture regarding how diet influences UGT evolution. How-

ever, given the limited whole-genome data available at this point, we were unable to discrimi-

nate between insectivores and other carnivores, granivores and other herbivores, or

nectarivores and other omnivores. Therefore, we recommend a focus on increasing whole-

genome data for avian species to enhance investigations on the evolution of UGTs and other

major genes in birds.

In this study, we confirmed ecological factors did not cause significant differences in the

number of avian UGT2 genes. Given that mammalian UGT2 genes respond to ecological vari-

ation, our results suggest that different selective pressures influenced UGT2 evolution in birds

versus mammals. However, UGT1 gene counts varied between feeding habits, with carnivores

possessing significantly less than either herbivores or omnivores. Therefore, we conclude that

diet exerted a clear effect on the evolution of avian UGT1E genes.
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