Strain	Extraction method	Cell viability (x 10 ⁸ CFUs/ ml)		
		FSMM22	PBS	1.23 ± 0.15
	0.2 M Glycine (pH 3)	1.65 ± 0.22	1.62 ± 0.23	380 ± 30
	2 M GndCl**	1.48 ± 0.19	0*	4010 ± 620
	1 M LiCl	1.26 ± 0.22	1.18 ± 0.20	580 ± 60
	2 mg/ml lysozyme solution**	1.49 ± 0.14	1.43 ± 0.06	940 ± 310
	2 mg/ml lysozyme solution-1 M LiCl**	1.15 ±0.0 5	1.12 ± 0.18	1450 ± 150
FSMM15	PBS	1.46 ± 0.30	1.44 ± 0.24	195 ± 44
	2 M GndCl	1.68 ± 0.22	0*	2347 ± 358
	1 M LiCl	1.59 ± 0.13	1.47 ± 0.08	143 ± 12

Table S1. Cell viabilities and extracted cell surface protein amounts of *Lactobacillus rhamnosus* FSMM15 and FSMM22.

*Cell viabilities decreased significantly after treatment of extraction buffer (p < 0.05, n = 3).

**Extraction with 2 M guanidine hydrochloride, 2 mg mL⁻¹ lysozyme, and 2 mg mL⁻¹ lysozyme in combination with 1 M LiCl gave several times higher protein yield, but these were avoided because they led the significant low cell viability or interference on mass spectrometry analysis.

Fig. S1. Mass spectra used for the identification of the LBPs isolated from *L. rhamnosus* **FSMM22.** (A) Mass spectrum of peptides derived from band no. 5 (Fig.1). The fragmented peptides were identified as mixture of glycereldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) by Mascot search (inset). (B) Mass spectrum of peptides derived from band no.

8 (Fig.1). The peptide at m/z 2007.063 Da and 1378.791 Da were further analyzed by MS/MS analysis. (C) MS/MS spectrum of the parent peak at m/z 1378.791Da in panel (B). The peptide was identified as a DNA binding protein HU by Mascot search. (D) MS/MS spectrum of the parent peak at m/z2007.063Da in panel (B). The peptide was identified as a 30S ribosomal protein S19 by Mascot search (insets). This peptide was correspondent to ³⁸STIFPSFIGYTIAVYDGR⁵⁵, which was completely conserved among RpsSs of *Streptococcus pyogenes* M1 and *Lactobacillus rhamnosus* GG.

Fig. S2. Western blot analysis of CSPs extracted with 1 M LiCl from *L. rhamnosus* FSMM15 and FSMM22 without (left) and with (right) the antigen peptide, the N-terminal 19 amino acids of **RpsS.** Position of the RpsS was indicated by arrows.

FSMM22 w/o the antigen peptide

FSMM22 with the antigen peptide

Fig. S3. Anti-RpsS immunohistochemical staining of *L. rhamnosus* FSMM22 without (left) and with (right) the antigen peptide, the N-terminal 19 amino acids of RpsS.

