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ABSTRACT

In this study, we aimed to improve current udder 
health genetic evaluations by addressing the limitations 
of monthly sampled somatic cell score (SCS) for distin-
guishing cows with robust innate immunity from those 
susceptible to chronic infections. The objectives were to 
(1) establish novel somatic cell traits by integrating SCS 
and the differential somatic cell count (DSCC), which 
represents the combined proportion of polymorphonucle-
ar leukocytes and lymphocytes in somatic cells and (2) 
estimate genetic parameters for the new traits, including 
their daily heritability and genetic correlations with milk 
production traits and SCS, using a random regression 
test-day model (RRTDM). We derived 3 traits, termed 
ML_SCS_DSCC, SCS_4_DSCC_65_binary, and ML_
SCS_DSCC_binary, by using milk loss (ML) estimates 
at corresponding SCS and DSCC levels, thresholds es-
tablished in previous studies, and a threshold established 
from milk loss estimates, respectively. Data consisted of 
test-day records collected during January 2021 through 
March 2022 from 265 herds in Hokkaido, Japan. From 
these records, we extracted records between 7 to 305 d 
in milk (DIM) in the first lactation to fit the RRTDM. 
The model included the random effect of herd-test-day, 
the fixed effect of year-month, fixed lactation curves 
nested with calving age groups, and random regressions 
with Legendre polynomials of order 3 for additive ge-
netic and permanent environmental effects. The analysis 
was performed using Gibbs sampling with Gibbsf90+ 
software. The averages (ranges) of the daily heritability 
estimates over lactation were 0.086 (0.075–0.095) for 
SCS, 0.104 (0.073–0.127) for ML_SCS_DSCC, 0.137 
(0.014–0.297) for SCS_4_DSCC_65_binary, and 0.138 

(0.115–0.185) for ML_SCS_DSCC_binary; the herita-
bility curve for SCS_4_DSCC_65_binary was erratic. 
Genetic correlations within the trait decreased as the 
DIM interval widened, especially for those integrating 
DSCC, indicating that these traits should be analyzed us-
ing RRTDM rather than repeatability models. The aver-
ages (ranges) of genetic correlations with milk yield over 
lactation were 0.01 (−0.22 to 0.28) for SCS, −0.05 (−0.40 
to 0.13) for ML_SCS_DSCC, −0.08 (−0.17 to 0.09) for 
SCS_4_DSCC_65_binary, and −0.08 (−0.22 to 0.27) for 
ML_SCS_DSCC_binary. Compared with SCS, the newly 
defined traits exhibited slightly stronger negative genetic 
correlations with milk yield. Especially in late lactation 
stages, the genetic correlation between ML_SCS_DSCC 
and milk yield was significantly below zero, with a 
posterior median of −0.40. Furthermore, the new traits 
showed positive correlations with SCS, having estimates 
varying from 0.68 to 0.85 for ML_SCS_DSCC, 0.14 to 
0.47 for SCS_4_DSCC_65_binary, and 0.61 to 0.66 for 
ML_SCS_DSCC_binary, depending on DIM. Consider-
ing that ML_SCS_DSCC and ML_SCS_DSCC_binary 
have relatively high heritability (compared with SCS) and 
favorable genetic correlations with milk production traits 
and SCS, their incorporation into breeding programs ap-
pears promising. Nevertheless, their genetic relationships 
with (sub)clinical mastitis require further investigation.
Key words: mastitis, somatic cell score, differential 
somatic cell count, immune-associated trait

INTRODUCTION

Because of its high prevalence and detrimental effects 
on economics and animal welfare, mastitis is a major 
concern in the dairy industry (Hogeveen et al., 2019). 
In Hokkaido, Japan, mastitis caused an estimated annual 
loss of $60 million from 2015 to 2018, and the situation 
has worsened because of bovine leukemia virus (Nakada 
et al., 2023). In the same area, approximately 20% of 
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culled dairy cows were culled involuntarily due to mas-
titis (Hokkaido Dairy Milk Recording and Testing As-
sociation, 2022). Mastitis is primarily managed through 
antibiotics, but outcomes are often not as expected, 
prompting concerns regarding antimicrobial resistance 
(Ruegg, 2017). Effective strategies to control mastitis 
without antibiotics are needed urgently (Sharma et al., 
2018). In this context, genetic selection is considered 
one of the most efficient approaches to tackling mastitis 
(Martin et al., 2018).

Genetic selection offers several advantages, particular-
ly because genetic merit can be permanently accumulated 
in the population (Martin et al., 2018). The success of a 
genetic selection program relies heavily on precise phe-
notyping and the heritability of the targeted trait; howev-
er, establishing a successful selection program becomes 
challenging when dealing with complex disease traits 
such as mastitis. The poor heritability of clinical mastitis 
(CM; 0.01–0.03; Carlén et al., 2004; Yamaguchi et al., 
2019;) makes a national recording system (Heringstad 
et al., 2000) or constant reporting of producer-recorded 
health data (Koeck et al., 2012; Pritchard et al., 2013) 
necessary to collect the large amounts of data required 
for reliable estimations of breeding values. The record-
ing and reporting process can be laborious and costly, 
and the inconstancy in trait definition (i.e., the criteria 
for defining an outbreak of CM) between producers, vet-
erinarians, and nations can introduce bias into the results 
(Koeck et al., 2012; Pritchard et al., 2013). In countries 
without consistent and reliable records of CM, the SCS 
(the logarithmic transformation of SCC) has been used 
as a proxy for genetic selection on udder health (Ali and 
Shook, 1980; Cole and VanRaden, 2018).

The SCS increases as leukocytes, particularly PMN, 
are recruited from the blood into the mammary gland to 
phagocytize invading organisms. This immune response 
is crucial to prevent further infection by pathogens. Be-
cause the magnitude of the SCS is closely linked to the 
extent of inflammation in the mammary gland, cows with 
the lowest SCS averages during lactation are deemed to 
have the highest resistance to IMI and mastitis (Shook 
and Schutz, 1994). In addition, SCS has moderate heri-
tability (0.07–0.17; Carlén et al., 2004; Yamazaki et al., 
2013) and a favorable, positive genetic correlation with 
CM (0.59–0.88; Carlén et al., 2004; Yamaguchi et al., 
2019), implying that indirect selection on SCS can be as 
effective as direct selection based on CM records (Mar-
tin et al., 2018). Furthermore, SCS records are available 
through routine milk testing in DHI programs at low cost, 
thereby providing information on IMI and CM at monthly 
intervals. These characteristics make SCS an objective, 
cost-effective, and convenient alternative to CM records 
for genetic selection (Shook and Schutz, 1994).

The genetic evaluation of SCS has been widely imple-
mented since the 1990s and remains a pivotal measure 
for improving resistance to mastitis, but the approach has 
limitations (Shook and Schutz, 1994; Heringstad et al., 
2000). Although selection for low SCS aims to identify 
animals without IMI, it might inadvertently favor animals 
with less robust innate immune responses to IMI. Conse-
quently, long-term selection for low SCS can potentially 
compromise leukocyte recruitment (Kehrli and Shuster, 
1994; Schukken et al., 1997) and thus general immunity 
against infectious diseases. Despite debates regarding 
this theory (Rainard et al., 2018), the current consensus 
is that a better tool is required to differentiate between 
cows with robust innate immunity and those predisposed 
to chronic infections (Shook and Schutz, 1994; Herings-
tad et al., 2000).

In 2017, a new tool known as the differential somatic 
cell count (DSCC) was described to determine the pro-
portion of PMNs and lymphocytes in somatic cells dur-
ing monthly DHI testing (Damm et al., 2017). Given 
that lymphocytes typically constitute a small proportion 
of milk cells, fluctuations in DSCC primarily reflect 
changes in PMN levels (Damm et al., 2017). Our pre-
vious research revealed that high levels of SCS do not 
necessarily negatively affect milk production, as long as 
DSCC is also at a high level (Huang et al., 2023). This 
finding suggests that cows with elevated SCS and DSCC 
may be in the early stages of infection, when the infec-
tion is well controlled by abundant PMNs. In contrast, 
when the SCS is high and the DSCC is low, indicating 
chronic infection, the productivity of cows becomes 
significantly impaired (Schwarz et al., 2020; Huang et 
al., 2023). Previous studies have demonstrated that the 
ability of cows to recruit PMNs in response to IMI is 
heritable (Paape et al., 2002). When encountering IMI, 
cows with rapid recruitment of PMNs have an increased 
likelihood of spontaneous cure and complete recovery of 
milk production (Shuster et al., 1996; Burton and Ers-
kine, 2003; Mehrzad et al., 2004). Because of variations 
in PMN proportions (i.e., DSCC level), productivity and 
the ability to counter IMI differ markedly among cows 
with the same SCS, thus presenting an opportunity to de-
fine a new genetic trait that combines information from 
SCS and DSCC to improve resistance to mastitis and 
minimize the associated milk loss.

As the first step to determine whether integrating 
SCS and DSCC improves current genetic evaluations of 
mastitis resistance based solely on SCS, we aimed to (1) 
define novel udder health traits by combining test-day 
records of SCS and DSCC and (2) use random regres-
sion test-day models (RRTDM) to estimate the genetic 
parameters for these traits, including their variance com-
ponents, heritability, and genetic correlations with milk 
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production traits and SCS, during the first lactation of 
Japanese Holsteins.

MATERIALS AND METHODS

Data

The phenotypic data used in this study were test-day 
records collected in the Tokachi Subprefecture of Japan 
from January 2021 to March 2022 and provided by the 
Tokachi Federation of Agricultural Cooperative (Hok-
kaido, Japan). Because the data were retrieved from 
pre-existing databases, Animal Care and Use Committee 
approval was not required. The dataset has been used 
and described in detail by Huang et al. (2023). The SCS 
was calculated as log2(SCC/100,000) + 3 (Wiggans and 
Shook, 1987). We extracted test-day records from the 
first lactation, covering 7 to 305 DIM. We excluded cows 
with unknown parents and those that had calved outside 
the age range of 21 to 32 mo (Nishiura et al., 2015). Each 
contemporary group (i.e., herd-test-day; htd) was re-
quired to have at least 3 animals to be enrolled (Oliveira 
et al., 2019). This stipulation resulted in a dataset con-
sisting of 124,255 test-day records from 36,706 cows in 
265 herds.

The pedigree data were provided by the Holstein Cattle 
Association of Japan, Hokkaido Branch. We included 
cows with phenotypic records and their ancestors until 
the fifth generation, resulting in a dataset of 164,427 
animals for genetic analysis.

Trait Definition

Previous studies on the genetic analysis of DSCC sug-
gested its potential use in breeding programs. The genetic 
correlation between SCS and DSCC differed from unity, 
with point estimates ranging from 0.60 to 0.66 (Bobbo 
et al., 2019; Pegolo et al., 2021; Ablondi et al., 2023). In 
addition, DSCC may have higher heritability than SCS 
(Bobbo et al., 2019; Ablondi et al., 2023). Furthermore, 
we argue that it is essential to consider the interaction 
between DSCC and SCS. The meaning of a DSCC value 
varies depending on the SCS value, and the 2 parameters 
have interactive effects on milk production and udder 
health (Huang et al., 2023). Therefore, we defined 3 
traits derived from the combination of SCS and DSCC, 
as described in the following sections.

SCS_4_DSCC_65_binary. This trait corresponds to 
udder health group D defined by Schwarz et al. (2020) 
as cows with an SCC above 200,000 cells/mL (i.e., SCS 
>4) and a DSCC below 65%; this is believed to be an 
indication of chronic mastitis. Cows in this group expe-
rienced a significant reduction in productivity (Schwarz 
et al., 2020) and were at increased risk of being culled 

(Schwarz et al., 2021), making it desirable to exclude 
these animals from breeding programs. For this binary 
trait, a test-day record with an SCS higher than 4 and a 
DSCC lower than 65% was assigned a value of 1; other-
wise, it was assigned a value of 0 (Figure 1).

Huang et al.: GENETIC TRAITS COMBINING SCS AND DSCC

Figure 1. Distributions of our new traits as functions of SCC and 
differential SCC (DSCC).
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ML_SCS_DSCC (%). The trait was derived from milk 
loss (ML; %) estimated at various levels of SCS and 
DSCC, according to the method described by Huang et 
al. (2023) but with modifications to avoid selection bias. 
In brief, we fitted a generalized additive model (GAM) 
using the “bam” function within the “mgcv” package 
(Wood, 2017) in R 4.2.2 (R Core Team, 2022) to esti-
mate the interactive effects of SCS and DSCC on milk 
yield, where the effects of confounding factors, such as 
DIM, season, cow, and herd, were precluded. To include 
all records from all cows in the analysis, we divided 
the phenotypic data into 5 subsets by randomly select-
ing one-fifth of the cows from each herd and fitting a 
GAM to each subset of data. Using the fitted models, 
we estimated milk loss as a percentage change of milk 
yield relative to that found at an SCS of 2 and a DSCC of 
65%. This computation results in estimates similar to that 
in Table 4 of Huang et al. (2023), but here we reversed 
the sign to facilitate the comparison with SCS (i.e., the 
lower, the better). Specifically, a negative value for this 
trait indicates that the cow is expected to produce more 
milk than she can produce with an SCS of 2 and a DSCC 
of 65%, whereas a positive value indicates she would 
produce less milk at the corresponding level. Because of 
the high correlations between the estimates derived from 
the 5 models (Pearson correlation coefficient >0.99 for 
all pairs of comparison), we averaged the estimates to 
derive the values of ML_SCS_DSCC (Figure 1).

ML_SCS_DSCC_binary. This binary trait is a com-
promise between the SCS_4_DSCC_65_binary and 
ML_SCS_DSCC traits. The SCS_4_DSCC_65_binary 
trait is simple to derive. Nonetheless, genetic selection 
based on this trait is similar to using the independent 
culling level method for simultaneous selection of low 
SCS and high DSCC, in the sense that only cows with 
an SCS higher than 4 and DSCC lower than 65% would 
be excluded from breeding programs. Such a method can 
be inefficient and unable to maximize economic ben-
efits. In contrast, ML_SCS_DSCC is computationally 
intensive to derive, requiring the understanding of GAM 
and a specific statistical package (i.e., “mgcv”), which 
potentially limits its use. To address this limitation, we 
determined a threshold ML_SCS_DSCC (the ML_SCS_
DSCC_binary trait) according to the prevalence of sub-
clinical mastitis in the study population. We estimated 
this prevalence as the proportion of observations with 
an SCS greater than 4 (Dohoo and Leslie, 1991), thus 
resulting in an estimate of 9.95%. Therefore, we coded 
a test-day record with a value of ML_SCS_DSCC below 
the 9.95% as 1; otherwise, we coded it as 0. The value 
of ML_SCS_DSCC_binary depends on the interaction 
between the values of SCS and DSCC (Figure 1). More 
specifically, even though a cow might have a relatively 
low SCS, she might still be coded as 1 if her DSCC was 

low or vice versa. The ML_SCS_DSCC-binary trait can 
conveniently be derived using a quintic function: SCS + 
11.4 × DSCC − 57.8 × DSCC2 + 150 × DSCC3 − 174.9 × 
DSCC4 + 62.8 × DSCC5 > 3.5; if true, 1; else 0, in which 
the value of DSCC should be input as a proportion rather 
than a percentage (e.g., 0.65 for 65% of DSCC).

Statistical Models

Depending on the nature of the trait, we estimated the 
(co)variance components for SCS and the newly defined 
traits using a univariate linear or threshold RRTDM:
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where yijklt was either the record of SCS or ML_SCS_
DSCC, or the liability of SCS_4_DSCC_65_binary or 
ML_SCS_DSCC_binary of the lth animal on DIM t; htdi 
was the random effect of the ith herd-test-day (4,637 lev-
els); YMj was the fixed effect of the jth year-month (15 
levels), which was included to account for time trends in 
the phenotypes (Schaeffer, 2018); ϕ(t)km was a matrix of 
Legendre polynomial order of 4 (m = 0–4) plus Wilm-
ink’s exponential function (exp−0.05t; m = 5) at DIM t for 
fixed regressions (Schaeffer et al., 2000; Nishiura et al., 
2015); βkm was the mth fixed regression coefficient of the 
kth group for the age of calving (6 levels; 21–32 mo, 2 
mo per group); ϕ(t)km was a matrix of Legendre polyno-
mial order of 3 (m = 0–3) at DIM t for random regres-
sions; and alm and pelm were the mth random regression 
coefficients of the lth animal’s additive genetic effect 
(164,427 levels) and permanent environmental effect 
(PE; 164,427 levels), respectively. Lastly, eijklt was the 
random effect of residuals, which we assumed constant 
across the lactation. In matrix notation, the model can be 
written as follows:

y = Vhtd + Xb + Za + Wpe + e, 

where y was a vector of observations, htd was a vector 
of herd-test-day effects, b was a vector of fixed effects, a 
was a vector of additive genetic effects, pe was a vector 
of PE effects, e was a vector of residuals, and V, X, Z, 
and W were the corresponding incidence matrices. The 
covariance structure of models was defined as
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where I was an identity matrix; σh
2 was the variance of the 

random htd effect; A was the numerator relationship ma-
trix accounting for additive genetic relationships between 
animals; ⊗ was the Kronecker product; G and P were 4 × 
4 covariance matrices of the random regression coeffi-
cients for additive genetic and PE effects, respectively; 
and σr

2 was the variance of the residuals.
We used a bivariate RRTDM to clarify the genetic 

relationship between SCS, the newly defined traits (i.e., 
SCS_4_DSCC_65_binary, ML_SCS_DSCC, and ML_
SCS_DSCC_binary), and milk production traits (i.e., the 
yields of milk, protein, fat, and lactose). The analysis was 
performed for each pair of somatic cell traits and milk 
production traits (4 × 4 = 16 models) and for SCS and 
the newly defined traits (1 × 3 = 3 models). Fixed and 
random effects were defined as in the univariate model, 
and the covariance structure was defined as follows:
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where H was a 2 × 2 covariance matrix for the random 
htd effects between traits; G and P were 8 × 8 covariance 
matrices of the random regression coefficients for addi-
tive genetic and PE effects, respectively, between traits; 
and R was a 2 × 2 covariance matrix for the residuals 
between traits. Other components were defined as in the 
univariate model.

Parameter Estimation
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where ϕ′(t) = [ϕ0(t) ϕ1(t) ϕ2(t) ϕ3(t)] was a vector of third-
order Legendre polynomials at DIM t; Ĝi  and P̂i were the 
estimated 4 × 4 covariance matrices of the random re-
gression coefficients for additive genetic and PE effects, 
respectively, and σ̂hi

2  and σ̂ri
2  were the estimated htd and 

residual variances for trait i, respectively.

The genetic correlation rgi t j t1 2( ) ( )( ),
 between trait i at 

DIM t1 and trait j at DIM t2 was estimated as follows:
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where Ĝij was the estimated 4 × 4 additive genetic cova-
riance matrix of the random regression coefficients be-
tween traits i and j, and σ̂gi t

2 1( ) and σ̂gj t
2 2( ) were the esti-

mated additive genetic variance of trait i at DIM t1 and 
that of trait j at DIM t2, respectively. Other components 
were as defined previously. Note that traits i and j can be 
the same trait, such that in this case, Ĝij equals ˆ .Gi

We estimated variance components, heritability, and 
genetic correlation within a trait (between different DIM) 
using the univariate RRTDM and computed the genetic 
correlation between the traits using the bivariate RRTDM. 
These parameters were estimated through a Bayesian ap-
proach via Gibbs sampling, performed by the Gibbsf90+ 
module of the BLUPF90 software (Lourenco et al., 2022). 
We assumed a flat prior for all effects (i.e., the default in 
Gibbsf90+) and ran a single chain of 500,000 iterations 
for each analysis. After discarding 200,000 samples as a 
burn-in, we stored every 10th sample for thinning, result-
ing in a total of 30,000 post-Gibbs samples for parameter 
estimation. For each sampled iteration, we calculated the 
variance components, heritability, and genetic correla-
tion to generate the posterior distribution (n = 30,000) 
of each parameter at the covered DIM (i.e., 7 to 305). 
We reported the median and the 95% highest probability 
density intervals to characterize the posterior distribu-
tions by using the R package “bayestestR” (Makowski 
et al., 2019).

RESULTS AND DISCUSSION

Descriptive Statistics and Variations  
Across Lactation

Table 1 shows descriptive statistics for somatic cell 
and milk production traits, as well as Pearson correla-
tion coefficients between linear traits. The mean of SCS 
was 1.85, which is considerably lower than that reported 
earlier in Japan (>2.10; Hagiya et al., 2014; Nishiura 
et al., 2015). This difference can be attributed to an 
improvement in the genetic and management aspects of 
mastitis resistance within the studied population or to 
potential variations in udder health across different re-
gions of Japan. The mean ML_SCS_DSCC was −0.37%, 
which indicated that, on average, the study population 
would produce 0.37% more milk than cows with an SCS 

Huang et al.: GENETIC TRAITS COMBINING SCS AND DSCC
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of 2 and a DSCC of 65% if only the effect of mastitis 
were considered. About 0.75% (n = 940) of test-day 
records from the first lactation were coded 1 for the 
SCS_4_DSCC_65_binary trait. This estimate was lower 
than previous reports of 1.5% (Bobbo et al., 2020) and 
1.2% (Schwarz et al., 2020) in the primiparous cows and 
was attributable to the general better udder health in the 
studied animals. The frequency of a positive value for 
ML_SCS_DSCC_binary was 9.95% (n = 12,367). This 
was much higher than that for the SCS_4_DSCC_65_bi-
nary trait. Note that the estimated genetic parameters of 
binary traits are frequency dependent, particularly when 
estimated by a linear multivariate model (Carlén et al., 
2009). This caveat was one of our reasons for using a 
threshold RRTDM for parameter estimation.

Pearson correlation coefficients between SCS and milk 
production traits varied from −0.08 to −0.19, depending 
on the trait (Table 1). The absolute values of the correla-
tions were higher than those reported earlier (Miglior et 
al., 2007; Costa et al., 2019a), possibly because those 
studies included records from cows with more lacta-
tions. However, the overall rank of correlation strength 
was identical among studies, with lactose yield having 
the strongest negative correlation with SCS, followed by 
milk yield, and with fat yield having the weakest nega-
tive correlation. Compared with SCS, ML_SCS_DSCC 
revealed stronger negative correlations with milk pro-
duction traits, with correlation estimates ranging from 
−0.12 to −0.27. By integrating information from DSCC 
in addition to SCS, ML_SCS_DSCC appears to have cap-
tured a more nuanced relationship between udder health 
and milk production. Moreover, we found a fairly strong 
correlation between SCS and ML_SCS_DSCC (r = 0.74).

Table 1 summarizes the yields of milk and milk com-
ponents by groups in the binary traits. Milk production 
differed substantially between cows coded as 0 and 1 for 
SCS_4_DSCC_65_binary, such that the latter produced 
7.7 kg less milk per day on average than the former. In 
comparison, the difference in milk production between 

the 2 groups divided according to ML_SCS_DSCC_bi-
nary was smaller (i.e., 30.7 − 26.7 = 4.0 kg). Never-
theless, the within-group variation, as indicated by the 
standard deviation, was lower for groups divided by 
ML_SCS_DSCC_binary than was achieved by using 
SCS_4_DSCC_65_binary, implying a more distinct 
separation between the groups, with an effect of reducing 
the heterogeneity within each group.

We plotted the averages of SCS and ML_SCS_DSCC, 
as well as the proportion of positive values in the binary 
traits across lactation (Figure 2). The curves for SCS, 
ML_SCS_DSCC, and ML_SCS_DSCC_binary exhibited 
similar patterns, forming an inverted lactation curve 
with a nadir around 60 to 70 DIM. The day-to-day varia-
tions in SCS seemed to be more pronounced than those 
in ML_SCS_DSCC. Dohoo and Meek (1982) suggested 
that day-to-day fluctuation in SCS can be attributed to 
transient IMI, which causes a sudden influx of PMNs and 
prompt elimination of the causative pathogen. In a com-
parable scenario, we hypothesize that ML_SCS_DSCC 
would exhibit diminished fluctuations compared with 
SCS. Our previous study suggested that concurrent el-
evations in SCS and DSCC (i.e., proportions of PMNs) 
signified the onset of an IMI (Huang et al., 2023). Dur-
ing this stage, milk yield, and thus ML_SCS_DSCC, 
should scarcely be affected (Figure 1). Unlike with the 
other 3 traits, the nadir of SCS_4_DSCC_65_binary was 
ambiguous. The trait was in low frequency after the first 
few days of lactation, with a slight elevation in the last 
stage of lactation.

Variance Components

We estimated the variance components across the first 
lactation, including htd, additive genetic, PE, and residu-
al variances for the 4 somatic cell traits (Figure 3A). For 
SCS, the daily additive genetic variances ranged from 
0.18 (at 40 DIM) to 0.25 (at 203 DIM), with an average 
of 0.23. Although these estimates were lower than those 
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Table 1. Descriptive statistics and correlations between somatic cell traits and milk production traits1

Trait Mean (SD)

Pearson correlation coefficient

MY (kg/d) FY (kg/d) PY (kg/d) LY (kg/d) SCS

SCS 1.85 (1.64) −0.16 −0.08 −0.11 −0.19 —
ML_SCS_DSCC (%) −0.37 (1.89) −0.24 −0.12 −0.17 −0.27 0.74
  n test-day records (%) Mean (SD)
SCS_4_DSCC_65_binary            
  Code 0 123,315 (99.25%) 30.4 (6.40) 1.21 (0.26) 1.02 (0.20) 1.39 (0.30) 1.83 (1.63)
  Code 1 940 (0.75%) 22.7 (8.39) 1.01 (0.39) 0.80 (0.29) 0.99 (0.38) 4.71 (0.85)
ML_SCS_DSCC_binary            
  Code 0 111,888 (90.05%) 30.7 (6.24) 1.22 (0.25) 1.02 (0.20) 1.40 (0.29) 1.57 (1.38)
  Code 1 12,367 (9.95%) 26.7 (7.22) 1.14 (0.31) 0.93 (0.24) 1.19 (0.33) 4.33 (1.72)
Overall 124,255 30.3 (6.46) 1.21 (0.26) 1.01 (0.20) 1.38 (0.30) 1.85 (1.64)
1MY = milk yield; FY = fat yield; PY = protein yield; LY = lactose yield.
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reported earlier in the Japanese Holstein population (Sa-
saki et al., 2017), the patterns across lactation exhibited 
similarities between this and the previous study. The PE 
variance for SCS peaked at the initial stage of lactation 
(1.67 at 7 DIM). After reaching a nadir of 1.14 at 42 DIM, 
it rose slightly toward the end of the lactation, result-
ing in a lactation mean of 1.33. The observed trajectory 
for PE aligns with earlier findings (Haile-Mariam et al., 
2001b; Mrode and Swanson, 2003). The htd variance of 
SCS (0.11) was notably lower than its residual variance 
(0.97), consistent with the observation by Rzewuska et 
al. (2011). This finding suggests that the difference in 
management practices between herds might not be the 
primary source of variations in SCS.

For ML_SCS_DSCC, the daily additive genetic vari-
ances ranged from 0.21 (at 55 DIM) to 0.54 (at 7 DIM), 
with an average of 0.35. The trend resembled that of SCS, 
albeit with more distinct fluctuations observed across 
different lactation stages. Regarding PE variances, the 
highest value (3.74) and lowest value (0.97) occurred at 7 
and 67 DIM, respectively, resulting in a lactation mean of 
1.37. The PE variances for ML_SCS_DSCC during early 

lactation were nearly double those at the end of lactation. 
This contrast was more pronounced than that for SCS. 
Several factors have been proposed to influence the sub-
populations of somatic cells and the recruitment of PMN 
during the periparturient period. These factors include 
periparturient hypocalcemia (Kehrli Jr. and Goff, 1989), 
blood cortisol level (Burton et al., 1995), heat stress 
(Alhussien and Dang, 2017), and imbalances in energy, 
glucose, fatty acids, selenium, and other (micro)nutrients 
(Ingvartsen and Moyes, 2013; Sordillo, 2016). The inter-
action of these factors, alongside variations in IMI risk 
across different environments, likely contributed to the 
environmental variances observed during early lactation. 
The htd and residual variances for ML_SCS_DSCC were 
estimated at 0.17 and 1.47, respectively.

The liability of SCS_4_DSCC_65_binary showed the 
greatest additive genetic variance at 7 DIM (0.60), which 
diminished to nearly negligible levels (<0.02) between 
50 and 100 DIM and peaked again at 232 DIM with a 
value of 0.49. The PE variance for this trait peaked at 7 
DIM, with an estimate of 4.93. Subsequently, it declined 
sharply until 50 DIM and rose again toward the end of 
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Figure 2. Average values of SCS and ML_SCS_DSCC and the proportions of positive values in SCS_4_DSCC_65_binary and ML_SCS_DSCC_
binary across the first lactation.
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Figure 3. Estimates of variance components (A) and heritability (B) across the first lactation for SCS and our new somatic cell traits, which were 
defined by combining SCS and the differential SCC (DSCC). Estimates are expressed as the median (line) and the 95% highest posterior density 
interval (shading) of the posterior distribution for each parameter.
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lactation. The htd and residual variances for the trait 
were estimated as 0.01 and 0.69, respectively. Notably, 
the residual variance estimate deviated from the expected 
value of one, the default residual variance for threshold 
models fitted in Gibbsf90+. This deviation indicated a 
potential convergence issue, likely related to the low 
frequency of positive values for the trait. In contrast, 
the liability of ML_SCS_DSCC_binary had the lowest 
genetic variance (0.25) at the beginning of lactation and 
the greatest (1.09) at the end of lactation. The PE vari-
ance followed a trend similar to that of the genetic vari-
ance, starting with the lowest value (0.54) and gradually 
increasing to a peak of 3.58 at 305 DIM. The htd and 
residual variance estimates for ML_SCS_DSCC_binary 
were 0.18 and 1, respectively. The residual variance esti-
mate was as expected for a threshold model.

Heritability Estimates

We estimated heritability for somatic cell traits across 
the first lactation (Figure 3B). The lactation means of 
heritability were 0.086 for SCS, 0.104 for ML_SCS_
DSCC, 0.137 for SCS_4_DSCC_65_binary, and 0.138 
for ML_SCS_DSCC_binary. The trajectory of heritabil-
ity estimates differed among traits also. The heritability 
curve for SCS was relatively flat, with lower estimates 
in the early lactation stages. As lactation progressed, it 
reached the nadir of 0.075 at 37 DIM and the peak of 
0.095 at 176 DIM. These estimates fell within the range 
reported by earlier studies on Japanese Holsteins (Hagiya 
et al., 2014; Nishiura et al., 2015; Sasaki et al., 2017). 
In contrast, ML_SCS_DSCC had a higher estimate of 
heritability at 7 DIM than SCS on the same day (0.092 
vs. 0.078). After reaching the nadir of 0.073 at 47 DIM, 
the estimated heritability of ML_SCS_DSCC gradually 
increased until the peak of 0.127 at 289 DIM.

The heritability estimates of ML_SCS_DSCC were 
almost always higher than those of SCS. A plausible 
explanation for the higher heritability estimates is that 
ML_SCS_DSCC accounts for the residual effects of CM 
by integrating information from the DSCC. Shook and 
Schutz (1994) proposed that SCS is limited in its inabil-
ity to accurately identify CM caused by Escherichia coli. 
This environmental pathogen often triggers a dramatic 
but transient surge in SCS, a phenomenon that the current 
monthly DHI sampling may be inadequate to capture. 
Conversely, our observations revealed that, during the 
healing process of mastitis, a decrease in SCS coincided 
with a decrease in DSCC (Huang and Kusaba, 2022), 
implying that ML_SCS_DSCC might persist or even 
increase in the advanced stages of mastitis (Figure 1). 
This characteristic potentially enhanced its effectiveness 
in identifying CM events within the monthly sampling 

framework. In a nutshell, the reduction in environmental 
variances, especially for those caused by sampling in-
tervals, potentially contributed to the higher heritability 
estimates of ML_SCS_DSCC.

The heritability estimates for the liability of SCS_4_
DSCC_65_binary exhibited an erratic pattern, reaching 
a nadir of 0.014 at 76 DIM and a peak of 0.297 at 289 
DIM. Misztal (2006) argued that the reliability of genetic 
parameters determined by RRTDM depends heavily on 
data distribution, meaning that the estimates likely con-
tain artifacts at time points where data are scarce. In 
the case of SCS_4_DSCC_65_binary, test-day records 
with positive values were scarce within 50 to 250 DIM 
(Figure 2). Further investigation is necessary to adjust 
the thresholds for SCS and DSCC to stabilize estimates. 
Alternatively, RRTDM can be performed using linear 
splines to enable more reliable estimates, as demon-
strated in a longitudinal analysis of CM (Negussie et al., 
2012). In contrast, the heritability curve for the liability 
of ML_SCS_DSCC_binary was more reasonable than 
that for SCS_4_DSCC_65_binary, falling between 0.115 
at 33 DIM and 0.185 at 305 DIM. This is attributable to 
the relatively high frequency of 1 for the trait (Figure 2).

Genetic Correlations Within Somatic Cell Traits

We plotted the within-trait genetic correlation curves 
between the selected DIM and the remaining DIM, with 
10, 155, and 275 DIM selected to represent early, middle, 
and late lactation, respectively (Figure 4). The within-
trait genetic correlations for SCS were high between ad-
jacent DIM but decreased as the DIM interval widened, 
especially for those between the initial and later stages 
of lactation. Nonetheless, the lowest genetic correlation 
for SCS, between 10 and 165 DIM, remained fairly high 
(0.56). This finding agrees with previous observations 
for SCS in the first lactation (Liu et al., 2000; Koivula et 
al., 2004; Mrode et al., 2012) and suggests that selection 
based on the lactation average of SCS can effectively 
reduce SCS at any stage of lactation.

The within-trait genetic correlations for ML_SCS_
DSCC were lower than those for SCS, particularly 
between the initial and later stages of lactation. The es-
timate was as low as 0.10 between 10 and 305 DIM, sug-
gesting that ML_SCS_DSCC in early lactation should be 
considered a distinct trait. Importantly, a test-day record 
with high SCS and low DSCC, indicating an increase 
in the presence of macrophages in milk, may represent 
distinct situations according to the lactation stage. This 
situation might be a physiological state in the periparturi-
ent period, where PMN recruitment is impaired because 
of the high level of cortisol around calving, leading to 
increased susceptibility to CM in this period (Burton 
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and Erskine, 2003). Alternatively, the unique situation 
might be, as we mentioned earlier, the residual effect 
of CM during mid- and late lactation, which damaged 
the mammary glands and prompted the recruitment of 
macrophages for wound healing. The susceptibility of 
cows to CM and their ability to recover from CM are 
genetically different traits (Welderufael et al., 2017) that 
are controlled by distinct sets of genes (Welderufael et 
al., 2018). This genetic differentiation could explain the 
observed low genetic correlations between stages of lac-
tation for ML_SCS_DSCC.

The within-trait genetic correlation curves for SCS_4_
DSCC_65_binary were erratic, possibly reflecting the 
scarcity of positive records in specific time intervals 
(Figure 2). The within-trait genetic correlation curves 

for ML_SCS_DSCC_binary resembled those for ML_
SCS_DSCC but were accompanied by wider 95% highest 
probability density intervals.

Genetic Correlations Between Somatic Cell Traits 
and Milk Production Traits

We examined the genetic correlations between SCS, 
the newly defined traits, and milk production traits on the 
same DIM in the first lactation (Figure 5). The average 
genetic correlations between SCS and milk production 
traits throughout lactation were 0.01 with milk yield, 
0.00 with protein yield, 0.10 with fat yield, and −0.04 
with lactose yield. These estimates were close to zero 
and consistent with those estimated using a repeatability 
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Figure 4. Estimates of genetic correlations between the given DIM and other time points during the first lactation for SCS and our new somatic 
cell traits. The new traits were defined by combining SCS and the differential SCC (DSCC). Estimates are expressed as the median (solid line) and 
the 95% highest posterior density interval (shading) of the posterior distribution.
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Figure 5. Genetic correlations among SCS, newly defined traits, and milk production traits on the same DIM across the first lactation. The new 
traits were defined by combining SCS and the differential SCC (DSCC). Estimates are expressed as the median (solid line) and the 95% highest 
posterior density interval (shading) of the posterior distribution.



3749

Journal of Dairy Science Vol. 107 No. 6, 2024

model (Sneddon et al., 2015; Costa et al., 2019b). The 
trajectories of daily genetic correlations between SCS 
and yield traits were similar. For brevity, we focus here 
on the genetic correlation trajectory between SCS and 
milk yield. The daily genetic correlations reached a peak 
of 0.28 at 35 DIM and then gradually declined, reach-
ing the lowest value of −0.22 at 305 DIM. This trend is 
consistent with previous findings (Haile-Mariam et al., 
2001a; Yamazaki et al., 2013), where the genetic cor-
relations changed from positive to negative as lactation 
progressed.

Compared with SCS, the average genetic correlations 
between ML_SCS_DSCC and production traits were 
slightly more negative: −0.05 for milk yield, −0.06 for 
protein yield, 0.00 for fat yield, and −0.12 for lactose 
yield. These negative correlations imply that selecting 
cows with low ML_SCS_DSCC would have a more 
favorable influence on milk production than would 
selection based on SCS. The daily genetic correlations 
between ML_SCS_DSCC and milk yield reached a peak 
of 0.13 at 36 DIM and then gradually declined until a 
nadir of −0.40 at 305 DIM. Notably, the negative genetic 
correlations between ML_SCS_DSCC and milk yield 
became significant at 250 DIM, suggesting that genetic 
selection based on ML_SCS_DSCC would have better 
impacts on milk production later during lactation. This 
effect could consequently enhance the longevity of dairy 
cows owing to the strong correlation between milk yield 
and survival rate in late lactation stages (Sasaki et al., 
2017). Haile-Mariam et al. (2001a) proposed that the 
negative genetic correlations between SCS and milk 
yield in late lactation stages were likely related to chronic 
infection with major pathogens. Major pathogens such as 
Staphylococcus aureus and environmental streptococci 
induce long-term elevations in SCS, causing damage 
to the udder and substantial milk loss (Gonçalves et al., 
2020). Therefore, cows with resistance to chronic infec-
tions caused by such pathogens are deemed to have lower 
SCS and greater milk yield during later lactation stages. 
This rationale holds for ML_SCS_DSCC, particularly 
considering that the trait can more effectively identify 
cows with impaired milk yield due to chronic infection 
than can SCS (Table 1).

The average genetic correlations between SCS_4_
DSCC_65_binary and yield traits were −0.08 for milk 
yield, −0.06 for protein yield, −0.11 for fat yield, and 
−0.15 for lactose yield. The daily genetic correlations 
between milk yield and SCS_4_DSCC_65_binary were 
negative during the initial and later stages of lactation, 
reaching a peak of 0.09 at 79 DIM and a nadir of −0.17 at 
240 DIM. We expected the negative genetic correlations 
across most lactation stages, given that milk produc-
tion was compromised in cows with positive values of 
SCS_4_DSCC_65_binary (Table 1). In addition, most 

of the average genetic correlations between ML_SCS_
DSCC_binary and yield traits were negative: −0.08 for 
milk yield, −0.03 for protein yield, 0.04 for fat yield, 
and −0.17 for lactose yield. The daily genetic correlation 
between ML_SCS_DSCC_binary and milk yield was 
positive in the early lactation stage but became negative 
near 75 DIM and remained around −0.2 in the middle and 
late lactation stages.

Genetic Correlations Between SCS and the Newly 
Defined Traits

We also estimated the genetic correlations between 
SCS and the 3 newly defined traits on the same DIM 
in the first lactation (Figure 5). On average, ML_SCS_
DSCC had the most favorable genetic correlation with 
SCS (0.80), followed by ML_SCS_DSCC_binary (0.64); 
SCS_4_DSCC_65_binary exhibited the lowest genetic 
correlation with SCS (0.38). The curve of genetic corre-
lations between ML_SCS_DSCC and SCS was relatively 
flat, with the lowest values (both 0.68) at the beginning 
and end of lactation. The consistent positive correlations 
between the 2 traits suggest that selecting cows with low 
ML_SCS_DSCC likely reduces SCS, regardless of the 
lactation stage. Moreover, due to the higher heritability 
of ML_SCS_DSCC (Figure 3), selection on ML_SCS_
DSCC would indirectly reduce SCS to a similar degree 
as direct selection on SCS.

CONCLUSIONS

ML_SCS_DSCC had higher heritability than SCS and 
favorable genetic correlations with both milk production 
traits and SCS. This indicates that genetic selection on 
ML_SCS_DSCC can efficiently reduce SCS levels while 
improving milk production simultaneously. Selection 
based on this trait retains cows with high SCS and high 
DSCC, indicative of effective leukocyte recruitment, 
thus alleviating concerns regarding possible negative 
consequences of selection for low SCS alone on cows’ 
innate immunity. Alternatively, ML_SCS_DSCC_binary 
is easily derived using the proposed formula and provides 
reasonable estimates of genetic parameters comparable 
to those of ML_SCS_DSCC. Our results suggest that 
ML_SCS_DSCC or ML_SCS_DSCC_binary have the 
potential to improve current genetic evaluations of udder 
health, although their genetic relationships with IMI and 
CM require further investigation.
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