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ABSTRACT—To investigate genetic diversity among populations of the Japanese giant flying squirrel
Petaurista leucogenys, the mitochondrial DNA control region sequences (1,052–1,054 bases) were deter-
mined in 37 specimens from 17 localities on the Honshu, Shikoku, and Kyushu Islands of Japan. Of the 37
animals examined, 24 haplotypes were identified. All haplotypes from Kyushu consisted of 1,052 bases,
whereas those from Honshu and Shikoku consisted of 1,054 bases including two insertions, except for three
haplotypes (which had 1,052 or 1,053 bases). Phylogenetic relationships reconstructed using neighbor-
joining and maximum parsimony methods indicated that P. leucogenys is essentially separated into three
major lineages: Group A consisting of a single haplotype from Kyushu, Group B consisting of some haplotypes
from Kyushu and one haplotype from Honshu, and Group C consisting mostly of haplotypes from Honshu
and Shikoku. Animals with the Kyushu haplotypes were split into two lineages (Groups A and B), suggesting
that Group A diverged at an earlier point from the other groups. Genetic distances in Group C were not
related to geographic distances between sampling localities, indicating that ancestral populations of this
group recently expanded their distribution in a short time, possibly after the last glacial stage.

INTRODUCTION

The Japanese giant flying squirrel Petaurista leucogenys
is a mammalian species indigenous to the Kyushu, Shikoku,
and Honshu Islands of Japan (Corbet and Hill, 1991; Nowak,
1991). Although Corbet and Hill (1980) explained that this
species is distributed throughout Japan and central China,
they more recently treated the central Chinese population as
a distinct species Petaurista xanthotis (Corbet and Hill, 1991;
1992). Based on characteristics of their pelage, Imaizumi
(1960) classified P. leucogenys into three subspecies:
leucogenys, nikkonis, and oreas. At present, however, the
validity of his classification is uncertain, as there are varia-
tions of pelage in P. leucogenys.

The ecology of P. leucogenys has been studied in detail

(Baba et al., 1982; Ando and Imaizumi, 1982; Ando and
Shiraishi, 1983; Kawamichi, 1997a; 1997b; 1998), and cyto-
genetic information on this species has also been reported
by Oshida and Obara (1991; 1993) and Oshida and Yoshida
(1999a; 1999b). However, little information about the phy-
logeography of P. leucogenys has been known heretofore.
Oshida and Obara (1993) reported the variation of constitu-
tive heterochromatin of chromosomes in P. leucogenys, but
they did not find any geographically specific features.

In the present study, in order to study the phylogeography
and subspecies classification of P. leucogenys, we analyzed
the mitochondrial DNA (mtDNA) control region sequences.
Since the control region contains variable blocks which evolve
about 4–5 times faster than the other regions of mtDNA mol-
ecules (Greenberg et al., 1983; Horai and Hayasaka, 1990;
Brown et al., 1993), this region is a very valuable molecular
marker for investigating relationships among closely related
species or conspecific populations (e.g., Baker et al., 1993;
Arctander et al., 1996; Nagata et al., 1998; 1999; Barratt et
al., 1999; Kurose et al., 1999; Matsuhashi et al., 1999). Based
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on the control region data, we here discuss phylogeographic
relationships within Japanese populations of Petaurista
leucogenys.

MATERIALS AND METHODS

Animals
A profile of the Japanese giant flying squirrel Petaurista

leucogenys examined in the present study is shown in Table 1. Thirty
seven specimens of P. leucogenys were collected from 17 localities
in Japan (Fig. 1). A female red giant flying squirrel Petaurista petaurista
melanotus (PPM) imported from Hong-Kong to Japan in 1990 was
used as an out-group.

DNA preparation and sequencing
Total DNAs were extracted from muscle or liver tissues using the

phenol/proteinase K/sodium dodecyl sulfate method of Sambrook et
al. (1989). The whole control region was amplified using polymerase
chain reaction (PCR), with a set of newly designed primers: L15933
5’-CTCTGGTCTTGTAAACCAAAAATG-3’ and H637 5’-AGGACC-

AAACCTTTGTGTTTATG-3’. Primer names correspond to the light
(L) or heavy (H) strand and the 3’end-position of the primers in the
human mtDNA sequences (Anderson et al., 1981). The reaction mix-
ture of 50µl contained 100 ng of genomic DNA, 25 picomoles of each
primer, 200 µM dNTPs, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5
mM MgCl2, and 2.5 units of rTaq DNA polymerase (Takara). Amplifi-
cation was carried out for 35 cycles as follows: 94°C for 1 min, 50°C
for 1 min, and 72°C for 2 min, and then the extension reaction was
performed at 72°C for 10 min. PCR products were purified with the
Qia-quick PCR purification kit (QIAGEN) and directly sequenced
using an automated DNA sequencer (SQ5500L, Hitachi). For sequenc-
ing, two PCR primers and another new primer (5’-CCTAATGGATAT-
CCCCTTCCAACG-3’) were used.

Phylogenetic analysis
All sequences were aligned using the computer software

GeneWorks (Intelligenetics). The phylogenetic tree was constructed
via the neighbor-joining (NJ) method (Saitou and Nei, 1987) in Clustal
W (Thompson et al., 1994) and via the maximum parsimony (MP)
method using a heuristic search algorithm with the 50% majority-rule
consensus in PAUP (Swofford, 1993). In the NJ tree, the numbers of

Table 1. Specimen profiles of Petaurista leucogenys examined in the present study

Sample name Sex# Sampling locality (Supplier) No.** of Haplotype Accession No.
locality of sepuence***

AM1* M Sannohe-gun, Aomori Pref. 1 H6 AB043805
AM2* F Sannohe-gun, Aomori Pref. 1 H5 AB043804
ITI M Koromogawa, Iwate Pref. (Morioka Zoo) 2 H14 AB043813
IT2 F Koromogawa, Iwate Pref. (Morioka Zoo) 2 H12 AB043811
NN1* M Shiga-Height, Nagano Pref. 3 H11 AB043810
NN2* M Shiga-Height, Nagano Pref. 3 H4 AB043803
NN3* M Shiga-Height, Nagano Pref. 3 H13 AB043812
TY1* F Nakaniikawa-gun, Toyama Pref. 4 H13 AB043812
TY2* M Nakaniikawa-gun, Toyama Pref. 4 H4 AB043803
YN1* M Nirazaki, Yamanashi Pref. 5 H4 AB043803
YN2* F Nirazaki, Yamanashi Pref. 5 H10 AB043809
TG1 M Nikko, Tochigi Pref. (Tochigi Prefectual Museum) 6 H7 AB043806
TG2 M Shioya, Tochigi Pref. (Tochigi Prefectual Museum) 7 H8 AB043807
KN1 M Hakone, Kanagawa Pref. (Kanagawa Prefecture Natural Environment Conservation Center) 8 H15 AB043814
KN2 F Aikawa, Kanagawa Pref. (Kanagawa Prefecture Natural Environment Conservation Center) 9 H16 AB043815
WK1* M Hashimoto, Wakayama Pref. 10 H9 AB043808
WK2* F Hashimoto, Wakayama Pref. 10 H4 AB043803
GF1* M Kamioka, Gifu Pref. 11 H4 AB043803
GF2* F Kamioka, Gifu Pref. 11 H5 AB043804
KT1 M Kyoto, Kyoto Pref. (Mr. M. Kishioki) 12 H2 AB043801
HS1 F Hiroshima Pref. (Asa Zoological Park) 13 H1 AB043800
KG1* M Takamatsu, Kagawa, Pref 14 H4 AB043803
EH1 ? Omgo, Ehime Pref. (Omogo Mountain Museum) 15 H3 AB043802
FO1 F Hirokawa, Fukuoka Pref. 16 K1 AB043792
FO2 M Hirokawa, Fukuoka Pref. 16 K1 AB043792
FO3 M Hirokawa, Fukuoka Pref. 16 K1 AB043792
FO4 F Joyo, Fukuoka Pref. 17 K5 AB043796
FO6 F Joyo, Fukuoka Pref. 17 K1 AB043792
FO7 F Joyo, Fukuoka Pref. 17 K3 AB043794
FO8 F Joyo, Fukuoka Pref. 17 K8 AB043799
FO9 M Joyo, Fukuoka Pref. 17 K2 AB043793
FO10 M Joyo, Fukuoka Pref. 17 K4 AB043795
FO11 M Joyo, Fukuoka Pref. 17 K2 AB043793
FO15 M Joyo, Fukuoka Pref. 17 K5 AB043796
FO16 M Joyo, Fukuoka Pref. 17 K1 AB043792
FO17 M Joyo, Fukuoka Pref. 17 K6 AB043797
FO18 F Joyo, Fukuoka Pref. 17 K7 AB043798

*** Specimens obtained commercially from pet stores in Japan: Takita Store, Sannohe-gun and Saitama Sougou Pet, Koshigaya.
*** Locality Nos. correspond to those in FIg.1.
*** Sequence data will appear in the DDBJ nucleotide sequence databases with these accession numbers.
  # M, male; F, female.
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Fig. 1. Sampling localities in the present study and fossil localities of Petaurista leucogenys. Closed circles, sampling localities; open square,
Middle Pleistocene fossil localities; closed squares, Late Pleistocene fossil localities. Sampling locality numbers correspond to those of Table 1
and Fig. 2. Arrow indicates the presumed migration route of P. leucogenys from southern China to Japan.

nucleotide substitutions per site were estimated for multiple substitu-
tions by Kimura’s (1980) two-parameter method. Using sequences
without gap-sites, the MP tree was produced by unweighted parsi-
mony. To assess the branching confidence, bootstrap values
(Felsenstein, 1985) were derived from 1,000 replications of the NJ
method and 100 replications of the MP tree.

RESULTS

Sequence Divergence of mtDNA Control Region
All mtDNA control regions (1,052–1,054 bases) of P.

leucogenys from 17 localities in Japan were successfully se-
quenced. All sequences of animals from Kyushu had 1,052
bases, while those of populations from Honshu and Shikoku
had 1,054 bases with insertions except for three specimens:
EH1 (1,052 bases), KT1 (1,052 bases), and HS1 (1,053 bases)
(Table 2). Of all sequences obtained, 145 sites were variable:
transitions at 117, transversions at 14 sites, and both transi-
tions and transversions at 12 sites (Table 2). In the 37 ani-
mals, 24 haplotypes were identified (Tables 1 and 2). The
sequence divergence among haplotypes was 0.7–4.8% (Table 3).

The control region of P. leucogenys was divided into three
domains: two variable domains (the 5’ and 3’ ends) and one
conserved central domain (Table 2). The 5’ end domain was
more variable than the 3’ end domain and contained one gap-
site (site number 281) in all haplotypes from Kyushu, in H1
and H2 from Honshu, and in H3 from Shikoku. The 3’ end
domain contained an additional gap-site (site number 1,052)

in all haplotypes from Kyushu, in H2 from Honshu, and in H3
from Shikoku. The sequence of P. petaurista used as an out-
group has 1,051 bases (accession number in DDBJ:
AB043816).

Molecular phylogeny based on the mtDNA control region
Phylogenetic relationships reconstructed via NJ and MP

methods were similar to each other. In the NJ tree, the Japa-
nese population of P. leucogenys was separated into three
major lineages: Group A consisting of K1, Group B consisting
of K2, K3, K4, K5, K6, K7, K8, and H1 (95% bootstrap value),
and Group C consisting of H4, H5, H6, H7, H8, H9, H10, H11,
H12, H13, H14, and H15 (62% bootstrap value) (Fig. 2a). In
the MP analysis, only one most-parsimonious phylogenetic
tree was obtained by unweighted parsimony, and it had a con-
sistency index of 0.668. The three major groups were also
recognized in the MP tree: Group A (K1), Group B consisting
of K2, K3, K4, K5, K6, K7, K8, and H1 (88% bootstrap value),
and Group C consisting of H4, H5, H6, H7, H8, H9, H10, H11,
H12, H13, H14, and H15 (57% bootstrap value) (Fig. 2b). In
both trees, H1 from Honshu was clustered with the Kyushu
population consisting of K2, K3, K4, K5, K6, K7, and K8 with
high bootstrap values (95% in the NJ tree and 88% in the MP
tree), and H2, H3, and H16 were not included in the major
three lineages. In addition, in both trees, genetic differences
between haplotypes of Group C did not correspond to geo-
graphic distances. The sequences of Groups A and B had
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Table 3. Pairwise comparison of mt DNA control region sequences without gap-sites (1,052 bases) between 24 haplotypes from Petaurista
leucogenys

K1 K2 K3 K4 K5 K6 K7 K8 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

K1 3.7 3.7 4.4 4.3 4.1 3.9 4.3 4.2 3.2 3.4 3.0 3.2 3.7 3.7 3.1 4.1 3.1 3.4 3.7 3.4 4.0 3.6 3.8
K2 35/4 0.9 1.6 1.8 2.0 1.8 2.0 2.1 3.0 3.3 3.2 3.3 3.6 3.4 3.2 4.4 3.3 3.3 3.4 3.3 3.7 3.5 3.6
K3 38/1 6/3 1.2 1.3 1.7 1.5 1.3 2.0 3.1 3.0 3.4 3.5 3.8 3.6 3.4 4.6 3.4 3.5 3.5 3.5 3.9 3.7 3.5
K4 44/2 13/4 12/1 0.9 1.1 0.9 0.9 2.1 3.6 3.2 3.4 3.7 3.6 3.9 3.4 4.6 3.4 3.9 3.7 3.7 3.9 3.7 3.5
K5 43/2 15/4 13/1 9/0 1.1 1.0 1.0 2.2 3.7 3.1 3.6 3.5 4.0 3.9 3.6 4.8 3.8 4.1 4.1 3.9 4.3 3.9 3.7
K6 39/4 15/6 15/3 9/2 10/2 0.2 1.0 2.2 3.5 3.3 3.4 3.7 3.8 3.9 3.4 4.6 3.6 3.9 3.7 3.7 4.1 3.7 3.7
K7 37/4 13/6 13/3 7/2 8//2 2/0 1.0 2.0 3.3 3.1 3.2 3.5 3.6 3.7 3.2 4.4 3.4 3.7 3.5 3.5 3.9 3.5 3.5
K8 43/2 17/4 13/1 9/0 10/0 8/2 8/2 2.0 3.5 3.3 3.6 3.9 4.0 4.0 3.4 4.8 3.8 3.9 3.7 3.9 4.1 3.7 3.5
H1 41/3 17/5 19/2 19/3 20/3 18/5 16/5 18/3 3.8 3.8 3.3 3.6 3.6 4.3 3.3 4.5 3.3 3.4 3.7 3.4 4.0 3.2 3.8
H2 34/0 28/4 32/1 36/2 37/2 33/4 31/4 35/2 37/3 2.9 3.3 3.2 3.5 3.6 3.3 4.3 3.5 3.2 3.6 3.2 3.8 3.2 3.3
H3 34/2 29/6 28/3 30/4 29/4 29/6 27/6 31/4 35/5 28/2 3.1 3.4 3.5 4.1 3.5 4.3 3.5 3.4 3.9 3.6 4.0 3.2 2.8
H4 30/1 31/3 34/2 33/3 35/3 31/5 29/5 35/3 31/4 34/1 30/3 0.7 1.0 2.2 1.1 1.1 1.4 1.6 2.4 1.4 1.8 1.8 3.0
H5 33/1 32/3 35/2 36/3 34/3 34/5 32/5 38/3 34/4 33/1 33/3 7/0 1.1 2.3 1.1 1.6 1.7 1.9 2.7 1.3 2.1 2.1 3.2
H6 36/3 33/5 36/4 33/5 37/5 33/7 31/7 37/5 32/6 34/3 32/5 8/2 9/2 2.8 1.5 1.9 1.7 2.0 2.8 1.6 2.2 2.0 3.1
H7 37/2 32/4 35/3 37/4 37/4 35/6 33/6 37/4 40/5 36/2 39/4 22/1 23/1 26/3 1.9 3.0 2.3 2.5 3.0 2.1 2.7 2.9 3.7
H8 32/1 31/3 34/2 33/3 35/3 31/5 29/5 33/3 31/4 34/1 34/3 12/0 11/0 14/2 19/1 2.3 1.4 1.6 2.4 1.2 1.6 1.8 3.0
H9 42/1 43/3 46/2 45/3 47/3 43/5 41/5 47/3 43/4 44/1 42/3 12/0 17/0 18/2 30/1 24/0 2.4 2.6 3.3 2.2 2.8 3.0 4.1
H10 32/1 32/3 34/2 33/3 37/3 33/5 31/5 37/3 31/4 36/1 34/3 15/0 18/0 16/2 23/1 15/0 25/0 1.7 2.7 1.5 1.5 2.1 3.2
H11 34/2 31/4 34/3 37/4 39/4 35/6 33/6 37/4 31/5 32/2 32/4 16/0 19/1 18/3 24/2 16/1 26/1 17/1 1.7 1.1 1.5 2.1 3.1
H12 31/8 26/10 28/9 29/10 33/10 27/12 25/12 29/10 28/11 30/8 31/10 18/7 21/7 20/9 24/8 18/7 28/7 21/7 10/8 1.9 2.1 2.9 3.8
H13 35/1 32/3 35/2 36/3 38/3 34/5 32/5 38/3 32/4 33/1 35/3 15/0 14/0 15/2 21/1 13/0 23/0 16/0 11/1 13/7 1.3 2.1 3.2
H14 38/4 33/6 36/5 35/6 39/6 35/8 33/8 37/6 35/7 36/4 36/6 16/3 19/3 18/5 24/4 14/3 26/3 13/3 12/4 14/8 11/3 2.3 3.6
H15 36/2 33/4 36/3 35/4 37/4 33/6 31/6 35/4 29/5 32/2 30/4 18/1 21/1 18/3 28/2 18/1 30/1 21/1 20/2 22/8 21/1 20/4 2.5
H16 38/2 34/4 34/3 33/4 35/4 33/6 31/6 33/4 33/5 33/2 25/4 30/1 33/1 29/3 37/2 30/1 42/1 33/1 31/2 32/8 33/1 34/4 24/2

Data above the diagonal represent percentage differences between haplotypes. Data below the diagonal are the numbers of nucleotide substitutions (transitions/
transversions).

Table 2. Sequence variation of the mt DNA control region (1,052–1,054 bases) in Petaurista leucogenys. Dots indicate identical nucleotides or

Variable

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Haplo- 1 2 2 3 5 6 6 6 6 7 8 9 9 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 6
type 2 9 1 3 5 1 4 0 1 2 5 7 8 4 6 4 5 3 4 5 2 4 4 7 9 0 8 9 0 3 7 9

K1 TT C C T T T T C A C T A T G A T T A T A CGA T C A G T A A C
K2 C . . . C . . . T T . . . . . . . . . . . T . . . T . A C . . T
K3 C . . . C . . . T T . . . . . . . . . . . T . . . T . A C . . T
K4 C . . . C . . . T T . . . . A . . . . . . T . . . T . A C . . T
K5 C . . . C C . . T T . . . . A . . . . . . T . . . T . A C . . T
K6 C . . . C . . . T T . . . . A . . . . . . T . . . T . A C . . T
K7 C . . . C . . . T T . . . . A . . . . . . T . . . T . A C . . T
K8 C . . . C . . . T T . . . . A . . . . . . T . . . . . A C . . T
H1 C . . . C . . . T T . C . . A . C . . . . T . . . . . A C . . T
H2 C . . . C . . . . . . . . . . . . C . . . . . . . . . A C . . T
H3 C . . . C . . . . . . . . . A . . . . . . T . . . . . A C . . .
H4 C . . . C . . . . . . . . C A . . . . . . T . . C . . A . . . T
H5 C . . . C . . . . . . . . C A . . . . . . T . . . . . A . . . T
H6 C . . . C . . . . . T . . C A . . . . . . T . . . . . A . . . T
H7 C . . . C . . . . . . . . . . . . . . . G . . . C . . A . . . T
H8 C . . . C . . . . . . . . . A . . . . . . T . . . . . A . . . T
H9 C . . . C . . . . . . . . C A G . . . . G T . GC . . A . GG T
H10 C . . . C . . . . . . . . . . . . . GC . T . . . . . A . . . T
H11 C . . . C . C . . . . . . . . . . . . . . T . . . . G A . . . .
H12 C . . . C . C . . . . . . . A . . . . . . T . . . . G A . . . T
H13 C . . . C . C . . . . . . . A . . . . . . . . . . . . A . . .T
H14 C . . . C . CG . . . . . . A . . . . C . T . . . . . A . . . T
H15 CC . . C . . . . . . CG . A . . . . . . T . . . . . A . . . T
H16 C . T T C . . . . . . . . . A . . . . . . T A . . . . A . . . .

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 7 7 7 8 8 1 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7 8
4 6 7 8 0 6 6 9 0 1 3 4 5 6 8 9 0 5 6 7 8 9 1 2 6 7 1 5 9 0 2 4 5 8 0

C T C T A A C C C CGC T T C T T T GC C CG A C T T G T T T G T A A
. C . C . . T . . T . . . . . C C . . . . . A G . . C . . . C . C . T
. C T C . . T . . T . . . . . C C . . . . . A G . . . . . . C . C . .
. C.C . . T. . T. . . . T C C . . . . . A G . . . . . C C . C . G
. . . C . . T . . T . . . . . C C . . . . . A G . . . . . C C . C . .
. . . C . . . . A T . . . . . C . . . . . . A G . . . . . C C C C . .
. . . C . . . . A T . . . . . C . . . . . . A G . . . . . C C C C . .
. . T C . . T T . T . . . . . C C . . . . T A G . . . . . C C . C . .
. . . C . . T . . T . . C . . C C A . . . . A G . . . . . C C . C . .
. C . C . . . . . T A T . . . C . . . . . T . . T . . . . C C . . . .
. C . . . G . . . T A . . . . C . . . . . . . G . . . A . C . . C . .
T C . C . . . . . . . . . . . C . . . . . . A G . . . A . C . . . . T
T C . C . . . . . . . . . . . C . . . T . . A G T . . A . C . . . . T
T C . C . . . . . . A . . . . C . . . . . . A G T . . A . C . . . . T
T C . C . . . . . . . . . . . C . . . . T T A G . . . . . C . . . . T
T C . C . . . . . . . T . . . . . . . T . T A G . . . A . C . . . . T
T C . CG . . . . . . . . . . C . . . . T . A G T C . A . C . . . G T
T C . CG . . . . . . . . . T C . . . . . . A G . . . . . C . . . . C
T C . C . . . . . . . . . . . C . . . . . T A G . C . . . C . . . . T
. C . C . . . . . . . . . . . C . . . . . T A G . C . . . C . . . . T
T C . C . . . . . . . . . . . C . . . . . . A G T C . . . C . . . . T
T C . C . . . . . . . . . C T C . . A . . T A G . C . . . C . . . . T
T C . C . . . . . . A . C . . C . . . . . T . G . . . . . C . . C . T
. C T C . G . . . . A . . . . C . . . . . . . G . . . . C C . . C . T



Phylogeography of Petaurista leucogenys 111

Fig. 2. Phylogenetic relationships reconstructed by (a) the neighbor-joining (NJ) and (b) the maximum parsimony (MP) methods based on the
control region sequences of Petaurista leucogenys. The scale bar for NJ tree represents branch length in terms of nucleotide substitution per
site. Numbers at nodes indicate bootstrap values higher than 50% derived from 1,000 replications for NJ tree and 100 replications for MP tree.
Numbers in parentheses, which correspond to those of Table 1 and Fig. 1, indicate sampling localities.

indels with those of haplotype K1

         site

22 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5
88 8 8 8 8 8 8 9 0 0 1 1 1 1 2 2 5 5 5 5 8 9 0 1 1 6 8 2 2 2 2 2 3 4 5 7
12 3 4 5 6 7 9 9 3 5 0 1 2 3 0 5 0 1 5 7 1 4 9 0 1 2 0 2 3 4 5 6 2 6 2 5

–CATATACAATGTTCGCTTCCCATGACTATCTCGCAA
. AT . G . . . . . . . . . . . T . . . TT . . . . . . G . . CTA . . G
. T . . G . . . GG . . . . . . T . . . TT . . . . T . G . . CTA . . G
. T . . GC . . G . . . . . . . T . . . T . . . . . T . G . . CTA . . G
. T . . G . . . G . . A . . . . T . . . T . . . . . TCG . . CTA . . G
. T . . G . . . . . . . . . . . T . . . T . . . . . T . G . . CTA . . G
. T . . G . . . . . . . . . . . T . . . T . . . . . T . G . . CTA . . G
. T . . G . . . G . . . . . . . T . . . T . . . . . T . G . . CTA . . G
. T . CG . . T . . . . C . . . T . . . T . . . . . . . G . . CTA . . G
. . G . . . . . . . . . . CT . T . . . TT . . . . . . . . . CTA . . G
. . . . G . C . G . C . . CT . . . . . TTG . . . TC . . . . TA . . G
C. . . . . . . . . . . . C . . . . C . T . . . . . . C . . . C . A . . G
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78 9 0 1 3 0 4 2 3 4 8 7 6 3 9 4 6 2 3 6 1 7 7 3 8 5 3 4 9 0 5 8 0 3 9 2 3 8 1
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1,052 bases and those of Group C had 1,054 bases, although
there was an exception (H1).

DISCUSSION

Characterization of the mtDNA control region in Petaurista
leucogenys

In vertebrates, it has been reported that the control re-
gion consists of two variable domains (5’ and 3’ ends) and a
conserved central domain (Brown et al., 1986; Southern et
al., 1988; Saccone et al., 1991). In the same way, the control
region of P. leucogenys examined in the present study was
also divided into three domains (Table 2). In particular, the 5’
end domain was more variable than the 3’ end domain and
contained one gap-site (site number 281) in all haplotypes
from Kyushu, in H1 and H2 from Honshu, and in H3 from
Shikoku. Another gap-site (site number 1,052) was recognized
in the 3’ end domain in all haplotypes from Kyushu and in H2
and H3. The two gap-sites were specific to the control region
of the Kyushu population. In addition, repetitive sequences,
which were reported in the control region of some mammals
(e.g., Hoelzel et al., 1994; Nagata et al., 1998; Kurose et al.,
1999; Matsuhashi et al., 1999), were not found in P. leuco-
genys and P. petaurista.

Phylogeography of Petaurista leucogenys
According to pelage characteristics, Imaizumi (1960) clas-

sified P. leucogenys into three subspecies (leucogenys,
nikkonis, and oreas), and demonstrated that P. l. leucogenys
is distributed throughout the Kyushu and Shikoku islands, that
P. l. nikkonis occurs in the eastern part of the Honshu Island,
and that P. l. oreas occurs in the western part of the Honshu
Island. However, in the present study, phylogenetic relation-
ships among haplotypes did not correspond to subspecies
classification and distribution.

Despite of the small number of specimens collected (Fig.
1), the Kyushu population was divided into two lineages: K1
lineage (Group A) and another lineage consisting of K2, K3,
K4, K5, K6, K7, and K8 in Group B (Fig. 2). In the NJ and MP
trees, K1 was likely to have been isolated from the other
haplotypes by the first dichotomy, although the bootstrap val-
ues were not so high (< 50% in NJ tree; 59% in MP tree),
suggesting that K1 diverged from the other haplotypes at an
earlier point. On the other hand, although H1 was closely re-
lated to K2, K3, K4, K5, K6, K7, and K8 in both trees, the
phylogenetic positions of H2 and H3 in the NJ tree were dif-
ferent from those in the MP tree (Fig. 2). The three haplotypes
(H1, H2, and H3) shared the two gap-sites specific to the
Kyushu population: site number 281 in H1, H2, and H3 and
site number 1,052 in H2 and H3 (Table 2). This indicated that
H2 and H3 are more closely related to K2, K3, K4, K5, K6, K7,
and K8 or that they are intermediate haplotypes between the
Kyushu population and Honshu/Shikoku population. The phy-
logenetic position of H16 that was not clustered with the three
major lineages was not clear in the present study.

In terms of the Honshu/Shikoku population in the NJ and

MP trees, it is noteworthy that genetic distances between
haplotypes do not always correspond to geographic distances
of sampling localities, and exhibit low bootstrap values (Fig.
2). Moreover, six specimens from different localities (Gifu,
Kagawa, Nagano, Toyama, Wakayama, and Yamanashi)
shared the H4 haplotype, and two specimens from Aomori
and Gifu had the H5 haplotype (Fig. 1 and Table 1). In the
Honshu/Shikoku population, except for H1, H2, H3, and H16,
haplotype H4 seemed to be most common.

Based on some fossil records, Kawamura (1988) reported
that P. leucogenys had presumably migrated from southern
China to Japan through the land bridge (Fig. 1) which was
formed around the area of the present East China Sea in the
Early Middle Pleistocene. It was not known that Petaurista
had existed in the Korean Peninsula at that time. Accepting
Kawamura’s hypothesis (1988), inevitably, the first place where
P. leucogenys had migrated from southern China could have
been the Kyushu Island in Japan, and then it could have ex-
tended its distribution toward the Honshu and Shikoku Islands
(see Fig. 1). Fossils of Petaurista before the Holocene period
are very rare in the Japanese islands. The Middle Pleistocene
fossils of P. leucogenys were found in two localities of Japan
(Hasegawa, 1966; 1972; Kowalski and Hasegawa, 1976;
Kawamura, 1988) which are very close to each other as shown
in Fig. 1. Moreover, the Late Pleistocene fossils of P. leuco-
genys were also recognized in six localities of Japan (Shikama,
1949; Hasegawa, 1966; Kowalski and Hasegawa, 1976;
Kawamura, 1980; 1981; 1982; 1988; Kawamura and Sotsuka,
1984; Kawamura et al., 1986), as shown in Fig. 1. Judging
from these fossil records, by the Middle or Late Pleistocene,
P. leucogenys could already have been distributed in the
Honshu and Shikoku Islands. Petaurista leucogenys is an
arboreal animal and inhabits the temperate forests (Nowak,
1991). Therefore, during glacial stages in the Pleistocene, the
habitats of this animal may have been reduced due to the
southward shifting of temperate forests in Japan. The results
of the present study show that the genetic distances in the
Honshu/Shikoku population were not related to geographic
distances of sampling localities. This suggests that P.
leucogenys rapidly extended its distribution in a short time
during the northward expansion of temperate forests in Ja-
pan after the last glacial stage of the Pleistocene.

Although the evolutionary rate of humans may not always
correspond to that of the giant flying squirrel because of the
differences of generation time between humans and giant fly-
ing squirrels, applying the evolutionary rate (approximately
8.4% per million years, Myr) of the human control region re-
ported by Vigilant et al. (1989), the divergence times between
Groups A and B, between Groups A and C, and between
Groups B and C were estimated to be approximately 0.4–0.5,
0.4–0.5, and 0.4–1.0 Myrs ago, respectively. On the other
hand, the divergence times in Group B and in Group C were
approximately 0.1–0.3 and 0.1–0.5 Myrs ago, respectively.
Accordingly, the divergences among haplotypes of P. leuco-
genys may have occurred rapidly from the Middle to Late Pleis-
tocene.
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