# Phylogeography of the Japanese Giant Flying Squirrel, Petaurista leucogenys, Based on Mitochondrial DNA Control Region Sequences 

Tatsuo Oshida ${ }^{1 \dagger}$, Koichi Ikeda ${ }^{2}$, Kazuhiko Yamada ${ }^{3}$<br>and Ryuichi Masuda ${ }^{1 *}$<br>${ }^{1}$ Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan<br>${ }^{2}$ Fukuoka Prefecture Forest Research and Extension Center, Kurume 839-0827, Japan<br>${ }^{3}$ Laboratory of Cytogenetics, Division of Biosciences, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan


#### Abstract

To investigate genetic diversity among populations of the Japanese giant flying squirrel Petaurista leucogenys, the mitochondrial DNA control region sequences (1,052-1,054 bases) were determined in 37 specimens from 17 localities on the Honshu, Shikoku, and Kyushu Islands of Japan. Of the 37 animals examined, 24 haplotypes were identified. All haplotypes from Kyushu consisted of 1,052 bases, whereas those from Honshu and Shikoku consisted of 1,054 bases including two insertions, except for three haplotypes (which had 1,052 or 1,053 bases). Phylogenetic relationships reconstructed using neighborjoining and maximum parsimony methods indicated that $P$. leucogenys is essentially separated into three major lineages: Group A consisting of a single haplotype from Kyushu, Group B consisting of some haplotypes from Kyushu and one haplotype from Honshu, and Group C consisting mostly of haplotypes from Honshu and Shikoku. Animals with the Kyushu haplotypes were split into two lineages (Groups A and B), suggesting that Group A diverged at an earlier point from the other groups. Genetic distances in Group C were not related to geographic distances between sampling localities, indicating that ancestral populations of this group recently expanded their distribution in a short time, possibly after the last glacial stage.


## INTRODUCTION

The Japanese giant flying squirrel Petaurista leucogenys is a mammalian species indigenous to the Kyushu, Shikoku, and Honshu Islands of Japan (Corbet and Hill, 1991; Nowak, 1991). Although Corbet and Hill (1980) explained that this species is distributed throughout Japan and central China, they more recently treated the central Chinese population as a distinct species Petaurista xanthotis (Corbet and Hill, 1991; 1992). Based on characteristics of their pelage, Imaizumi (1960) classified P. leucogenys into three subspecies: leucogenys, nikkonis, and oreas. At present, however, the validity of his classification is uncertain, as there are variations of pelage in $P$. leucogenys.

The ecology of $P$. leucogenys has been studied in detail

[^0](Baba et al., 1982; Ando and Imaizumi, 1982; Ando and Shiraishi, 1983; Kawamichi, 1997a; 1997b; 1998), and cytogenetic information on this species has also been reported by Oshida and Obara (1991; 1993) and Oshida and Yoshida (1999a; 1999b). However, little information about the phylogeography of $P$. leucogenys has been known heretofore. Oshida and Obara (1993) reported the variation of constitutive heterochromatin of chromosomes in $P$. leucogenys, but they did not find any geographically specific features.

In the present study, in order to study the phylogeography and subspecies classification of $P$. leucogenys, we analyzed the mitochondrial DNA (mtDNA) control region sequences. Since the control region contains variable blocks which evolve about 4-5 times faster than the other regions of mtDNA molecules (Greenberg et al., 1983; Horai and Hayasaka, 1990; Brown et al., 1993), this region is a very valuable molecular marker for investigating relationships among closely related species or conspecific populations (e.g., Baker et al., 1993; Arctander et al., 1996; Nagata et al., 1998; 1999; Barratt et al., 1999; Kurose et al., 1999; Matsuhashi et al., 1999). Based
on the control region data, we here discuss phylogeographic relationships within Japanese populations of Petaurista leucogenys.

## MATERIALS AND METHODS

## Animals

A profile of the Japanese giant flying squirrel Petaurista leucogenys examined in the present study is shown in Table 1. Thirty seven specimens of $P$. leucogenys were collected from 17 localities in Japan (Fig. 1). A female red giant flying squirrel Petaurista petaurista melanotus (PPM) imported from Hong-Kong to Japan in 1990 was used as an out-group.

## DNA preparation and sequencing

Total DNAs were extracted from muscle or liver tissues using the phenol/proteinase K/sodium dodecyl sulfate method of Sambrook et al. (1989). The whole control region was amplified using polymerase chain reaction (PCR), with a set of newly designed primers: L15933 5'-CTCTGGTCTTGTAAACCAAAAATG-3' and H637 5'-AGGACC-

AAACCTTTGTGTTTATG-3'. Primer names correspond to the light (L) or heavy (H) strand and the 3'end-position of the primers in the human mtDNA sequences (Anderson et al., 1981). The reaction mixture of $50 \mu \mathrm{l}$ contained 100 ng of genomic DNA, 25 picomoles of each primer, $200 \mu \mathrm{M}$ dNTPs, 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.3$ ), $50 \mathrm{mM} \mathrm{KCl}, 1.5$ mM MgCl 2 , and 2.5 units of rTaq DNA polymerase (Takara). Amplification was carried out for 35 cycles as follows: $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 2 min , and then the extension reaction was performed at $72^{\circ} \mathrm{C}$ for 10 min . PCR products were purified with the Qia-quick PCR purification kit (QIAGEN) and directly sequenced using an automated DNA sequencer (SQ5500L, Hitachi). For sequencing, two PCR primers and another new primer (5'-CCTAATGGATAT-CCCCTTCCAACG-3') were used.

## Phylogenetic analysis

All sequences were aligned using the computer software GeneWorks (Intelligenetics). The phylogenetic tree was constructed via the neighbor-joining (NJ) method (Saitou and Nei, 1987) in Clustal W (Thompson et al., 1994) and via the maximum parsimony (MP) method using a heuristic search algorithm with the $50 \%$ majority-rule consensus in PAUP (Swofford, 1993). In the NJ tree, the numbers of

Table 1. Specimen profiles of Petaurista leucogenys examined in the present study

| Sample name | Sex\# | Sampling locality (Supplier) | No.** of locality | Haplotype | Accession No. of sepuence*** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AM1* | M | Sannohe-gun, Aomori Pref. | 1 | H6 | AB043805 |
| AM2* | F | Sannohe-gun, Aomori Pref. | 1 | H5 | AB043804 |
| ITI | M | Koromogawa, Iwate Pref. (Morioka Zoo) | 2 | H14 | AB043813 |
| IT2 | F | Koromogawa, Iwate Pref. (Morioka Zoo) | 2 | H12 | AB043811 |
| NN1* | M | Shiga-Height, Nagano Pref. | 3 | H11 | AB043810 |
| NN2* | M | Shiga-Height, Nagano Pref. | 3 | H4 | AB043803 |
| NN3* | M | Shiga-Height, Nagano Pref. | 3 | H13 | AB043812 |
| TY1* | F | Nakaniikawa-gun, Toyama Pref. | 4 | H13 | AB043812 |
| TY2* | M | Nakaniikawa-gun, Toyama Pref. | 4 | H4 | AB043803 |
| YN1* | M | Nirazaki, Yamanashi Pref. | 5 | H4 | AB043803 |
| YN2* | F | Nirazaki, Yamanashi Pref. | 5 | H10 | AB043809 |
| TG1 | M | Nikko, Tochigi Pref. (Tochigi Prefectual Museum) | 6 | H7 | AB043806 |
| TG2 | M | Shioya, Tochigi Pref. (Tochigi Prefectual Museum) | 7 | H8 | AB043807 |
| KN1 | M | Hakone, Kanagawa Pref. (Kanagawa Prefecture Natural Environment Conservation Center) | 8 | H15 | AB043814 |
| KN2 | F | Aikawa, Kanagawa Pref. (Kanagawa Prefecture Natural Environment Conservation Center) | 9 | H16 | AB043815 |
| WK1* | M | Hashimoto, Wakayama Pref. | 10 | H9 | AB043808 |
| WK2* | F | Hashimoto, Wakayama Pref. | 10 | H4 | AB043803 |
| GF1* | M | Kamioka, Gifu Pref. | 11 | H4 | AB043803 |
| GF2* | F | Kamioka, Gifu Pref. | 11 | H5 | AB043804 |
| KT1 | M | Kyoto, Kyoto Pref. (Mr. M. Kishioki) | 12 | H2 | AB043801 |
| HS1 | F | Hiroshima Pref. (Asa Zoological Park) | 13 | H1 | AB043800 |
| KG1* | M | Takamatsu, Kagawa, Pref | 14 | H4 | AB043803 |
| EH1 | ? | Omgo, Ehime Pref. (Omogo Mountain Museum) | 15 | H3 | AB043802 |
| FO1 | F | Hirokawa, Fukuoka Pref. | 16 | K1 | AB043792 |
| FO2 | M | Hirokawa, Fukuoka Pref. | 16 | K1 | AB043792 |
| FO3 | M | Hirokawa, Fukuoka Pref. | 16 | K1 | AB043792 |
| FO4 | F | Joyo, Fukuoka Pref. | 17 | K5 | AB043796 |
| FO6 | F | Joyo, Fukuoka Pref. | 17 | K1 | AB043792 |
| FO7 | F | Joyo, Fukuoka Pref. | 17 | K3 | AB043794 |
| FO8 | F | Joyo, Fukuoka Pref. | 17 | K8 | AB043799 |
| FO9 | M | Joyo, Fukuoka Pref. | 17 | K2 | AB043793 |
| FO10 | M | Joyo, Fukuoka Pref. | 17 | K4 | AB043795 |
| FO11 | M | Joyo, Fukuoka Pref. | 17 | K2 | AB043793 |
| FO15 | M | Joyo, Fukuoka Pref. | 17 | K5 | AB043796 |
| FO16 | M | Joyo, Fukuoka Pref. | 17 | K1 | AB043792 |
| FO17 | M | Joyo, Fukuoka Pref. | 17 | K6 | AB043797 |
| FO18 | F | Joyo, Fukuoka Pref. | 17 | K7 | AB043798 |

[^1]

Fig. 1. Sampling localities in the present study and fossil localities of Petaurista leucogenys. Closed circles, sampling localities; open square, Middle Pleistocene fossil localities; closed squares, Late Pleistocene fossil localities. Sampling locality numbers correspond to those of Table 1 and Fig. 2. Arrow indicates the presumed migration route of $P$. leucogenys from southern China to Japan.
nucleotide substitutions per site were estimated for multiple substitutions by Kimura's (1980) two-parameter method. Using sequences without gap-sites, the MP tree was produced by unweighted parsimony. To assess the branching confidence, bootstrap values (Felsenstein, 1985) were derived from 1,000 replications of the NJ method and 100 replications of the MP tree.

## RESULTS

## Sequence Divergence of mtDNA Control Region

All mtDNA control regions (1,052-1,054 bases) of $P$. leucogenys from 17 localities in Japan were successfully sequenced. All sequences of animals from Kyushu had 1,052 bases, while those of populations from Honshu and Shikoku had 1,054 bases with insertions except for three specimens: EH1 ( 1,052 bases), KT1 (1,052 bases), and HS1 ( 1,053 bases) (Table 2). Of all sequences obtained, 145 sites were variable: transitions at 117, transversions at 14 sites, and both transitions and transversions at 12 sites (Table 2). In the 37 animals, 24 haplotypes were identified (Tables 1 and 2). The sequence divergence among haplotypes was 0.7-4.8\% (Table 3).

The control region of $P$. leucogenys was divided into three domains: two variable domains (the 5' and 3' ends) and one conserved central domain (Table 2). The 5' end domain was more variable than the 3 ' end domain and contained one gapsite (site number 281) in all haplotypes from Kyushu, in H1 and H2 from Honshu, and in H3 from Shikoku. The 3' end domain contained an additional gap-site (site number 1,052)
in all haplotypes from Kyushu, in H2 from Honshu, and in H3 from Shikoku. The sequence of $P$. petaurista used as an outgroup has 1,051 bases (accession number in DDBJ: AB043816).

## Molecular phylogeny based on the mtDNA control region

Phylogenetic relationships reconstructed via NJ and MP methods were similar to each other. In the NJ tree, the Japanese population of $P$. leucogenys was separated into three major lineages: Group A consisting of K1, Group B consisting of K2, K3, K4, K5, K6, K7, K8, and H1 ( $95 \%$ bootstrap value), and Group C consisting of $\mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 7, \mathrm{H} 8, \mathrm{H} 9, \mathrm{H} 10, \mathrm{H} 11$, H12, H13, H14, and H15 (62\% bootstrap value) (Fig. 2a). In the MP analysis, only one most-parsimonious phylogenetic tree was obtained by unweighted parsimony, and it had a consistency index of 0.668 . The three major groups were also recognized in the MP tree: Group A (K1), Group B consisting of K2, K3, K4, K5, K6, K7, K8, and H1 (88\% bootstrap value), and Group C consisting of $\mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 7, \mathrm{H} 8, \mathrm{H} 9, \mathrm{H} 10, \mathrm{H} 11$, H12, H13, H14, and H15 (57\% bootstrap value) (Fig. 2b). In both trees, H 1 from Honshu was clustered with the Kyushu population consisting of $\mathrm{K} 2, \mathrm{~K} 3, \mathrm{~K} 4, \mathrm{~K} 5, \mathrm{~K} 6, \mathrm{~K} 7$, and K 8 with high bootstrap values ( $95 \%$ in the NJ tree and $88 \%$ in the MP tree), and $\mathrm{H} 2, \mathrm{H} 3$, and H 16 were not included in the major three lineages. In addition, in both trees, genetic differences between haplotypes of Group C did not correspond to geographic distances. The sequences of Groups A and B had

Table 2. Sequence variation of the mt DNA control region (1,052-1,054 bases) in Petaurista leucogenys. Dots indicate identical nucleotides or

1111111111111111111111122222222222222222222222222222 Haplo- 12235666678991122233444555666677778812333333334444445555666777778 type 2913514012578464534524479089037946780669013456890567891267159024580


Table 3. Pairwise comparison of mt DNA control region sequences without gap-sites ( 1,052 bases) between 24 haplotypes from Petaurista leucogenys

|  | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | H14 | H15 | H16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K1 |  | 3.7 | 3.7 | 4.4 | 4.3 | 4.1 | 3.9 | 4.3 | 4.2 | 3.2 | 3.4 | 3.0 | 3.2 | 3.7 | 3.7 | 3.1 | 4.1 | 3.1 | 3.4 | 3.7 | 3.4 | 4.0 | 3.6 | 3.8 |
| K2 | 35/4 |  | 0.9 | 1.6 | 1.8 | 2.0 | 1.8 | 2.0 | 2.1 | 3.0 | 3.3 | 3.2 | 3.3 | 3.6 | 3.4 | 3.2 | 4.4 | 3.3 | 3.3 | 3.4 | 3.3 | 3.7 | 3.5 | 3.6 |
| K3 | 38/1 | 6/3 |  | 1.2 | 1.3 | 1.7 | 1.5 | 1.3 | 2.0 | 3.1 | 3.0 | 3.4 | 3.5 | 3.8 | 3.6 | 3.4 | 4.6 | 3.4 | 3.5 | 3.5 | 3.5 | 3.9 | 3.7 | 3.5 |
| K4 | 44/2 | 13/4 | 12/1 |  | 0.9 | 1.1 | 0.9 | 0.9 | 2.1 | 3.6 | 3.2 | 3.4 | 3.7 | 3.6 | 3.9 | 3.4 | 4.6 | 3.4 | 3.9 | 3.7 | 3.7 | 3.9 | 3.7 | 3.5 |
| K5 | 43/2 | 15/4 | 13/1 | 9/0 |  | 1.1 | 1.0 | 1.0 | 2.2 | 3.7 | 3.1 | 3.6 | 3.5 | 4.0 | 3.9 | 3.6 | 4.8 | 3.8 | 4.1 | 4.1 | 3.9 | 4.3 | 3.9 | 3.7 |
| K6 | 39/4 | 15/6 | 15/3 | 9/2 | 10/2 |  | 0.2 | 1.0 | 2.2 | 3.5 | 3.3 | 3.4 | 3.7 | 3.8 | 3.9 | 3.4 | 4.6 | 3.6 | 3.9 | 3.7 | 3.7 | 4.1 | 3.7 | 3.7 |
| K7 | 37/4 | 13/6 | 13/3 | 7/2 | 8//2 | 2/0 |  | 1.0 | 2.0 | 3.3 | 3.1 | 3.2 | 3.5 | 3.6 | 3.7 | 3.2 | 4.4 | 3.4 | 3.7 | 3.5 | 3.5 | 3.9 | 3.5 | 3.5 |
| K8 | 43/2 | 17/4 | 13/1 | 9/0 | 10/0 | 8/2 | 8/2 |  | 2.0 | 3.5 | 3.3 | 3.6 | 3.9 | 4.0 | 4.0 | 3.4 | 4.8 | 3.8 | 3.9 | 3.7 | 3.9 | 4.1 | 3.7 | 3.5 |
| H1 | 41/3 | 17/5 | 19/2 | 19/3 | 20/3 | 18/5 | 16/5 | 18/3 |  | 3.8 | 3.8 | 3.3 | 3.6 | 3.6 | 4.3 | 3.3 | 4.5 | 3.3 | 3.4 | 3.7 | 3.4 | 4.0 | 3.2 | 3.8 |
| H2 | 34/0 | 28/4 | 32/1 | 36/2 | 37/2 | 33/4 | 31/4 | 35/2 | 37/3 |  | 2.9 | 3.3 | 3.2 | 3.5 | 3.6 | 3.3 | 4.3 | 3.5 | 3.2 | 3.6 | 3.2 | 3.8 | 3.2 | 3.3 |
| H3 | 34/2 | 29/6 | 28/3 | 30/4 | 29/4 | 29/6 | 27/6 | 31/4 | 35/5 | 28/2 |  | 3.1 | 3.4 | 3.5 | 4.1 | 3.5 | 4.3 | 3.5 | 3.4 | 3.9 | 3.6 | 4.0 | 3.2 | 2.8 |
| H4 | 30/1 | 31/3 | 34/2 | 33/3 | 35/3 | 31/5 | 29/5 | 35/3 | 31/4 | 34/1 | 30/3 |  | 0.7 | 1.0 | 2.2 | 1.1 | 1.1 | 1.4 | 1.6 | 2.4 | 1.4 | 1.8 | 1.8 | 3.0 |
| H5 | 33/1 | 32/3 | 35/2 | 36/3 | 34/3 | 34/5 | 32/5 | 38/3 | 34/4 | 33/1 | 33/3 | 7/0 |  | 1.1 | 2.3 | 1.1 | 1.6 | 1.7 | 1.9 | 2.7 | 1.3 | 2.1 | 2.1 | 3.2 |
| H6 | 36/3 | 33/5 | 36/4 | 33/5 | 37/5 | 33/7 | 31/7 | 37/5 | 32/6 | 34/3 | 32/5 | 8/2 | 9/2 |  | 2.8 | 1.5 | 1.9 | 1.7 | 2.0 | 2.8 | 1.6 | 2.2 | 2.0 | 3.1 |
| H7 | 37/2 | 32/4 | 35/3 | 37/4 | 37/4 | 35/6 | 33/6 | 37/4 | 40/5 | 36/2 | 39/4 | 22/1 | 23/1 | 26/3 |  | 1.9 | 3.0 | 2.3 | 2.5 | 3.0 | 2.1 | 2.7 | 2.9 | 3.7 |
| H8 | 32/1 | 31/3 | 34/2 | 33/3 | 35/3 | 31/5 | 29/5 | 33/3 | 31/4 | 34/1 | 34/3 | 12/0 | 11/0 | 14/2 | 19/1 |  | 2.3 | 1.4 | 1.6 | 2.4 | 1.2 | 1.6 | 1.8 | 3.0 |
| H9 | 42/1 | 43/3 | 46/2 | 45/3 | 47/3 | 43/5 | 41/5 | 47/3 | 43/4 | 44/1 | 42/3 | 12/0 | 17/0 | 18/2 | 30/1 | 24/0 |  | 2.4 | 2.6 | 3.3 | 2.2 | 2.8 | 3.0 | 4.1 |
| H10 | 32/1 | 32/3 | 34/2 | 33/3 | 37/3 | 33/5 | 31/5 | 37/3 | 31/4 | 36/1 | 34/3 | 15/0 | 18/0 | 16/2 | 23/1 | 15/0 | 25/0 |  | 1.7 | 2.7 | 1.5 | 1.5 | 2.1 | 3.2 |
| H11 | 34/2 | 31/4 | 34/3 | 37/4 | 39/4 | 35/6 | 33/6 | 37/4 | 31/5 | 32/2 | 32/4 | 16/0 | 19/1 | 18/3 | 24/2 | 16/1 | 26/1 | 17/1 |  | 1.7 | 1.1 | 1.5 | 2.1 | 3.1 |
| H12 | 31/8 | 26/10 | 28/9 | 29/10 | 33/10 | 27/12 | 25/12 | 29/10 | 28/11 | 30/8 | 31/10 | 18/7 | 21/7 | 20/9 | 24/8 | 18/7 | 28/7 | 21/7 | 10/8 |  | 1.9 | 2.1 | 2.9 | 3.8 |
| H13 | 35/1 | 32/3 | 35/2 | 36/3 | 38/3 | 34/5 | 32/5 | 38/3 | 32/4 | 33/1 | 35/3 | 15/0 | 14/0 | 15/2 | 21/1 | 13/0 | 23/0 | 16/0 | 11/1 | 13/7 |  | 1.3 | 2.1 | 3.2 |
| H14 | 38/4 | 33/6 | 36/5 | 35/6 | 39/6 | 35/8 | 33/8 | 37/6 | 35/7 | 36/4 | 36/6 | 16/3 | 19/3 | 18/5 | 24/4 | 14/3 | 26/3 | 13/3 | 12/4 | 14/8 | 11/3 |  | 2.3 | 3.6 |
| H15 | 36/2 | 33/4 | 36/3 | 35/4 | 37/4 | 33/6 | 31/6 | 35/4 | 29/5 | 32/2 | 30/4 | 18/1 | 21/1 | 18/3 | 28/2 | 18/1 | 30/1 | 21/1 | 20/2 | 22/8 | 21/1 | 20/4 |  | 2.5 |
| H16 | 38/2 | 34/4 | 34/3 | 33/4 | 35/4 | 33/6 | 31/6 | 33/4 | 33/5 | 33/2 | 25/4 | 30/1 | 33/1 | 29/3 | 37/2 | 30/1 | 42/1 | 33/1 | 31/2 | 32/8 | 33/1 | 34/4 | 24/2 |  |

[^2]indels with those of haplotype K1



Fig. 2. Phylogenetic relationships reconstructed by (a) the neighbor-joining ( NJ ) and (b) the maximum parsimony (MP) methods based on the control region sequences of Petaurista leucogenys. The scale bar for NJ tree represents branch length in terms of nucleotide substitution per site. Numbers at nodes indicate bootstrap values higher than $50 \%$ derived from 1,000 replications for NJ tree and 100 replications for MP tree. Numbers in parentheses, which correspond to those of Table 1 and Fig. 1, indicate sampling localities.

1,052 bases and those of Group C had 1,054 bases, although there was an exception (H1).

## DISCUSSION

## Characterization of the mtDNA control region in Petaurista leucogenys

In vertebrates, it has been reported that the control region consists of two variable domains ( 5 ' and 3 ' ends) and a conserved central domain (Brown et al., 1986; Southern et al., 1988; Saccone et al., 1991). In the same way, the control region of $P$. leucogenys examined in the present study was also divided into three domains (Table 2). In particular, the 5' end domain was more variable than the 3' end domain and contained one gap-site (site number 281) in all haplotypes from Kyushu, in H 1 and H 2 from Honshu, and in H 3 from Shikoku. Another gap-site (site number 1,052 ) was recognized in the 3' end domain in all haplotypes from Kyushu and in H 2 and H3. The two gap-sites were specific to the control region of the Kyushu population. In addition, repetitive sequences, which were reported in the control region of some mammals (e.g., Hoelzel et al., 1994; Nagata et al., 1998; Kurose et al., 1999; Matsuhashi et al., 1999), were not found in P. leucogenys and $P$. petaurista.

## Phylogeography of Petaurista leucogenys

According to pelage characteristics, Imaizumi (1960) classified $P$. leucogenys into three subspecies (leucogenys, nikkonis, and oreas), and demonstrated that P. I. leucogenys is distributed throughout the Kyushu and Shikoku islands, that P. I. nikkonis occurs in the eastern part of the Honshu Island, and that $P$. I. oreas occurs in the western part of the Honshu Island. However, in the present study, phylogenetic relationships among haplotypes did not correspond to subspecies classification and distribution.

Despite of the small number of specimens collected (Fig. 1), the Kyushu population was divided into two lineages: K1 lineage (Group A) and another lineage consisting of K2, K3, K4, K5, K6, K7, and K8 in Group B (Fig. 2). In the NJ and MP trees, K1 was likely to have been isolated from the other haplotypes by the first dichotomy, although the bootstrap values were not so high (< $50 \%$ in NJ tree; $59 \%$ in MP tree), suggesting that K1 diverged from the other haplotypes at an earlier point. On the other hand, although H 1 was closely related to $\mathrm{K} 2, \mathrm{~K} 3, \mathrm{~K} 4, \mathrm{~K} 5, \mathrm{~K} 6, \mathrm{~K} 7$, and K 8 in both trees, the phylogenetic positions of H 2 and H 3 in the NJ tree were different from those in the MP tree (Fig. 2). The three haplotypes ( $\mathrm{H} 1, \mathrm{H} 2$, and H 3 ) shared the two gap-sites specific to the Kyushu population: site number 281 in H1, H2, and H3 and site number 1,052 in H 2 and H 3 (Table 2). This indicated that H 2 and H 3 are more closely related to $\mathrm{K} 2, \mathrm{~K} 3, \mathrm{~K} 4, \mathrm{~K} 5, \mathrm{~K} 6, \mathrm{~K} 7$, and K8 or that they are intermediate haplotypes between the Kyushu population and Honshu/Shikoku population. The phylogenetic position of H 16 that was not clustered with the three major lineages was not clear in the present study.

In terms of the Honshu/Shikoku population in the NJ and

MP trees, it is noteworthy that genetic distances between haplotypes do not always correspond to geographic distances of sampling localities, and exhibit low bootstrap values (Fig. 2). Moreover, six specimens from different localities (Gifu, Kagawa, Nagano, Toyama, Wakayama, and Yamanashi) shared the H4 haplotype, and two specimens from Aomori and Gifu had the H5 haplotype (Fig. 1 and Table 1). In the Honshu/Shikoku population, except for H1, H2, H3, and H16, haplotype H 4 seemed to be most common.

Based on some fossil records, Kawamura (1988) reported that $P$. leucogenys had presumably migrated from southern China to Japan through the land bridge (Fig. 1) which was formed around the area of the present East China Sea in the Early Middle Pleistocene. It was not known that Petaurista had existed in the Korean Peninsula at that time. Accepting Kawamura's hypothesis (1988), inevitably, the first place where $P$. leucogenys had migrated from southern China could have been the Kyushu Island in Japan, and then it could have extended its distribution toward the Honshu and Shikoku Islands (see Fig. 1). Fossils of Petaurista before the Holocene period are very rare in the Japanese islands. The Middle Pleistocene fossils of $P$. leucogenys were found in two localities of Japan (Hasegawa, 1966; 1972; Kowalski and Hasegawa, 1976; Kawamura, 1988) which are very close to each other as shown in Fig. 1. Moreover, the Late Pleistocene fossils of $P$. leucogenys were also recognized in six localities of Japan (Shikama, 1949; Hasegawa, 1966; Kowalski and Hasegawa, 1976; Kawamura, 1980; 1981; 1982; 1988; Kawamura and Sotsuka, 1984; Kawamura et al., 1986), as shown in Fig. 1. Judging from these fossil records, by the Middle or Late Pleistocene, $P$. leucogenys could already have been distributed in the Honshu and Shikoku Islands. Petaurista leucogenys is an arboreal animal and inhabits the temperate forests (Nowak, 1991). Therefore, during glacial stages in the Pleistocene, the habitats of this animal may have been reduced due to the southward shifting of temperate forests in Japan. The results of the present study show that the genetic distances in the Honshu/Shikoku population were not related to geographic distances of sampling localities. This suggests that $P$. leucogenys rapidly extended its distribution in a short time during the northward expansion of temperate forests in Japan after the last glacial stage of the Pleistocene.

Although the evolutionary rate of humans may not always correspond to that of the giant flying squirrel because of the differences of generation time between humans and giant flying squirrels, applying the evolutionary rate (approximately 8.4\% per million years, Myr) of the human control region reported by Vigilant et al. (1989), the divergence times between Groups A and B, between Groups A and C, and between Groups B and C were estimated to be approximately $0.4-0.5$, $0.4-0.5$, and $0.4-1.0$ Myrs ago, respectively. On the other hand, the divergence times in Group B and in Group C were approximately $0.1-0.3$ and $0.1-0.5$ Myrs ago, respectively. Accordingly, the divergences among haplotypes of $P$. leucogenys may have occurred rapidly from the Middle to Late Pleistocene.

## ACKNOWLEDGMENTS

We would like to thank Dr. T. Kawamichi and Dr. S. Uni (Osaka City University), Dr. M. Baba (Kitakyushu Museum of Natural History), Mr. H. Kuribayashi, Dr. C. Katoh, and Dr. M. Itoh (Kanagawa Prefecture Natural Environment Conservation Center), Mr. T. Tsujimoto (Morioka Zoo), Mr. T. Okayama (Omogo Mountain Museum), Dr. S. Yachimori (Tochigi Prefectural Museum), Asa Zoological Park, Mr. M. Kishioki, and Ms. M. Shigeta, for supplying specimens. This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

## REFERENCES

Anderson S, Bankier AT, Barrel BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ H, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457465
Ando M, Imaizumi Y (1982) Habitat utilization of the white-cheeked giant flying squirrel Petaurista leucogenys in a small shrine grove. J Mamm Soc Jpn 9: 70-81 (in Japanese with English abstract)
Ando M, Shiraishi S (1983) The nest and nest-building behavior of the Japanese giant flying squirrel, Petaurista leucogenys. Sci Bull Fac Agr Kyushu Univ 38: 59-69 (in Japanese with English abstract)
Arctander P, Kat PW, Aman RA, Siegismund HR (1996) Extreme genetic differences among populations of Gazella granti, Grant' gazelle, in Kenya. Heredity 76: 465-475
Baba M, Doi T, Ono Y (1982) Home range utilization and nocturnal activity of the giant flying squirrel, Petaurista leucogenys. Jpn J Ecol 32: 189-198
Baker AJ, Piersma T, Rosenmeier L, Weinrich MT, Anernethy RB, Calambokidis J, Lien J, Lamberstein RH, Ramirez JU, Vasquez O, Clapham PJ, Alling A, O'Brien SJ, Palumbi SR (1993) Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc Natl Acad Sci USA 90: 82398243
Barratt EM, Gurnell J, Malarky G, Deaville R, Bruford MW (1999) Genetic structure of fragmented populations of red squirrel (Sciurus vulgaris) in the UK. Mol Ecol 8: S55-S63
Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisa E (1986) Structural conservation and variation in the D loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192: 503-511
Brown JR, Beckenbach AT, Smith MJ (1993) Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol Biol Evol 10: 326-341
Corbet GB, Hill JE (1980) A World List of Mammalian Species. 1st ed, Oxford University Press, Oxford, pp 136-137
Corbet GB, Hill JE (1991) A World List of Mammalian Species. 3rd ed, Oxford University Press, Oxford, pp 144-145
Corbet GB, Hill JE (1992) The Mammals of the Indomalayan Region: A Systematic Review. Oxford University Press, Oxford, pp 308313
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791
Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21: 33-49
Hasegawa Y (1966) Quaternary smaller mammalian fauna from Japan. Fossils 11: 31-40 (in Japanese)
Hasegawa Y (1972) The Naumann's elephant, palaeoloxodon naumanni (MAKIYAMA) from the Late Pleistocene of Shakagahara, Shodoshima Is. in Seto Inland Sea, Japan. Bull Natl Sci Mus 15: 513-591
Hoelzel AR, Lopez JV, Dover GA, O'Brien SJ (1994) Rapid evolution
of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39: 191-199
Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46: 828-842
Imaizumi Y (1960) Colored Illustration of the Mammals of Japan. Hoikusha, Osaka (in Japanese)
Kawamici T (1997a) Seasonal changes in the diet of Japanese giant flying squirrel in relation to reproduction. J Mamm 78: 204-212
Kawamichi T (1997b) The age of sexual maturity in Japanese giant flying squirrel, Petaurista leucogenys. Mammal Study 22: 81-87
Kawamichi T (1998) Seasonal change of testis size in Japanese giant flying squirrel Petaurista leucogenys. Mammal Study 23: 7982
Kawamura Y (1980) Mammalian remains of the Pre-Jomon Period from Taishaku-Kannondo Cave Site (Part 1). Mammalian remains obtained by the excavation of 1975. Ann Bull Hiroshima Univ Taishaku-kyo Sites Res Centre 3: 61-74 (in Japanese)
Kawamura Y (1981) Mammalian remains of the Pre-Jomon Period from Taishaku-Kannondo Cave Site (Part 2). Mammalian remains obtained by the excavation of 1976. Ann Bull Hiroshima Univ Taishaku-kyo Sites Res Centre 4: 67-88 (in Japanese)
Kawamura Y (1982) Mammalian remains of the Pre-Jomon Period from Taishaku-Kannondo Cave Site (Part 3). Mammalian remains obtained by the excavation of 1978. Ann Bull Hiroshima Univ Taishaku-kyo Sites Res Centre 5: 57-70 (in Japanese)
Kawamura Y (1988) Quaternary rodent faunas in the Japanese Islands (Part 1). Mem Fac Sci, Kyoto Univ, Ser Geol Min 53: 31348
Kawamura Y, Sotsuka T (1984) Preliminary report on the Quaternary mammalian remains from several caves on the Hiraodai Plateau, Fukuoka Prefecture, Northern Kyushu, Japan. Bull Kitakyushu Mus Nat Hist 5: 163-188 (in Japanese with English abstract)
Kawamura Y, Yamada Y, Ando Y (1986) Late Pleistocene micromammals from Taishaku-Kannondo Cave Site (first preliminary report). Ann Bull Hiroshima Univ Taishaku-kyo Sites Res Centre 9: 67-85 (in Japanese)
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120
Kowalski K, Hasegawa Y (1976) Quaternary rodents from Japan. Bull Nat Sci Mus Ser C 2: 31-66
Kurose N, Masuda R, Yoshida MC (1999) Phylogeographic variation in two Mustelines, the least weasel Mustela nivalis and the ermina M. erminea of Japan, based on mitochondrial DNA control region sequences. Zool Sci 16: 971-977
Matsuhashi T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Mol Biol Evol 16: 676-684
Nagata J, Masuda R, Kaji K, Kaneko M, Yoshida MC (1998) Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in Hokkaido island, based on mitochondrial Dloop sequences. Mol Ecol 7: 871-877
Nagata J, Masuda R, Tamate HB, Hamasaki S, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13: 511-519
Nowak RM (1991) Walker's Mammals of the World. Vol. 1 5th ed, The Johns Hopkins Univ Press, Baltimore and London
Oshida T and Obara Y (1991) Karyotypes and chromosome banding patterns of a male Japanese giant flying squirrel, Petaurista leucogenys TEMMINCK. Chrom Inf Serv 50: 26-28
Oshida T and Obara Y (1993) C-band variation in the chromosomes of the Japanese giant flying squirrel, Petaurista leucogenys. J Mammal Soc Jpn 18: 61-67
Oshida T and Yoshida MC (1999a) Chromosomal characterization
and karyotypic evolution of some Asian squirrels. Jpn J Zoo Wildl Med 4: 135-142 (in Japanese with English abstract)
Oshida T and Yoshida MC (1999b) Chromosomal localization of nucleolus organizer regions in eight Asian squirrel species. Chrom Sci 3: 55-58
Saccone C, Pesole G, Sbisa E (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33: 83-91
Saitou N, Nei M (1987) The neighbor-joining method: A new method reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd ed, Cold Spring Harbor Laboratory, New York
Shikama T (1949) The Kuzuü, Ossuaries. Geological and palaeontological studies of the limestone fissure deposits, in Kuzuü, Totigi Prefecture. Sci Rep Tohoku Univ 2nd Ser 23: 1-209

Southern SO, Southern PJ, Dizon AE (1988) Molecular characterization of a cloned dolphin mitochondrial genome. J Mol Evol 28: 32-42
Swofford DL (1993) User Manual for PAUP Version 3.1: Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign, Illinois
Thompson JD, Higgins DG, T. Gibson J (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC (1989) Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci USA 86: 9350-9354
(Received June 8, 2000 / Accepted September 11, 2000)


[^0]:    * Corresponding author: Tel. +81-11-706-3541; FAX. +81-11-736-6304. E-mail: masudary@ees.hokudai.ac.jp
    ${ }^{\dagger}$ Present address: Laboratory of Molecular Ecology, Department of Biology, Tunghai University, Taichung Taiwan 407, R. O. C.

[^1]:    * Specimens obtained commercially from pet stores in Japan: Takita Store, Sannohe-gun and Saitama Sougou Pet, Koshigaya.
    ** Locality Nos. correspond to those in Flg.1.
    ${ }^{* * *}$ Sequence data will appear in the DDBJ nucleotide sequence databases with these accession numbers.
    \# M, male; F, female.

[^2]:    Data above the diagonal represent percentage differences between haplotypes. Data below the diagonal are the numbers of nucleotide substitutions (transitions/ transversions).

