1	Establishment of a mouse-tick infection model for <i>Theileria orientalis</i> and analysis of its transcriptome
2	Kyoko Hayashida ^{a,b} , Rika Umemiya-Shirafuji ^a , Thillaiampalam Sivakumar ^a , Junya Yamagishi ^{b,d} , Yutaka
3	Suzuki ^c , Chihiro Sugimoto ^{b,d} , Naoaki Yokoyama ^a
4	

- 5 ^aNational Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary
- 6 Medicine, Obihiro, Hokkaido 080-8555, Japan
- 7 ^bDivision of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control,
- 8 Sapporo, Hokkaido 001-0020, Japan
- 9 ^cDepartment of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the
- 10 University of Tokyo, Kashiwa, Chiba, Japan
- ^dGlobal Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan

- 13 * Corresponding author. National Research Center for Protozoan Diseases, Obihiro University of
- 14 Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
- 15 Tel.: +81-155-49-5649; Fax: +81-155-49-5643.
- 16 *E-mail address*: yokoyama@obihiro.ac.jp (N. Yokoyama)

17 Abstract

18	Oriental theileriosis caused by <i>Theileria orientalis</i> is an economically significant disease in cattle farming.
19	The lack of laboratory animal models and in vitro culture systems is a major obstacle in the drive to better
20	understand the biology of this parasite. Notably, research on the sporozoite stage of T. orientalis has rarely
21	been undertaken, although such investigations are of paramount importance for vaccine development based
22	on blocking sporozoite invasion of its host animals. In the present study, we established a mouse-tick
23	infection model for propagating T. orientalis in mice and for producing the sporozoite stage in tick salivary
24	glands. Splenectomized severe combined immunodeficient (SCID) mice transfused with bovine erythrocytes
25	were infected with T. orientalis. The larval ticks of Haemaphysalis longicornis were then fed on the T.
26	orientalis-infected mice. The piroplasm and sporozoite stages were microscopically observed in the mouse
27	blood and nymphal salivary glands, respectively. The transcriptomics data generated from the piroplasm and
28	sporozoite stages revealed a stage-specific expression pattern for the parasite genes. The mouse-tick
29	infection model and the transcriptomics data it has provided will contribute to a better understanding of T.
30	orientalis biology and will also provide much needed information for the design of effective control
31	measures targeting oriental theileriosis.
32	

33 Keywords: Theileria orientalis, Sporozoite, Infection model, Tick, SCID mouse, p67, Transcriptome

36	Theileria orientalis, a non-transforming Theileria parasite, infects cattle, buffalo and yaks. In
37	most of the countries where <i>T. orientalis</i> is endemic, it has long been considered a relatively benign parasite,
38	unlike the malignant Theileria spp. Theileria parva and Theileria annulata, which infect millions of cattle in
39	Africa and Asia (Irvin, 1987). However, under certain circumstances, T. orientalis infection causes anemia,
40	jaundice, abortion, production losses and mortality in cattle, making oriental theileriosis an economically
41	significant disease of grazing cattle in regions where this parasite is endemic. The outbreaks of hemolytic
42	anemia that are associated with T. orientalis infections have been reported in southeastern Australia (Izzo et
43	al., 2010) and New Zealand since 2006, in particular (McFadden et al., 2011). The outcomes of such
44	infections usually depend on environmental stress factors, the level of acquired immunity in the affected
45	cattle, and herd genetics (Terada et al., 1995). The virulence in T. orientalis is considered to be genotype
46	related and is classified according to the major piroplasm surface protein (MPSP) or its 18S rRNA gene
47	sequences. For instance, clinical theileriosis is common among cattle in countries where the T. orientalis
48	type 2 (Ikeda) genotype is endemic. Thus, type 2 T. orientalis is considered to be more virulent than the
49	other genotypes of this species (Hayashida et al., 2012; Sivakumar et al., 2014). Theileria orientalis is
50	transmitted mainly by Haemaphysalis longicornis ticks, although transmission by other tick species cannot
51	be ruled out (Yokoyama et al., 2012). Similar to other Theileria spp., T. orientalis is maintained in tick

vectors through transstadial persistence as the tick molts from one stage to another (larva to nymph and

nymph to adult), but transovarial transmission has not been reported (Higuchi, 1986).

54	Malignant theileriosis caused by T. parva and T. annulata can be prevented and controlled with
55	live vaccines. A live sporozoite vaccine, known as the Muguga cocktail vaccine, has been used in several
56	African countries to control East Coast fever (ECF) caused by T. parva. The vaccination methodology is
57	known as an "Infection and Treatment Method" because the Muguga cocktail, which is composed of the live
58	sporozoites derived from three different T. parva isolates, is administrated simultaneously with a long-acting
59	oxytetracycline formulation (Nene et al., 2016). However, the wide use of this live vaccine is limited due to
60	its time-consuming production process and concerns about the risk of introducing a "foreign" parasite
61	population into other countries, where the vaccine strains might be transmitted to unvaccinated cattle and
62	produce new parasites with genetic mosaics (McKeever, 2007; Oura et al., 2007). There is thus an urgent
63	need for a recombinant vaccine that is both suitable for mass production and addresses the drawbacks of
64	using a live vaccine. p67, a sporozoite surface glycoprotein in <i>T. parva</i> , is one of the most promising vaccine
65	candidates for ECF (Musoke et al., 1992; Nene et al., 1996; Honda et al., 1998; Bishop et al., 2003; Kaba et
66	al., 2004; Morrison and McKeever, 2006). The p67 ortholog antigen, SPAG-1, which has been identified in
67	T. annulata, has also been shown to be effective at inducing protective immunity against tropical theileriosis
68	in cattle (Boulter and Hall, 1999). Furthermore, a recent genome project bioinformatically identified a p67
69	orthologous gene (TOT_030000930) in T. orientalis (Hayashida et al., 2012). It would be of interest to

70 measure its expression profile to evaluate its potential for the development of a recombinant vaccine against

71 *T. orientalis*.

72 A thorough understanding of the biology of Theileria in its host animals and tick vectors is vital 73 for the development of effective control measures. However, the biology of T. orientalis is poorly 74 understood, partly because an experimental laboratory system for it is lacking. There is no in vitro culture 75 system available for any developmental stage of this parasite, and only natural hosts are known to be 76 susceptible to it (Irvin, 1987). However, Tsuji et al. (1992) reported that T. orientalis could proliferate at 77 high parasitemia in severe combined immunodeficient (SCID) mice transfused red blood cells (RBCs) from 78 a bovine source (Bo-RBC-SCID) (Tsuji et al., 1992). Based on this study, we employed Bo-RBC-SCID mice 79 as an infection model for T. orientalis and induced the sporozoite stage in H. longicornis ticks fed on 80 infected mice. The aim was to establish a mouse-tick laboratory infection model, and to generate sporozoite 81 transcriptomic data with which to gain a better understanding of parasite biology and identify new control 82 strategies against oriental theileriosis.

83

84 **2. Materials and methods**

85 2.1. Animal ethics approval

86	The protocols for cattle blood sampling, tick feeding and experimental infections in mice were
87	approved by the Animal Care and Use Committee, Obihiro University of Agriculture and Veterinary
88	Medicine, Japan (Approval number: 25-148/ 25-78).
89	
90	2.2. Theileria orientalis-infected RBCs from cattle
91	Theileria orientalis-infected cattle blood was obtained from a naturally infected cow in
92	Nakasatsunai village, Hokkaido, Japan (May 2014). The blood samples were collected from three Holstein
93	cattle, which were positive for T. orientalis by microscopy, using EDTA as the anticoagulant. The DNA
94	samples extracted from the blood samples using a QIAamp DNA Blood Mini kit (Qiagen, Japan) were
95	subjected to previously described type-specific PCR assays to identify T. orientalis MPSP genotypes 1-5,
96	which are known to be endemic in Japan (Yokoyama et al., 2011). Subsequently, a blood sample was
97	collected using citric acid as the anticoagulant from a cow that was only positive for the type 2 genotype (not
98	genotypes 1, 3, 4 or 5). The whole blood was washed three times with Vega y Marinez PBS solution (VyM
99	buffer) (Vega et al., 1985), and the purified RBCs were used for the Bo-RBC-SCID infections. Washed
100	RBCs were also prepared from a non-infected cow, after which those were stored in VyM buffer at 4°C for
101	transfusion purposes.
102	

103 2.3. Theileria orientalis infection in Bo-RBC-SCID mice

104	The Bo-RBC-SCID mice were prepared according to the method of Tsuji et al. (1992). SCID
105	mice lack functional T cells and B cells but still retain functional macrophages that will reject xenogeneic
106	grafts. Therefore, splenectomized SCID mice were used in the present study to replace a large proportion of
107	the circulating murine erythrocytes with bovine erythrocytes by transfusion. Briefly, 10 7-week-old female
108	SCID mice (C.B-17 scid/scid, CLEA, Japan) were anesthetized with isoflurane (Intervet, Japan) and then
109	splenectomized. One week later, the splenectomized mice were infected intraperitoneally with 500 μ l of
110	fresh or cryopreserved <i>T. orientalis</i> -infected bovine RBCs. Each mouse was also transfused intraperitoneally
111	with 500 μ l of packed RBCs every 3–4 days, to partially replace the circulating mouse RBCs with bovine
112	RBCs. Peripheral blood smears made from the tail blood of the Bo-RBC-SCID mice every 3-4 days were
113	stained with 3% Giemsa solution (pH 7.2) (Merk, Japan) and/or acridine orange fluorescent solution (Wako,
114	Japan), followed by light microscopy or fluorescence microscopy analysis, respectively, to monitor the
115	parasitemia levels.
116	At 17-31 days p.i., whole blood was collected from the infected Bo-RBC-SCID mice by cardiac
117	puncture using heparin as the anticoagulant, and the piroplasms were purified by saponin treatment before
118	total RNA was extracted from them, as described in section 2.6.
119	

120 2.4. Theileria orientalis–infected H. longicornis ticks

121	The parthenogenetic Okayama strain of H. longicornis (Fujisaki, 1978) at Obihiro University of
122	Agriculture and Veterinary Medicine has been maintained by feeding the ticks on rabbits. H. longicornis
123	larvae were allowed to infest the T. orientalis-infected Bo-RBC-SCID mice that showed various degrees of
124	parasitemia (Table 1). After 4-8 days of feeding, the engorged ticks were collected and reared in a clean
125	glass bottle at 25°C with saturated humidity in the dark. After approximately 30 days, all of the larvae
126	molted into nymphs. The newly emerged nymphs were then allowed to infest a non-infected BALB/c mouse
127	(CLEA) for 3 days to stimulate sporozoite propagation and maturation, after which they were detached from
128	the host's skin with forceps and used for further experiments. The experimental procedure is shown in Fig. 1.
129	
130	2.5. Immunostaining of T. orientalis in the salivary glands of infected ticks
131	Immunostaining was performed on the T. orientalis sporozoites by probing for MPSP. Briefly,
132	each infected nymphal tick was dissected with a 27-G needle PBS, and the salivary glands were transferred
133	onto an adhesive microscope slide (MAS-coated glass slide, Matsunami Glass, Japan). The slide contents
134	were fixed with 4% paraformaldehyde in PBS at 4°C for 15 min, permeabilized with 0.2% Triton X-100 for
135	10 min at room temperature, blocked with 5% skimmed milk in PBS for 1 h at room temperature, and then
136	reacted with an anti-MPSP antibody (4G10: Type-2 genotype-specific monoclonal antibody ×250) (Iwasaki
137	et al., 1998) overnight at 4°C, and Alexa 488-conjugated anti-mouse IgG (×500, Invitrogen, Japan) was
138	added. Finally, Vectashield mounting medium containing DAPI (Vector Laboratories, Burlingame, CA, 8

- 139 USA) was added to the tick salivary gland-mounted slides and images of the glands were captured using the
- 140 Keyence BZ-9000 (Keyence, Japan) all-in-one microscope.

141	The scutum-peeled whole bodies of the infected ticks were fixed with 4% paraformaldehyde in
142	PBS (4°C, overnight), equilibrated sequentially in 5, 10, 15 and 30% sucrose in PBS at 4°C for 4 to 12 h, and
143	then embedded and frozen in Tissue-Tek O.C.T. compound (Sakura Finetek, Japan). The frozen sections
144	were prepared at 10 µm thicknesses using a cryostat (Leica CM 3050S; Leica, Germany). The staining
145	procedures after blocking were the same as those used for mounting the whole salivary glands on slides, as
146	described above. The images were captured using a confocal laser-scanning microscope (LSM780, Zeiss
147	Microsystems, Germany).
148	
149	2.6. Theileria orientalis cDNA library preparation from T. orientalis-infected cattle, Bo-RBC-SCID mice,
150	tick salivary glands, and Illumina sequencing
151	To isolate RNA from the piroplasm stage of <i>T. orientalis</i> , 25 ml and 1 ml of whole blood were
152	collected from <i>T. orientalis</i> -infected cattle and Bo-RBC-SCID mice, respectively. The samples were diluted
153	in two volumes of PBS, and the host leukocytes were removed by two rounds of filtration using a
154	Plasmodipur filter (EuroProxima, Netherlands). The filtered RBCs were lysed with ice-cold 0.05% saponin
155	for 30 min, and then pelleted down by centrifugation. The purified piroplasms were subjected to total RNA
156	extraction with TRIzol (Invitrogen, Carlsbad, CA, USA), according to the manufacturer's instructions. Four 9

157	of the <i>T. orientalis</i> -infected nymphal ticks (group #5 in Table 1) were fed on a non-infected BALB/c mouse
158	to stimulate sporozoite maturation, removed after 48 to 72 h, and then dissected. The dissected salivary
159	glands were collected, and total RNA was extracted from them using a Nucleospin Tissue XS kit
160	(Macherey-Nagel, Germany), in accordance with the manufacturer's instructions, except that the carrier
161	RNA step was omitted.
162	The cDNA libraries for transcriptomic analysis were prepared using SMARTer Ultra Low Input
163	RNA from Sequencing -v3 (Clontech Laboratories, Mountain View, CA, USA) and the Nextera DNA
164	Library Preparation Kit (Illumina K.K., Japan). The libraries were analyzed in the Hiseq 2500 36-bp Single
165	End Rapid Mode setting, using two lanes and a multiplex index. The reads obtained were converted to a
166	fastq file and then deposited in the DDBJ Sequence Read Archive (https://www.ddbj.nig.ac.jp/dra/,
167	Accession number: DRA 006389).
168	
169	2.7. Bioinformatics analysis
170	The Illumina reads were mapped against T. orientalis genome data (AP011946-AP011949 for Chr1-4,
171	AB499090 for Mt, AP-11950 for Apicoplast) using the CLC genomics workbench 8.5.1 software (Qiagen
172	Aarhus A/S, Denmark) with default parameters, and the gene expression levels obtained were normalized as
173	reads per kilobase per million (RPKM). In total, four data sets were produced: i) sporozoite 48 h – a sample
174	consisting of sporozoites isolated from tick salivary glands 48 h post-infestation; ii) sporozoite 72 h – a 10

175	sample collected at 72 h post-infestation; iii) Piroplasm Cattle – a sample consisting of piroplasms isolated					
176	from infected cattle blood; and iv) piroplasm SCID - a sample consisting of piroplasms isolated from					
177	infected Bo-RBC-SCID mouse blood. The data sets were then compared using the CLC Genomics Platform					
178	with the EdgeR package (Robinson et al., 2010) and P values were adjusted using Bonferroni correction to					
179	identify differentially expressed genes (DEGs). DEGs were selected with a false discovery rate adjusted P					
180	value of <0.01. The expression heat map for the extracted DEGs was generated with the heatmap 2 function					
181	of the R package gplots (Warnes et al., 2016, gplots: Various R programming tools for plotting data,					
182	(https://cran.r-project.org/web/packages/gplots/index.html)					
183	2.8. Sequencing of ToSPAG, a p67 orthologous gene of T. orientalis, using cDNA prepared from T.					
184	orientalis sporozoites					
185	Total RNA isolated from tick salivary glands was subjected to reverse transcription PCR					
186	(RT-PCR) to amplify ToSPAG (T. orientalis sporozoite surface antigen, TOT_030000930), which is a					
187	possible p67 orthologous gene in T. orientalis, using the Qiagen One-step RT-PCR kit (Qiagen) with the					
188	following four sets of primer pairs: 5'-CGTAGAGTCACAAAGGCATAATAC-3' and					
189	5'-AACCGTCGTCGCCTGACTAAC-3', 5'-TCAAAGAACAGGAGGTGGCTTAG-3' and					
190	5'-TACTCTTCATTCGGGTCAATC-3', 5'-AGATAAAGGAGAAGATGGTGGCAG-3' and					
191	5'-CAATGGGTCCAGATGCAGATT-3', 5'-AATCTGCATCTGGACCCATTG-3' and					
192	5'-CATCATCACTGGAACCACCGTG-3'. 11					

193	The cDNA sequence was analyzed on a 3130xl Genetic Analyzer (Applied Biosystems, USA).
194	The coding sequence (CDS) was determined and submitted to the GenBank database (accession number:
195	LC342224), and the putative signal peptide cleavage sites in the CDS were determined using the SignalP 4.1
196	Server (<u>http://www.cbs.dtu.dk/services/SignalP/</u>).
197	
198	2.9. Quantitative RT–PCR (qRT-PCR) assay
199	The total RNA was extracted from four tick salivary glands in group #5 (Table 1), which was a
200	different batch of ticks from that used for Illumina library preparation as described in section 2.6. MPSP and
201	ToSPAG transcription levels were determined during the different feeding phases of the tick stage using a
202	Thunderbird SYBR qPCR (TOYOBO, Japan) assay and cDNA synthesized with the TAKARA RNA PCR
203	kit (AMV) Ver.3.0 (Takara, Japan). The expression values were normalized against the value of ribosomal
204	protein P0, which is known to be expressed in H. longicornis ticks (Gong et al., 2008). Standard curves were
205	constructed using the MPSP, ToSPAG, and P0 genes cloned into pGEM-T easy vectors (Promega, Japan).
206	The qRT-PCR assays were performed in triplicate using the ABI Prism 7900 HT Sequence Detection System
207	(Applied Biosystems). Cycling conditions were as follows: initial denaturation at 95°C for 60 s, followed by
208	40 cycles each containing a denaturation step at 95°C for 15 s and a combined step of annealing and
209	extension at 60°C for 60 s. Melting curve analysis was performed after amplification to confirm the
210	specificity of the amplified products. The primer sequences for the qRT-PCR assays were as follows: Tick 12

211	PO: 5'-CTCCATTGTCA	ACGGTCTCA-3' and 5'-TCA	AGCCTCCTTGAAGGTGAT-3' (G	iong et al., 2008);		
212	ToSPAG:	5'-GTAGTCAAGGTC	CAACAACACCAACT-3'	and		
213	5'-TGTTTTCACCATCTCCTTACTTC-3'; MPSP: 5'- ATTGCTGTTCAAGAAGAAGAAGACTGAC-3' and					
214	5'- TCTTCTCCTTCCAT	ACAACTTCATC-3'.				
215						
216	2.10. Data accessibility					
217	Associated data has been	deposited in Mendeley Data.				
218	https://data.mendeley.com	ı/datasets/bth7xjr2vs/draft?a=3	3ca0c3c2-52e6-4f6e-9743-0affebea	<u>336d</u>		
219						
220	3. Results					
221	3.1. Theileria orientalis in	fections in Bo-RBC-SCID mic	'e			
222	Bo-RBC-SCIE	mice inoculated with T. orien	etalis-infected bovine RBCs showed	d high parasitemia		
223	levels in their peripheral	blood, as reported previousl	y (Hagiwara et al., 1993). The m	norphology of the		
224	piroplasms in the RBCs v	vas pleomorphic in nature whi	ich included rod, comma, ovoid, Y	and tetrad shapes		
225	(Fig. 2A). At the beginni	ng of the infection when para	sitemia levels were low, rod or co	mma shapes were		
226	predominant, whereas lat	er in the infection, the numbe	r of oval and ovoid shapes increase	ed, as observed in		
227	naturally infected cattle (Gettinby, 1993). Parasite nucle	ei and cytoplasms were visualized l	by acridine orange		
228	staining and emitted a g	reen/yellow and orange light 13	, respectively (Fig. 2B). The Y-	and tetrad-shaped		

229	parasites within the RBCs displayed multiple nuclei, suggesting that they were multiplying by binary fission,
230	resulting in multiple daughter cells (Fig. 2B). A bar-like structure and a veil-like body, both of which
231	characterize bovine theileriosis caused by <i>T. orientalis</i> , were observed in infected RBCs from the cattle and
232	Bo-RBC-SCID mice (Fig. 2A and 2C), suggesting that the morphological changes occurring within the T .
233	orientalis-infected RBCs were similar in both host species.
234	Immunostaining with a monoclonal antibody specific for MPSP type 2 (Zhuang et al., 1994)
235	confirmed that the <i>T. orientalis</i> detected in the Bo-RBC-SCID mice were of the type 2 genotype that the
236	mice were originally infected with (Fig. 2D). Microscopic monitoring of blood smears indicated a gradual
237	increase in parasitemia in <i>T. orientalis</i> -infected Bo-RBC-SCID mice (Fig. 2E).
238	
239	3.2. Theileria orientalis in the salivary glands of H. longicornis nymphs
240	To investigate whether T. orientalis in Bo-RBC-SCID mice could be ingested by ticks and could
241	develop into sporozoite-stage parasites in their salivary glands, the larvae from H. longicornis were fed on
242	the infected mice, showing different parasitemia levels at various time points (Fig. 2E, black triangle). The
243	ticks were allowed to molt and were then fed on a non-infected BALB/c mouse to stimulate sporozoite
244	maturation (Fig. 1). Subsequent immunostaining with the anti-MPSP antibody confirmed the presence of
245	parasites in the acinar cells of the salivary glands from the nymphs (Fig. 3A). Furthermore, the infected acini

in the salivary glands appeared to have a multinucleate syncytium, indicating the presence of multiplesporozoites in the cytoplasm (Fig. 3B).

248	The nymph molting rate from all available infected larvae was calculated. Additionally, 10
249	nymphs previously fed on T. orientalis-infected Bo-RBC-SCID mice were randomly selected to measure the
250	salivary gland infection rate by MPSP immunostaining (Table 1). The molting rate ranged from 64% to 96%
251	(average 85%). Not all of the nymphs that emerged from the larvae contained detectable sporozoites, and the
252	rate of sporozoite infection ranged from 10% to 40% (average 25%).
253	After the ticks had detached, three of the infected mice were subjected to a second round of tick
254	feeding (group #5, group #10, and group #15; labeled 2nd in Table 1). The molting rates did not show a clear
255	correlation between the tick groups that had fed on the Bo-RBC-SCID mice at the two different time points,
256	suggesting that the timing of tick feeding, as well as piroplasma parasitemia in the infected mice, had no
257	apparent effect on tick fitness.
258	The tick infectivity could be lost upon parasite passage in mice. To address this concern, frozen
259	stocks of piroplasms sourced from the T. orientalis-infected Bo-RBC-SCID mice were injected into naive
260	Bo-RBC-SCID mice, which were then infested with tick larvae. The emerging nymphs (group #16 and group
261	#17 in Table 1) still contained detectable sporozoites, suggesting retention of parasite tick infectivity even
262	after piroplasm passaging in mice.

265	TOT_030000930, a putative gene in T. orientalis, is suspected to be an ortholog of p67 and
266	SPAG-1 in T. parva and T. annulata, respectively, due to some similarity in amino acid composition and
267	genomic location (Hayashida et al., 2012; Sivakumar et al., 2014). In the present study, we confirmed that
268	TOT_030000930 was transcribed in <i>T. orientalis</i> sporozoites and designated the gene and its protein product
269	as ToSPAG and ToSPAG, respectively. The cloned ToSPAG cDNA, which contains six exons and is 5,589
270	bp in length, encodes a 1,862 amino acid polypeptide with a predicted molecular mass of 194 kDa. The
271	cloned ToSPAG CDS (LC342224) differs from TOT_030000930 in its exon-intron boundary, perhaps
272	because the database genes were predicted computationally by using the T. orientalis expression sequence
273	tag (EST) pair gene models from the piroplasm stage (Supplementary Fig. S1). The ToSPAG gene sequenced
274	in the present study contains 13 single nucleotide polymorphism mutations that result in seven amino acid
275	changes, compared with the genome database sequence (TOT_030000930). These differences might result
276	from inconsistencies between the sources of <i>T. orientalis</i> used for the genome project and the present study,
277	although the parasites used in both investigations were of the type 2 genotype.
278	Despite the relatively low amino acid similarities between ToSPAG and p67/SPAG-1, they share
279	the same Pfam domain PF05642, which was identified as a sporozoite P67 surface antigen domain, and an
280	N-terminus 17 amino acid sequence, which is predicted to be an endoplasmic reticulum (ER) signal sequence
281	(Supplementary Fig. S1). The qRT-PCR results revealed that the <i>ToSPAG</i> gene expression level peaked at 16

282	48 h, from the beginning of nymphal feeding on non-infected BALB/c mice. ToSPAG transcription was still
283	active at 72 h, although the level of transcription was decreased compared with that at 48 h. By contrast,
284	MPSP gene transcription peaked at 72 h, as reported previously (Sako et al., 1999) (Fig. 4), suggesting a
285	difference in peak expression between these two possible surface antigens.
286	
287	3.4. Transcriptome analyses of piroplasms from cattle, Bo-RBC-SCID mice, and sporozoites from ticks
288	Using two lanes of the Illumina Hiseq2000 system, we obtained 33-102 million reads in total for
289	each dataset, and 28.6 million, 31.0 million, 0.7 million, and 2.2 million reads for Piroplasm SCID,
290	Piroplasm Cattle, Sporozoite 48 h, and Sporozoite 72 h, respectively, which uniquely mapped to the 4,001
291	annotated genes in the T. orientalis Shintoku genome (Hayashida et al., 2012). Because our samples,
292	especially the sporozoite samples that were prepared from whole salivary glands, contained a considerable
293	number of host reads, the mapped read numbers for Piroplasm SCID, Piroplasm Cattle, Sporozoite 48 h, and
294	Sporozoite 72 h were 51.0%, 30.4%, 2.1% and 6.5% of the total obtained reads, respectively (Supplementary
295	Table S1). Highly expressed genes were selected for each data set by RPKM values up to rank 50, and the
296	top 12 are listed in Tables 2 and 3. The full list of RPKM values is provided in Supplementary Table S2. In
297	Piroplasm SCID and Piroplasm Cattle alike, the hypothetical ER signal sequence-positive TOT_030000643
298	gene was expressed most abundantly. In OrthoMCL analysis, this gene was classified as a member of the
299	PiroF0000037 gene family, which consists of seven genes in <i>T. orientalis</i> , while four and zero homologous 17

300	genes were detected in T. parva and T. annulata, respectively, suggesting that this gene family might have
301	expanded preferentially in the T. orientalis genome (Hayashida et al., 2012). Furthermore, five and three of
302	the seven genes in the PiroF0000037 family were highly expressed in the piroplasm stage of T. orientalis in
303	cattle and SCID mice, respectively (Table 2), and most were predicted to be surface or secretory proteins,
304	suggesting essential and species-specific roles for these genes in the erythrocytic stages of T. orientalis. In
305	the sporozoite stage, both at the 48 h and 72 h time points, a known conserved hypothetical protein
306	TOT_030000930, now referred to as ToSPAG, was detected as an abundantly expressed gene (Table 3). The
307	expression of ToSPAG and MPSP in the sporozoite stage was also confirmed by qRT-PCR in different
308	biological replicates, and the expression pattern correlated with the transcriptomic data (Fig. 4,
309	Supplementary Table S2).
310	We then compared the mRNA gene expression levels between the piroplasm and sporozoite
311	stages. As a result of the lack of biological replicates, we analyzed DEGs using related replicates as follows:
312	one sample consisted of Piroplasm Cattle and Piroplasm SCID, and the other sample contained Sporozoite
313	48 h and Sporozoite 72 h. In total, 23 and 30 genes were identified that were expressed specifically at the
314	sporozoite and piroplasm stages, respectively (Fig. 5 and Supplementary Table S3). Most of the genes that
315	showed stage-specific expression were categorized within the highly expressed top 50 genes (Fig. 5,
316	Supplementary Table S3), suggesting that they may play pivotal roles at each developmental stage. The

317 transcriptomic analysis also suggested that ToSPAG was a highly expressed sporozoite-specific antigen in *T*.
318 *orientalis* (Table 3, Fig. 5, Supplementary Table S3).

319

```
320 4. Discussion
```

321 Investigating the developmental stages of *T. orientalis* in host animals and tick vectors is vital for 322 understanding its biological behavior. Currently, there is no established technology to culture any of the 323 developmental stages of T. orientalis, and ruminants are the only known mammalian hosts that can be 324 infected with this pathogen. Therefore, researchers have been compelled to rely on cattle and ticks that are 325 infected with T. orientalis, either naturally or experimentally, to isolate the blood and tick stages of the 326 parasite. A previous study showed that T. orientalis actively proliferates in SCID mice transfused with 327 bovine RBCs (Tsuji et al., 1992). Here, we employed the SCID mouse model to propagate T. orientalis, and 328 confirmed the active proliferation of piroplasms within the RBCs as early as 7 days p.i., a finding consistent 329 with a previous observation in cattle (Kawamoto et al., 1990). The presence of multiple piroplasms within 330 individual RBCs indicated that the piroplasms had multiplied by binary fission, which is common among 331 Babesia spp., T. annulata, and Theileria equi, but not for T. parva. The dividing forms were more common 332 in the infected Bo-RBC-SCID mice than in the cattle from which the parasites were obtained for the mouse 333 infections. This suggests that T. orientalis proliferation was more active in the Bo-RBC-SCID mice than in 334 cattle, a result possibly caused by the absence of host immune pressure in the former. Nevertheless, our

335	observations indicated that the parasite morphology and extra-parasitic structures (veil and bar) within the
336	RBCs of the Bo-RBC-SCID mice did not differ from those observed in the RBCs of T. orientalis-infected
337	cattle. The crystalline structure called the "veil" and the membrane structure known as the "bar" (Uilenberg,
338	1981) are formed in the cytoplasm of erythrocytes infected with piroplasms of several non-transforming
339	Theileria spp. including Theileria taurotragi, T. ovis, but not in T. parva and T. annulata. Because the veil
340	contained hemoglobin, it is believed to be part of the detoxification system (Sugimoto et al., 1992).
341	In our experiments, we also evaluated for the first time whether ticks fed on T. orientalis-infected
342	Bo-RBC-SCID mice could maintain the complete invertebrate vector life cycle of the parasite. Similar to
343	other Theileria spp., when T. orientalis is acquired by ticks during a blood meal it undergoes several
344	developmental stages, culminating in the colonization of the tick salivary glands by sporozoites (Sasaki et al.,
345	1990; Takahashi et al., 1993). Following the feeding of larvae on infected mice, sporozoites were
346	successfully retrieved from the resulting nymphal salivary glands. This indicated that the piroplasms from
347	infected mouse RBCs were capable of undergoing the complete life cycle in ticks, as is the case during
348	natural infections. The infection rates in molted nymphs, as determined by immunostaining of sporozoites in
349	the salivary glands were, however, low. This may be due to the imperfect transmission of <i>T. orientalis</i> from
350	mice to larval ticks and/or issues associated with the development of the kinete stage in the tick gut,
351	migration of kinetes to salivary glands, and sporozoite maturation. For instance, tick immunity may be a
352	major deterrent factor in parasite development as previously suggested (Hajdušek et al., 2013), leading to 20

353	low rates of sporozoite infection in tick salivary glands. Detailed analyses of T. orientalis infection in larval
354	ticks immediately after repletion and at defined intervals might explain whether the low infection rate in
355	nymphal salivary glands is due to imperfect transmission or factors influencing the development of T .
356	orientalis in infected ticks.
357	Unfortunately, our attempts to infect naive Bo-RBC-SCID mice with the parasitized nymphal
358	ticks failed (data not shown). This outcome was not entirely unexpected, since development of schizonts is
359	contingent on the presence of nucleated bovine cells (Shaw, 2003), for which murine cells do not offer a
360	viable alternative. Nonetheless, recent research on humanized mice has shown that <i>Plasmodium falciparum</i>
361	sporozoite infection could be successfully established in a chimeric human liver mouse model (Vaughan et
362	al., 2015). Adapting the same technology to "bovinize" mice with bovine monocytes could thus provide a
363	model for the maintenance of the complete <i>T. orientalis</i> life cycle in mice.
364	Although the genome sequences of three Theileria spp. (T. parva, T. annulata and T. orientalis)
365	have been completed (Gardner et al., 2005; Pain et al., 2005; Hayashida et al., 2012), only EST and
366	massively parallel signature sequencing (MPSS) data for the piroplasm stages of <i>T. orientalis</i> , <i>T. parva</i> and <i>T.</i>
367	annulata, and the schizont stages of T. parva and T. annulata (Bishop et al., 2005; Hayashida et al., 2012)
368	are available. The proteomic data for <i>T. parva</i> sporozoites have also been published recently (Nyagwange et
369	al., 2017), but a full transcriptomic analysis of the sporozoite stage of any Theileria sp. has not been
370	conducted. Here, we successfully obtained transcriptomics data from both the piroplasm and sporozoite 21

371	stages of <i>T. orientalis</i> using our experimental model. In our data, approximately 84.4% and 52.4% of the
372	genes were detected to be moderately or highly expressed (>10 RPKM) in the piroplasm and sporozoite
373	stages, respectively (Supplementary Table S1), indicating that a larger number of genes were transcribed in
374	the piroplasm stage than in the sporozoite stage. The results for the piroplasm were consistent with
375	observations in <i>T. parva</i> , in which 83% of potentially detectable genes were identified in the schizont stage
376	by MPSS analysis (Bishop et al., 2005). By contrast, fewer genes were expressed in the sporozoite stage. The
377	biological significance of this observation is unclear, but it may indicate that genes in the sporozoite stage
378	are more tightly regulated in a stage-specific manner.
379	Whole genome transcriptomic analysis of the piroplasm and sporozoite stages identified
380	stage-specific gene expression patterns. Among the 53 stage-specific genes we identified, the expression of a
381	possible secretory protein (TOT_030000643) and four other genes in the same PiroF000037 family was
382	remarkably higher in the piroplasm stage (Supplementary Table S3 and Table 2). The orthologue family
383	PiroF000037 consists of seven genes that are present on Chr. 2, 3 and 4. The presence of these genes in <i>T</i> .
384	orientalis causes synteny breaks between T. parva or T. annulata. The abundancy of the transcripts coupled
385	with the fact that the PiroF000037 gene family showed a greater expansion in T. orientalis compared with
386	other <i>Theileria</i> spp. may hint at the biological importance of this gene family in blood-stage <i>T. orientalis</i> .
387	ToSPAG, which is the direct ortholog of the $p67$ and SPAG-1 genes, was identified as a gene
388	expressed specifically in the <i>T. orientalis</i> sporozoite stage and its transcription was experimentally confirmed. 22

389	The immunogenicity, function(s), genetic diversity, and vaccine potential of ToSPAG merits further
390	investigation, as its p67 and SPAG-1 orthologs are promising vaccine candidates in T. parva and T. annulata,
391	respectively (Nene et al., 2016). With the exception of <i>ToSPAG</i> , the remaining stage-specific genes were
392	annotated as encoding hypothetical proteins. Further studies to unravel the roles of these sporozoite- and
393	piroplasm-specific genes will help researchers gain a better understanding of the biology of theileriosis, as
394	well as provide potential new targets for parasite control strategies.
395	In conclusion, our mouse-tick infection model is a promising tool that can be effectively
396	employed in Theileria research. In addition, the whole genome transcriptomic data generated in the present
397	study will provide useful insight into the biology of this parasite as well as potentially contributing toward
398	the development of efficient control measures targeting oriental theileriosis.
399	
400	Acknowledgements
401	The authors acknowledge Ms. Hiroko Yamamoto (National Research Center for Protozoan
402	Diseases, Obihiro University of Agriculture and Veterinary Medicine, Japan) for her excellent technical
403	assistance. We thank Dr. Axel Martinelli (Global Station for Zoonosis Control, GI-CoRE, Hokkaido
404	University) and Kate Fox, DPhil, from the Edanz Group (www.edanzediting.com/ac), for editing a draft of
405	this manuscript. This work was supported by grants from MEXT KAKENHI (26850179 to KH, 25292169
406	and 2604087 to NY, 16K18794 to RUS), from the Science and Technology Research Promotion Program for 23

407	Agriculture, Forestry, Fisheries and Food Industry, Japan, and from the project of the NARO Biotechnology
408	Research Advancement Institution (a special project scheme for the regional development strategy), Japan,
409	and was partially supported by the International Collaborative Research Program for Tackling NTD
410	(Neglected Tropical Disease) Challenges in African countries (JP18jm0510001), Japan Agency for Medical
411	Research and Development (AMED), Japan. This work was also partially supported by MEXT, Japan as a
412	project of the Joint Usage/Research Center. The funders had no role in the study design, data collection and
413	analysis, the decision to publish, or preparation of the manuscript.
414	
415	References
416	Bishop, R., Nene, V., Staeyert, J., Rowlands, J., Nyanjui, J., Osaso, J., Morzaria, S., Musoke, A., 2003.
417	Immunity to East Coast fever in cattle induced by a polypeptide fragment of the major surface coat
418	protein of <i>Theileria parva</i> sporozoites. Vaccine 21, 1205–1212.
419	Bishop, R., Shah, T., Pelle, R., Hoyle, D., Pearson, T., Haines, L., Brass, A., Hulme, H., Graham, S.P.,
420	Taracha, E.L.N., Kanga, S., Lu, C., Hass, B., Wortman, J., White, O., Gardner, M.J., Nene, V., de
421	Villiers, E.P., 2005. Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals
422	that the majority of genes are transcriptionally active in the schizont stage. Nucleic Acids Res. 33,
423	5503-5511. https://doi.org/10.1093/nar/gki818

- Boulter, N., Hall, R., 1999. Immunity and vaccine development in the bovine theilerioses. Adv. Parasitol. 44,
 425 41–97.
- 426 Fujisaki, K., 1978. Development of acquired resistance precipitating antibody in rabbits experimentally
- 427 infested with females of *Haemaphysalis longicornis* (Ixodoidea: Ixodidae). Natl. Inst. Anim. Health Q.
- 428 (Tokyo). 18, 27–38.
- 429 Gardner, M.J., Bishop, R., Shah, T., de Villiers, E.P., Carlton, J.M., Hall, N., Ren, Q., Paulsen, I.T., Pain, A.,
- 430 Berriman, M., Wilson, R.J.M., Sato, S., Ralph, S.A., Mann, D.J., Xiong, Z., Shallom, S.J., Weidman, J.,
- 431 Jiang, L., Lynn, J., Weaver, B., Shoaibi, A., Domingo, A.R., Wasawo, D., Crabtree, J., Wortman, J.R.,
- 432 Haas, B., Angiuoli, S. V, Creasy, T.H., Lu, C., Suh, B., Silva, J.C., Utterback, T.R., Feldblyum, T. V,
- 433 Pertea, M., Allen, J., Nierman, W.C., Taracha, E.L.N., Salzberg, S.L., White, O.R., Fitzhugh, H.A.,
- 434 Morzaria, S., Venter, J.C., Fraser, C.M., Nene, V., 2005. Genome sequence of Theileria parva, a
- 435 bovine pathogen that transforms lymphocytes. Science 309, 134–137.
 436 https://doi.org/10.1126/science.1110439
- 437 Gettinby, G., 1993. The epidemiology of theileriosis in Africa. Parasitol. Today 9, 272.
- 438 https://doi.org/10.1016/0169-4758(93)90075-Q
- 439 Gong, H., Liao, M., Zhou, J., Hatta, T., Huang, P., Zhang, G., Kanuka, H., Nishikawa, Y., Xuan, X., Fujisaki,
- 440 K., 2008. Gene silencing of ribosomal protein P0 is lethal to the tick *Haemaphysalis longicornis*. Vet.
- 441 Parasitol. 151, 268–278. https://doi.org/10.1016/j.vetpar.2007.11.015

- 442 Hagiwara, K., Tsuji, M., Ishihara, C., Tajima, M., Kurosawa, T., Iwai, H., Takahashi, K., 1993. Theileria
- 443 *sergenti* infection in the Bo-RBC-SCID mouse model. Parasitol. Res. 79, 466–470.
- 444 Hajdušek, O., Síma, R., Ayllón, N., Jalovecká, M., Perner, J., de la Fuente, J., Kopáček, P., 2013. Interaction
- 445 of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 3, 26.
 446 https://doi.org/10.3389/fcimb.2013.00026
- 447 Hayashida, K., Hara, Y., Abe, T., Yamasaki, C., Toyoda, A., Kosuge, T., Suzuki, Y., Sato, Y., Kawashima,
- 448 S., Katayama, T., Wakaguri, H., Inoue, N., Homma, K., Tada-Umezaki, M., Yagi, Y., Fujii, Y., Habara,
- 449 T., Kanehisa, M., Watanabe, H., Ito, K., Gojobori, T., Sugawara, H., Imanishi, T., Weir, W., Gardner,
- 450 M., Pain, A., Shiels, B., Hattori, M., Nene, V., Sugimoto, C., 2012. Comparative genome analysis of
- 451 three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of
- 452 *Theileria*-induced leukocyte transformation. MBio 3, e00204-12-e00204-12.
- 453 https://doi.org/10.1128/mBio.00204-12
- 454 Honda, Y., Waithaka, M., Taracha, E.L., Duchateau, L., Musoke, A.J., McKeever, D.J., 1998. Delivery of
- 455 the *Theileria parva* p67 antigen to cattle using recombinant vaccinia virus: IL-2 enhances protection.
- 456 Vaccine 16, 1276–1282.
- 457 Irvin, A.D., 1987. Characterization of species and strains of *Theileria*. Adv. Parasitol. 26, 145–97.

- Iwasaki, T., Kakuda, T., Sako, Y., Sugimoto, C., Onuma, M., 1998. Differentiation and quantification of
 Theileria sergenti piroplasm types using type-specific monoclonal antibodies. J. Vet. Med. Sci. 60,
 665–669.
- 461 Izzo, M.M., Poe, I., Horadagoda, N., De Vos, A.J., House, J.K., 2010. Haemolytic anaemia in cattle in NSW
- 462 associated with *Theileria infections*. Aust. Vet. J. 88, 45–51.
 463 https://doi.org/10.1111/j.1751-0813.2009.00540.x
- 464 Kaba, S.A., Schaap, D., Roode, E.C., Nene, V., Musoke, A.J., Vlak, J.M., van Oers, M.M., 2004. Improved
- 465 immunogenicity of novel baculovirus-derived *Theileria parva* p67 subunit antigens. Vet. Parasitol. 121,
- 466 53-64. https://doi.org/10.1016/j.vetpar.2004.02.013
- 467 Kawamoto, S., Takahashi, K., Kurosawa, T., Sonoda, M., Onuma, M., 1990. Intraerythrocytic schizogony of
- 468 *Theileria sergenti* in cattle. Nihon Juigaku Zasshi. 52, 1251–1259.
- 469 McFadden, A.M.J., Rawdon, T.G., Meyer, J., Makin, J., Morley, C.M., Clough, R.R., Tham, K., Mullner, P.,
- 470 Geysen, D., 2011. An outbreak of haemolytic anaemia associated with infection of *Theileria orientalis*
- 471 in naive cattle. N. Z. Vet. J. 59, 79–85. https://doi.org/10.1080/00480169.2011.552857
- 472 McKeever, D.J., 2007. Live immunisation against *Theileria parva*: containing or spreading the disease?
- 473 Trends Parasitol. 23, 565–568. https://doi.org/10.1016/j.pt.2007.09.002
- 474 Morrison, W.I., McKeever, D.J., 2006. Current status of vaccine development against *Theileria* parasites.
- 475 Parasitology 133, S169-S187. https://doi.org/10.1017/S0031182006001867

- 476 Musoke, A., Morzaria, S., Nkonge, C., Jones, E., Nene, V., 1992. A recombinant sporozoite surface antigen
- 477 of *Theileria parva* induces protection in cattle. Proc. Natl. Acad. Sci. U. S. A. 89, 514–518.
- 478 Nene, V., Kiara, H., Lacasta, A., Pelle, R., Svitek, N., Steinaa, L., 2016. The biology of *Theileria parva* and
- 479 control of East Coast fever Current status and future trends. Ticks Tick. Borne. Dis. 7, 549–564.
- 480 https://doi.org/10.1016/j.ttbdis.2016.02.001
- 481 Nene, V., Musoke, A., Gobright, E., Morzaria, S., 1996. Conservation of the sporozoite p67 vaccine antigen
- 482 in cattle-derived *Theileria parva* stocks with different cross-immunity profiles. Infect. Immun. 64,
- 483 2056–2061.
- 484 Nyagwange, J., Tijhaar, E., Ternette, N., Mobegi, F., Tretina, K., Silva, J.C., Pelle, R., Nene, V., 2018.
- 485 Characterization of the *Theileria parva* sporozoite proteome. Int. J. Parasitol. 48, 265–273.
- 486 https://doi.org/10.1016/j.ijpara.2017.09.007
- 487 Oura, C.A.L., Bishop, R., Ashimwe, B.B., Spooner, P., Lubega, G.W., Tait, A., 2007. Theileria parva live
- 488 vaccination: parasite transmission, persistence and heterologous challenge in the field. Parasitology 134,
- 489 1205–1213. https://doi.org/10.1017/S0031182007002557
- 490 Pain, A., Renauld, H., Berriman, M., Murphy, L., Yeats, C.A., Weir, W., Kerhornou, A., Aslett, M., Bishop,
- 491 R., Bouchier, C., Cochet, M., Coulson, R.M.R., Cronin, A., de Villiers, E.P., Fraser, A., Fosker, N.,
- 492 Gardner, M., Goble, A., Griffiths-Jones, S., Harris, D.E., Katzer, F., Larke, N., Lord, A., Maser, P.,
- 493 McKellar, S., Mooney, P., Morton, F., Nene, V., O'Neil, S., Price, C., Quail, M.A., Rabbinowitsch, E.,

494	Rawlings, N.D., Rutter, S., Saunders, D., Seeger, K., Shah, T., Squares, R., Squares, S., Tivey, A.,
495	Walker, A.R., Woodward, J., Dobbelaere, D.A.E., Langsley, G., Rajandream, MA., McKeever, D.,
496	Shiels, B., Tait, A., Barrell, B., Hall, N., 2005. Genome of the host-cell transforming parasite Theileria
497	annulata compared with T. parva. Science 309, 131–133. https://doi.org/10.1126/science.1110418
498	Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for differential
499	expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
500	https://doi.org/10.1093/bioinformatics/btp616
501	Sako, Y., Sugimoto, C., Onuma, M., 1999. Expression of a major piroplasm surface protein of Theileria
502	sergenti in sporozoite stage. J. Vet. Med. Sci. 61, 275–277.
503	Sasaki, N., Takahashi, K., Kawamoto, S., Kurosawa, T., Sonoda, M., Kawai, S., 1990. Maturation of
504	Theileria sergenti in salivary glands of Haemaphysalis longicornis induced by temperature stimulation.
505	Nihon Juigaku Zasshi. 52, 495–501.
506	Shaw, M.K., 2003. Cell invasion by <i>Theileria</i> sporozoites. Trends Parasitol. 19, 2–6.
507	Sivakumar, T., Hayashida, K., Sugimoto, C., Yokoyama, N., 2014. Evolution and genetic diversity of
508	Theileria. Infect. Genet. Evol. 27, 250-263. https://doi.org/10.1016/j.meegid.2014.07.013
509	Sugimoto, C., Kawazu, S., Sato, M., Kamio, T., Fujisaki, K., 1992. Preliminary biochemical characterization
510	of "veil" structure purified from Theileria sergenti-, T. buffeli- and T. orientalis-infected bovine
511	erythrocytes. Parasitology 104 (Pt 2), 207–213. 29

- 512 Takahashi, K., Kawai, S., Yaehata, K., Kawamoto, S., Hagiwara, K., Kurosawa, T., Tajima, M., Sonoda, M.,
- 513 1993. Sporogony of *Theileria sergenti* in the salivary glands of the tick vector *Haemaphysalis*
- 514 *longicornis*. Parasitol. Res. 79, 1–7.
- 515 Terada, Y., Ishida, M., Yamanaka, H., 1995. Resistibility to Theileria sergenti infection in Holstein and
- 516 Japanese Black cattle. J. Vet. Med. Sci. 57, 1003–1006.
- 517 Tsuji, M., Hagiwara, K., Takahashi, K., Ishihara, C., Azuma, I., Siddiqui, W.A., 1992. Theileria sergenti
- 518 proliferates in SCID mice with bovine erythrocyte transfusion. J. Parasitol. 78, 750–752.
- 519 Vaughan, A.M., Pinapati, R.S., Cheeseman, I.H., Camargo, N., Fishbaugher, M., Checkley, L.A., Nair, S.,
- 520 Hutyra, C.A., Nosten, F.H., Anderson, T.J.C., Ferdig, M.T., Kappe, S.H.I., 2015. Plasmodium
- 521 falciparum genetic crosses in a humanized mouse model. Nat. Methods 12, 631-633.
- 522 https://doi.org/10.1038/nmeth.3432
- 523 Vega, C.A., Buening, G.M., Green, T.J., Carson, C.A., 1985. In vitro cultivation of *Babesia bigemina*. Am. J.
- 524 Vet. Res. 46, 416–420.
- 525 Yokoyama, N., Sivakumar, T., Ota, N., Igarashi, I., Nakamura, Y., Yamashina, H., Matsui, S., Fukumoto, N.,
- 526 Hata, H., Kondo, S., Oshiro, M., Zakimi, S., Kuroda, Y., Kojima, N., Matsumoto, K., Inokuma, H.,
- 527 2012. Genetic diversity of *Theileria orientalis* in tick vectors detected in Hokkaido and Okinawa, Japan.
- 528 Infect. Genet. Evol. 12, 1669–1675. https://doi.org/10.1016/j.meegid.2012.07.007

529	Yokoyama,	N.,	Ueno,	А.,	Mizuno,	D.,	, Kuboki,	Ν.,	Khukhuu,	А.,	Igarashi,	Ι.,	Miyahara,	Т.,	Shiraishi,	Τ.,
-----	-----------	-----	-------	-----	---------	-----	-----------	-----	----------	-----	-----------	-----	-----------	-----	------------	-----

- 530 Kudo, R., Oshiro, M., Zakimi, S., Sugimoto, C., Matsumoto, K., Inokuma, H., 2011. Genotypic
- 531 diversity of *Theileria orientalis* detected from cattle grazing in Kumamoto and Okinawa prefectures of
- 532 Japan. J. Vet. Med. Sci. 73, 305–312.
- 533 Zhuang, W., Sugimoto, C., Matsuba, T., Niinuma, S., Murata, M., Onuma, M., 1994. Analyses of antigenic
- and genetic diversities of *Theileria sergenti* piroplasm surface proteins. J. Vet. Med. Sci. 56, 469–473.
- 535

537 Figure legends

538 Fig. 1. Experimental procedure used to generate the mouse-tick *Theileria orientalis* infection model. 539 Splenectomized SCID mice were transfused with uninfected bovine red blood cells (RBCs) 540 (Bo-RBC-SCID), and infected with T. orientalis. Whole blood was collected from the infected 541 Bo-RBC-SCID mice after parasitemia developed, and the piroplasms contained within it were purified. 542 Larval ticks were fed on T. orientalis-infected Bo-RBC-SCID mice, engorged ticks were allowed to molt 543 into nymphs, and sporozoite-containing salivary glands were collected after a feeding stimulation was 544 conducted on non-infected BALB/c mice for 48 to 72 h. 545 546 Fig. 2. Theileria orientalis parasitization of transfused bovine red blood cell (Bo-RBC) in SCID mouse A) 547 Thin blood smears prepared from T. orientalis-infected Bo-RBC-SCID mice were stained with Giemsa 548 solution and then observed under a light microscope (×1,000). Note that the blood stages of the parasite are 549 pleomorphic and that clear membrane-like bar (BA) and ill-defined veil (VE) structures are visible within the 550 infected RBCs. (B) Acridine orange-stained T. orientalis in the RBCs from a Bo-RBC-SCID mouse. The

551 parasite nuclei and cytoplasm appear as green/yellow or orange, respectively (×1,000). (C). A thin smear

- 552 prepared from *T. orientalis*-infected cattle blood, with which the Bo-RBC-SCID mice were infected, was
- 553 stained with Giemsa solution and then observed under a light microscope (×1,000). (D) Immunofluorescence
- 554 (×1,000) of *T. orientalis* within two Bo-RBC-SCID mouse RBCs stained with an anti- major piroplasm

555	surface protein (MPSP) monoclonal antibody (green). DAPI was used for nuclear staining (blue). (E)
556	Dynamics of <i>T. orientalis</i> parasitemia in the Bo-RBC-SCID mice. Triangles indicate the parasitemia level
557	and days p.i. when the larval ticks were allowed to feed on the individual Bo-RBC-SCID mice.
558	
559	Fig. 3. Immunofluorescence staining of <i>Theileria orientalis</i> major piroplasm surface protein (MPSP) in the
560	salivary glands of <i>H. longicornis</i> . Whole mount (A, $\times 100$) and frozen slide sections (B, $\times 1,000$) from <i>H</i> .
561	longicornis salivary glands were each stained with an anti-MPSP monoclonal antibody (green). DAPI was
562	used to stain the nuclei (blue in A and red in B).
563	
564	Fig. 4. Expression profiles of major piroplasm surface protein (MPSP) and T. orientalis sporozoite surface
565	antigen (ToSPAG) mRNAs in Theileria orientalis-infected Haemaphysalis longicornis. cDNA prepared
566	from the total RNA extracted from the salivary glands of non-infected (Tick-NI), 48 h fed (Sporozoite 48 h),
567	and 72 h fed (Sporozoite 72 h) T. orientalis-infected nymphal ticks was subjected to quantitative RT-PCR
568	(qRT-PCR) assays to calculate the mRNA levels of the MPSP and ToSPAG genes. Data were normalized by
569	qPCR analysis of P0 levels in the cDNA samples and are presented here as the gene expression values
570	relative to those for the non-infected ticks. Data represent the means \pm S.E. of triplicate samples.
571	

572	Fig. 5. Heatmap illustrating the relative expression levels of the differentially expressed genes (DEGs) in the
573	piroplasm and sporozoite stages of Theileria orientalis. Twenty-three and 30 genes were expressed
574	specifically in the sporozoite and piroplasm stages, respectively. The reads per kilobase per million (RPKM)
575	values for each gene were converted to standardized values (Z-scores). The scale bar is shown with the
576	minimum expression value for each gene in red and the maximum value in green. The full DEG list is shown
577	in Supplementary Table S2. The highly expressed genes specific to each developmental stage are indicated
578	on the right-hand side. Note that PiroF000037 gene family members and the ToSPAG gene were among the
579	highly expressed genes in the piroplasm and sporozoite stages, respectively.
580	
581	Supplementary figure legend
582	
583	Supplementary Fig. S1. Gene structure of <i>T. orientalis</i> sporozoite surface antigen (<i>ToSPAG</i>), an ortholog
584	of p67 gene in Theileria orientalis. (A) Shematic representation of intron-exon boundaries in previously
585	annotated TOT_030000930 and ToSPAG _LC342224 identified in this study. Blue indicates the same
586	intron prediction, while red is a newly identified intron. (B) Amino acid sequence of ToSPAG (LC342224).
587	The gene contained a N-terminal endoplasmic reticulum (ER) signal sequence as predicted by signal P 4.1
588	server with a cleavage site between positions 19 and 20 (bold). A Pfam domain (PF05642.10; Sporozoite
589	P67 surface antigen; and amino acid (a.a. 876-1056) were also found (underlined). 34

- 590 Appendix A. Supplementary data:
- 591 Supplementary Fig. S1. Gene structure of *T. orientalis* sporozoite surface antigen (*ToSPAG*), an
- 592 ortholog of *p67* gene in *Theileria orientalis*
- 593 Supplementary Table S1. Number of reads obtained for each transcriptome data set
- 594 Supplementary Table S2. Complete list of genes and their calculated reads per kilobase per million
- 595 (RPKM) values in *Theileria orientalis* piroplasm and the sporozoite stages
- 596 Supplementary Table S3. The differentially expressed genes (DEGs) in *Theileria orientalis* piroplasm
- 597 and the sporozoite stages

Tick group	Parasitemia ji	n mouse ^a	No. engorged	No. molted tic	ks No. infected ticks ^c
ID			ticks	(% ^b)	(% ^d)
	Beginning	of End of			
	feeding	feeding			
#3	9%	20%	10	9 (90.0)	n.d.
#4	8%	8%	89	66 (74.2)	n.d.
#5	6%	20%	34	31 (91.2)	3 (30)
#5 (2nd ^e)	20%	20%	58	54 (93.1)	4 (40)
#7	10%	12%	105	93 (88.6)	1 (10)
#8	5%	5%	64	45 (70.3)	2 (20)
#10	10%	11%	28	18 (64.3)	1 (10)
#10 (2nd ^e)	11%	11%	42	40 (95.2)	n.d.
#11	3%	3%	109	85 (78.0)	n.d.
#15	5%	11%	77	74 (96.1)	4 (40)
#15 (2nd ^e)	11%	27%	56	53 (94.6)	n.d.
#16 (Pass ^f)	1%	4%	297	270 (90.9)	4 (40%)
#17 (Pass ^f)	1%	9%	222	180 (81.1)	1 (10)
Total			1191	1018 (85.5)	20 (25)

599 **Table 1.** Theileria orientalis infection in Haemaphysalis longicornis

600

601 ^aEach tick group was fed on *T. orientalis*–infected Bo-RBC-SCID mice (SCID mice that had been transfused

602 with bovine red blood cells) with different parasitemia levels.

^bExpressed as the percentage of engorged ticks in each group.

604 ^cA nymphal tick was considered positive for *T. orientalis* infection if major piroplasm surface protein

605 (MPSP) antigen was observed in its salivary glands by immunofluorescent staining.

^dExpressed as the percentage of 10 molted ticks examined for MPSP antigen in each tick group.

^eThe same Bo-RBC-SCID mouse was subjected to a second round of tick feeding after completion of the
 first feed.

^fTick groups 16 and 17 were fed on mice that were infected by injecting cryopreserved *T*.
 orientalis-containing RBCs sourced from the Bo-RBC-SCID mice.

611 n.d., Not done.

				Expression		
				Value	OrthoMCL ^c	
Data set ^a	Rank ^b	Gene name	Annotation	(RPKM)	gene Family	ER_Signal ^d
Piroplasm Cattle	1	TOT_030000643	conserved hypothetical protein	22,004.47	PiroF0000037	Y
Piroplasm Cattle	2	TOT_010000613	conserved hypothetical protein	8,798.96	PiroF0000199	Y
Piroplasm Cattle	3	TOT_040000598	conserved hypothetical protein	7,111.98	PiroF0000037	Y
Piroplasm Cattle	4	TOT_030000565	Tocp1 variant tocp4	4,928.37	PiroF0100002	Ν
Piroplasm Cattle	5	TOT_030000105	hypothetical protein	4,150.30	PiroF0002890	Ν
Piroplasm Cattle	6	TOT_010000558	conserved hypothetical protein	4,099.73	PiroF0000199	Y
Piroplasm Cattle	7	TOT_040000842	conserved hypothetical protein	3,901.31	PiroF0000199	Y
Piroplasm Cattle	8	TOT_020000484	conserved hypothetical protein	3,354.05	PiroF0001462	Ν
Piroplasm Cattle	9	TOT_040000841	conserved hypothetical protein	3,216.60	PiroF0000037	Y
Piroplasm Cattle	10	TOT_020001109	conserved hypothetical protein	2,223.05	PiroF0000037	Ν
Piroplasm Cattle	11	TOT_020000353	conserved hypothetical protein	2,038.11	PiroF0000037	Y
Piroplasm Cattle	12	TOT_040000718	hypothetical protein	1,847.49	PiroF0003910	Ν
Piroplasm SCID	1	TOT_030000643	conserved hypothetical protein	29,153.54	PiroF0000037	Y
Piroplasm SCID	2	TOT_040000822	histone H2B variant 1	10,214.90	PiroF0000463	Ν
Piroplasm SCID	3	TOT_030000565	Tocp1 variant tocp4	10,119.96	PiroF0100002	Ν
Piroplasm SCID	4	TOT_010001167	conserved hypothetical protein	9,326.28	PiroF0000199	Y
Piroplasm SCID	5	TOT_040000710	conserved hypothetical protein	8,618.76	PiroF0000012	Y
Piroplasm SCID	6	TOT_040000598	conserved hypothetical protein	7,519.27	PiroF0000037	Y
Piroplasm SCID	7	TOT_010000613	conserved hypothetical protein	6,264.98	PiroF0000199	Y
Piroplasm SCID	8	TOT_020000484	conserved hypothetical protein	5,222.67	PiroF0001462	Ν
Piroplasm SCID	9	TOT_040000842	conserved hypothetical protein	5,177.38	PiroF0000199	Y
Piroplasm SCID	10	TOT_010000558	conserved hypothetical protein	4,846.78	PiroF0000199	Y
			TS-Ikeda type piroplasm			
Piroplasm SCID	11	TOT_020000539	surface protein (p23)	4,788.67	PiroF0003021	Y
Piroplasm SCID	12	TOT_020000353	conserved hypothetical protein	3,926.88	PiroF0000037	Y

Table 2. Genes identified as highly expressed in the piroplasm stage of *Theileria orientalis*

^aPiroplasm Cattle: Transcript data set obtained from piroplasms isolated from infected cattle blood.
Piroplasm SCID: Transcript data set obtained from piroplasms isolated from infected SCID mice that had
been transfused with bovine red blood cells (Bo-RBC-SCID).

- ⁶17 ^bTranscripts detected from each data set were ranked by reads per kilobase per million (RPKM) value, and
- 618 the top 12 genes are shown.
- 619 ^cThe orthologous gene family numbers were assigned according to Hayashida et al., 2012.
- 620 ^dThe endoplasmic reticulum (ER) signal sequences were predicted using SignalP v4.1.

					Expression		
					Value	OrthoMCL	
Data set ^a	Rank ^b	Gene ID	annotation		(RPKM)	gene Family ^c	ER_Signal ^d
Sporozoite 48 h	1	TOT_040000822	histone H2B va	riant 1	2,966.53	PiroF0000463	Ν
			conserved	hypothetical			
Sporozoite 48 h	2	TOT_010000166	protein		2,356.16	PiroF0002919	Y
			conserved	hypothetical			
Sporozoite 48 h	3	TOT_030000549	protein		1,827.77	PiroF0003830	Ν
Sporozoite 48 h	4	TOT_030000930	p67 ortholog, T	oSPAG	1,567.16	PiroF0003159	Y
Sporozoite 48 h	5	TOT_020000536	hypothetical pro	otein	1,135.98	PiroF0003777	Ν
Sporozoite 48 h	6	TOT_030000105	hypothetical pro	otein	1,122.61	PiroF0002890	Ν
			conserved	hypothetical			
Sporozoite 48 h	7	TOT_010000695	protein		900.27	PiroF0002220	Ν
Sporozoite 48 h	8	TOT_010000987	uncharacterized	l protein	728.86	PiroF0000065	Ν
Sporozoite 48h	9	TOT_010000624	ubiquitin		655.51	PiroF0000302	Ν
Sporozoite 48 h	10	TOT_020001102	actin 1		609.26	PiroF0001924	Ν
			conserved	hypothetical			
Sporozoite 48 h	11	TOT_020000308	protein		598.85	PiroF0003787	Ν
			conserved	hypothetical			
Sporozoite 48 h	12	TOT_030000283	protein		560.89	PiroF0003849	Y
Sporozoita 72 h	1	TOT 040000822	histone U2D ve	right 1	6 500 05	Dire E0000462	N
Sporozoite 72 h	1	TOT_040000822			0,399.93	Pilor 0000403	N
Sporozoite /2 h	2	101_040000288	uncharacterized		3,341.37	P1r0F0002551	IN
S	2	TOT 010001070	conserved	nypotnetical	2 014 (0	D	N
Sporozoite /2 n	3	101_010001072	protein	1	2,814.68	P1r0F0002257	N
G		TOT 020000025	conserved	nypothetical	0.500.51	D: E0000045	
Sporozoite 72 h	4	TOT_030000035	protein		2,538.51	PiroF0002945	N
Sporozoite 72 h	5	101_030000105	hypothetical pro	otein	2,468.09	PiroF0002890	N
			conserved	hypothetical		D : D 0000 (000	
Sporozoite 72 h	6	TOT_010000135	protein		2,288.92	P1roF0003680	Ν
			conserved	hypothetical			
Sporozoite 72 h	7	TOT_010000166	protein		1,936.43	PiroF0002919	Y
Sporozoite 72 h	8	TOT_030000835	hypothetical pro	otein	1,827.83	PiroF0003809	Ν

Table 3. Genes identified as highly expressed in the sporozoite stage of *Theileria orientalis*

			conserved hypothetical			
Sporozoite 72 h	9	TOT_040000609	protein	1,728.56	PiroF0002753	Ν
Sporozoite 72 h	10	TOT_040000478	uncharacterized protein	1,706.60	PiroF0003088	Y
Sporozoite 72 h	11	TOT_030000930	p67 ortholog, ToSPAG	1,653.99	PiroF0003159	Y
Sporozoite 72 h	12	TOT_020000536	hypothetical protein	1,525.12	PiroF0003777	Ν

623 ^aSporozoite 48 h: Transcript data set obtained from sporozoite-infected tick salivary glands collected at 48 h

624 post-infestation. Sporozoite 72 h: Transcript data set obtained from sporozoite-infected tick salivary glands

625 collected at 72 h post-infestation.

626 ^bTranscripts detected from each data set were ranked by reads per kilobase per million (RPKM) value, and

627 the top 12 genes are shown.

⁶28 ^cThe orthologous gene family numbers were assigned according to Hayashida et al., 2012.

^d The endoplasmic reticulum (ER) signal sequences were predicted using SignalP v4.1.

C)

B) >ToSPAG_LC342224

MKLLYILLIVPVFFVTGVEEPEGTLSTGSSGRDGATDSTGLVATSESSQVVNSNVEQVQQESQVQEQHSENGHLQQEAGT NGLPGQETDGRSEDSLTENGHLKGPQASSSLPEGGGAGAESVPRPSTGQEEQLGGARSTEDNSAVPSSSGSDTSNSHGDG GQSTRDNQNGRQNVLSPPEEENRETTSLGTVSSDLGSQGQQHQLGASRSPADPVQGPGTSSLGTEEEVRRDGENSDSRD PVSGEATGLAPGSPSKPGEADSRGTVVSREEGQESPTDESENSLGRSGERGPAAPGVEHRDSGDGVTLGDGGLGSAGGLR VEPSPSGDLSSQVPQVQHTDPSGRADGLSDPAVGVPTLTQDGKQESSEEDDDDEEEDDDDEEEDDDDEDEDEVSSQGH GDQLPGQLGEPGQDGNLGQDGRQTSQVNPGSSGGPQVTVSGVPDSTAVGGVGAVSPTDQETVRLPTGEVPSVQRTGG GLVEQQQQESQVQERNGELTGVRGPTVGQGSPDLQQVPRTEASQGLNTVVREPGSVSDVSTEGLKGPGQEQTDPNLRT EEEVQRVASSEAPGGDGVRDGTGNRPLEQGSEPAAVVSGPSTTQVSQATTVDTSSTTTLTTSAPTTTATTGSTETTITSAGT TITPTSTSSTTPTVTSSPGTTPTSSLTATTTTNSPTTTTPGSTTITETPTTATVTSSAAREESTNVTTTVATSPATSVATSVGREEI TRVTQSHLSQGQISSTQEITSQGGRRQEDQVLQTPSRVSGTQETLRQETRTQETNTGENQDQNRNTVSETTVTVSQPSPR PNVQHTTVAGGSGQINAARRENTVTQPSGQQTSLRGSTLSTGSIKGLTMVVTRTKEKEDKIARKIKEKMVAEEE**VFDIKCF** DYRKNDPFKLRFYMFKGIFRLWRLLQDLKFFMVVDHTLITDTFDKGVQNYLTKGLTLMNGIVVRDNGDLLAMYNGFN <u>KYYKAMASRLNHMKEQEEGSEIMKTIVSMSVIGYSTALRLEQEFGSWDLVEVRENEENKEGRVASYTLLGFRIAMYLTK</u> DIVEVIMDKFLRYTDLVGIDFGINATLARGALMEVQPEDTLVYGENEAIVTIDPNEEYKQLKAYLEYVVSEKGHSSGRGQEN REELVRTSRKGRVTIRTSIRSGVGGEASGTVEASGTVEASGTVEASGRGEAGSGSEGRAEALEEEVRAKAWRGDPRAIEKVL KKSMFTAVPRELGPETLEDYLRIFELSAPQEREGPAQVAEVDTEEFINEFLATAGPSYGLDVNIGAGNSKLRYSTSSTDSNVG ARFVGGRGVESEAARGRGGSADAVARGTSAIRGATADAATAVGATKVTNGVGNEEGVARSSGFTGANAVNGQTGQTN GDAVINGLAGNDVVINGQNNDDDSDDDDSDDDDSDSDSEDDDSVGVPGIDDNYAVDQSASGPIVEYFMKEFSTTDASM YGVDLLIGGVTIESVFGISDTLAVDGGATNTTSGKLGVATTTTTTTTTSETVDVSNGVVGQRTDGGNAEAYSKSVSNGVVG QRTDGGNAESYSKSVSNGVEEECASAVRSTSVHSSSGGTGTSASTITTTGNTIAATSTTTTISRGTGTTRNTSTGTTGTTRST GGTRTNSVTTGIVTSSTATNSGITTRSTSTTNTTRTGTTATTVGGTKTRTGSTSTGTLIPIPSKSFRSRLWTTGAGPIRMIQSQL GKGATASTRTEKGGLGSEGVVIRSVQTSKIPTSGLRGPAGTDRVQLTEERSKKITVMAPTNSSLTKSTSTHTITKIPTRTITSQS LSTRSSSTVTGGQTRESSSQRSFSQGGSSSGQTRNNIGHTRSISWQDRSSSVQTGSRSAQISGKKEERRGNEKTKARLTQKR KKKS*

Bold: ER-signal sequence Underlined: Pfam domain (PF05642.10) Sporozoite P67 surface antigen

Supplementary Fig. S1.