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Abstract

Grape compound buds adapt to subfreezing temperatures in winter by supercooling,

but the supercooling ability is thought to be lost upon formation of xylem connections

between canes and buds. It was reported that compound buds of the Vitis vinifera vari-

ety ‘Chardonnay’ lack xylem cells in mid-winter, and that vessels differentiate during

deacclimation. However, the pattern of vessel formation in compound buds may differ

in cold-hardy Vitis species and interspecific hybrid varieties grown in colder regions.

We investigated vessel formation in compound buds of the interspecific hybrid variety

‘Yamasachi’, which were harvested in mid-winter, during artificial deacclimation treat-

ments. Before these treatments, ‘Yamasachi’ buds had a high supercooling ability

(approx. �30�C) and contained cells with characteristics of vessel elements, that is,

secondary wall thickening and lignification, at the basal parts. However, the cells still

contained organelles and did not have a hydraulic conductivity function. Xylem conti-

nuity between the canes and buds was established from day 7 of deacclimation at

20�C. The different pattern of seasonal vessel formation in compound buds of ‘Yama-

sachi’ from that of V. vinifera may reflect the rapid development traits of Vitis species

growing in cold regions with short growing seasons.

1 | INTRODUCTION

Low temperature is one of the major environmental factors that

restrict the geographical distribution and productivity of plants

(Parker, 1963; Sakai & Larcher, 1987). In temperate and boreal zones,

perennial woody plants acclimate to cold temperatures and freezing

conditions during autumn and winter in response to short daylength

and/or cold temperatures. They acquire maximum freezing resistance

in mid-winter, and then lose this resistance via a deacclimation pro-

cess in response to increasing temperatures and/or daylength

(Kalberer et al., 2006; Arakawa et al., 2018). The physiological changes

that occur in deacclimating plants involve preparations for the

resumption of growth in the next growing season as well as a

decrease in freezing resistance (Pagter et al., 2017).

Winter compound buds of Vitis species adapt to subfreezing tem-

peratures through freezing avoidance mechanisms (Quamme, 1986;

Kasuga et al., 2020). A typical grape compound bud has three

embryonic shoots inside, referred to as the primary, secondary, and

tertiary buds. Each of them maintains a supercooled state individually

under subfreezing temperatures. To maintain the supercooled state,

each embryogenic shoot has to avoid ice propagating from ice crystals

outside the bud. Suberin-coated bud scales are one likely barrier against

external snow and frost (Jones et al., 2000). Ice crystals also exist in

apoplastic spaces of cane tissues under subfreezing conditions

(Horiuchi et al., 2021). Thus, another structural barrier should exist

between the bud embryogenic shoots and ice crystals in canes. Previ-

ously, it was shown that the supercooling ability of dormant grape buds

is lost or severely weakened by the elimination of nodal tissue beneath

bud tissues (Quamme, 1986; Wolf & Pool, 1987), suggesting that some

tissue near the xylem-bud boundary could act as a barrier against ice

propagation from the cane apoplast into buds. The deposition of waxy

substances such as suberin has not been observed at the tissues near

the xylem-bud boundary (Jones et al., 2000). For the tissue to have a

barrier function, therefore, the microcapillaries connecting apoplastic

ice crystals and supercooled water in buds must be narrow enough to

depress the melting point of water inside at the temperature in the
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tissue (Ashworth & Abeles, 1984). According to Ashworth and Abeles

(1984), the microcapillary diameter has a large effect on melting point

when the diameter is smaller than 7 nm. A study on the compound

buds of Vitis species detected a decreased dye permeability from canes

to buds during winter (Jones et al., 2000).

When the water requirements of trees’ buds for their develop-
ment in spring exceed the supply capacity of non-vascular path-

ways, water is supplied via pipe-like water conduits, vessels, or

tracheids that connect the cane xylem with the new shoots

(Savage & Chuine, 2021). However, such water conduits with a

large diameter can act as ice propagation pathways across the

xylem-bud boundary. Thus, it has been proposed that the estab-

lishment of xylem continuity between cane xylem and buds leads

to the loss of the supercooling ability of winter buds in some tree

species (Ashworth, 1984; Callan, 1990; Ashworth et al., 1992;

Kader & Proebsting, 1992; Xie et al., 2018). In flower buds of Pru-

nus species that adapt to subfreezing temperatures by supercool-

ing, only procambial cells are present in dormant floral primordia,

and xylem development progresses during deacclimation

(Ashworth, 1984; Callan, 1990; Kader & Proebsting, 1992). A simi-

lar pattern of xylem development was also reported for dormant

compound buds of Vitis vinifera cv. ‘Chardonnay’ in relation to

their supercooling ability (Xie et al., 2018). During mid-winter, no

xylem cells are present in the buds and the junction regions

between buds and canes. Cells with properties of vessel elements

are present in buds that are starting to swell, before the establish-

ment of a xylem connection.

In cold climate regions where economically viable wine grape

production is not possible with V. vinifera varieties, cold-hardy

interspecific hybrid varieties, which are products of crosses

between V. vinifera and native Asian or North American Vitis spe-

cies, are often grown for winemaking (Fennell, 2004; Riesterer-

Loper et al., 2019). For grapevines grown in cold regions, an early

bud breaking trait is desirable so that the fruit has time to mature

during the cool growing season (Fuller & Telli, 1999; Hamed

et al., 2000). Thus, the manner of xylem development in winter

buds of cold-hardy interspecific hybrid varieties may differ from

that in V. vinifera varieties growing in relatively warm regions. In

this study, we investigated changes in the supercooling ability of,

and xylem development in, winter compound buds during artificial

deacclimation in the cold-hardy interspecific hybrid grape variety

‘Yamasachi’. Based on the results, we discuss the role of vessel

formation in the decrease in the supercooling ability of ‘Yamasa-

chi’ buds during deacclimation.

2 | MATERIALS AND METHODS

2.1 | Plant materials

Canes were harvested from approximately 20-year-old ‘Yamasachi’
vines growing in the vineyard of the Tokachi-Ikeda Research Institute

for Viticulture and Enology (42�560N, 143�220E) in Hokkaido, Japan,

in early February 2021 and 2022. The canes were collected in the

morning, cut into lengths of approximately 20 cm, and stored in a

plastic bag with crushed ice at �7�C until use.

2.2 | Deacclimation treatments

Cane pieces (approximately 6 cm in length), each containing a

compound bud, were cut from stored canes, and the lower cut

ends were inserted into rock wool blocks in water-filled plastic

trays (Figure S1). The cuttings were deacclimated in incubators

(i-CUBE FCI-280G; AS ONE) set at 4�C or 20�C for 1 to 9 days in

darkness.

2.3 | Determination of supercooling ability of
primary buds

The supercooling ability of primary buds in grape compound buds

was determined by differential thermal analysis. Compound buds

with small cane pieces (1.5 cm in length) were cut from non-

deacclimated (non-DA) and deacclimated canes with a pair of prun-

ing shears. A junction of a T-type thermocouple (36 AWG) was

fixed on the surface of each bud by wrapping with parafilm (Bemis,

Oshkosh). These buds were maintained at 4�C for 1 h in a program-

mable freezer constructed from a deep freezer (MDF-C8V1-PJ;

Panasonic Healthcare), a fan heater (TNK-FH100; Tanaka), and a

temperature control unit (TNK-TS100; Tanaka), and then cooled to

�40�C at a rate of 5�C/h. Eight buds were tested per each condi-

tion. Differences in thermal responses between experimental bud

samples and oven-dried reference samples were recorded with a

multi-channel data logger (LR8400; Hioki). Grape buds generate

two kinds of exothermal responses during the cooling process: One

exothermal peak generated at temperatures higher than �10�C

(high-temperature exotherm: HTE) originates from the freezing

of water outside the bud primordia; and one or more small

sharp peaks generated at lower temperatures than the HTE

(low-temperature exotherm: LTE) originate from the freezing of

supercooled water in the bud (Quamme, 1986; Kasuga et al., 2020).

Multiple LTEs from a compound bud are indicative of independent

freezing of supercooled water in primary, secondary, and tertiary

buds. In this study, we recorded the initiation temperature of

the LTE at the highest temperature to evaluate the supercooling

ability of primary buds.

2.4 | Microscopic observations

To observe cells with secondary walls in basal parts of compound buds,

buds with small pieces of cane tissues were cut with a razor blade and

fixed overnight in 3% (v/v) glutaraldehyde in 60 mM phosphate buffer

solution (pH 7.0) at 4�C. The buds were subsequently washed with

phosphate buffer solution, dehydrated using a graded alcohol series,
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and then embedded in paraffin (Paraplast Plus; Sigma-Aldrich). Cross

sections of buds were cut to a thickness of 10 μm at 50 μm intervals

with a steel blade mounted on a rotary microtome (RM2125RT; Leica).

After deparaffinization, sections were double-stained with 1% (w/v)

safranin (Merck) in 50% ethanol and 1% (w/v) light green SF yellow-

ish (Merck) in 100% ethanol. Cells with secondary walls were identi-

fied by polarized optical microscopy. Five buds were used for the

observation per each condition. Secondary walls with birefringent

properties appear bright between crossed polarizing elements,

whereas the background remains dark (Schweingruber, 2007). Pre-

pared sections of basal parts of buds 100 to 200 μm away from the

xylem-bud boundary were observed under a polarized optical micro-

scope (PL-213; AS ONE). The numbers of vascular bundles and cells

with secondary walls in the sections were counted, and the mean

number of cells with secondary walls in a vascular bundle was calcu-

lated for each bud.

Lignified cells in compound buds were visualized by phloroglucinol-

HCl staining, according to Lee et al. (2017). Longitudinal sections were

cut by hand from non-DA compound buds with a razor blade. The sec-

tions were immersed in 10% (w/v) phloroglucinol in 95% ethanol for

10 min, and then an equal volume of concentrated HCl was added.

After 2 min, the sections were rinsed with MilliQ water and observed

under a light microscope (DM2500; Leica). Five non-DA buds were

used for this observation.

Small tissue blocks (2 � 2 � 2 mm) containing boundaries

between basal parts of primary buds and the cane xylem and their sur-

roundings were cut from non-DA buds with a razor blade for trans-

mission electron microscopy. The blocks were double-fixed with 3%

(v/v) glutaraldehyde in 60 mM phosphate buffer solution (pH 7.0) at

4�C overnight and subsequently with 1% (w/v) osmium tetroxide in

the phosphate buffer solution at room temperature for 2 h. After

washing three times with phosphate buffer solution, the blocks were

dehydrated using a graded alcohol series and embedded in epoxy

resin (Plain resin; Nisshin-EM) according to the manufacturer's

instructions. Ultrathin sections (70 nm thick) were placed on copper

grids and examined under a transmission electron microscope

(HT7700; Hitachi) with neither uranyl acetate nor lead citrate staining.

Five buds were used for the electron microscopic observation. The

brightness and contrast of the obtained TIFF data were adjusted by

Photoshop CS6 (Adobe).

2.5 | Evaluation of xylem continuity between twig
and buds

Xylem continuity between twig and buds was examined in a dye-

uptake experiment. Compound buds were excised with a 1 mm

section of cane attached. The cut surfaces of canes were submerged in

0.01% (w/v) fluorescein sodium salt (F6377; Sigma-Aldrich; Stokes-

Einstein radius = approx. 0.45 nm) in 10 mM potassium phosphate

buffer (pH 5.8) at 20�C for 16 h to allow the buds to take up the dye.

The buds were then rinsed with MilliQ water and longitudinal sections

F IGURE 1 Changes in freezing temperatures of primary buds
induced by artificial deacclimation treatments. Triangles:
deacclimation at 4�C. Circles: deacclimation at 20�C. Values are
means ± SD (n = 8 buds from different plants).

F IGURE 2 Changes in numbers of cells with secondary walls in a
vascular bundle in basal parts of primary buds during deacclimation
treatments. Triangles: deacclimation at 4�C. Circles: deacclimation at
20�C. Values are means ± SD (n = 5 buds from different plants). No
significant differences were observed among data points (one-way
analysis of variance, p = 0.19 for deacclimation at 4�C and p = 0.54
for deacclimation at 20�C, respectively).

F IGURE 3 Lignified cells in basal part of a non-deacclimated
‘Yamasachi’ bud. Figure shows a longitudinal section of a
compound bud stained with phloroglucinol-HCl to visualize
lignified cells. Linear structures composed of stained cells were
located across the basal part of the bud (arrow). P: primary bud; X:
xylem tissue of cane. Scale bar, 500 μm.
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were cut by hand using a razor blade. Distribution of fluorescein was

examined under a fluorescence microscope (THUNDER 3D; Leica).

Eight buds were tested per each condition.

3 | RESULTS

3.1 | Changes in supercooling ability of
‘Yamasachi’ buds during deacclimation

In this study, ‘Yamasachi’ buds were artificially deacclimated at 4�C

and 20�C (Figure 1). Before deacclimation, primary buds in ‘Yamasachi’
compound buds were able to supercool to approximately �30�C as

reported in Kasuga et al. (2020). The supercooling ability of grape pri-

mary buds started to decrease soon after the initiation of deacclima-

tion treatments. After deacclimation for 1 day at 4�C and 20�C, the

supercooling abilities decreased to �27.0�C and � 25.5�C, respec-

tively. The pattern of the decrease in supercooling ability differed

depending on the deacclimation temperature. The supercooling ability

of primary buds became nearly constant at approximately �24�C from

day 3 to day 9 of the deacclimation treatment at 4�C. In contrast, the

supercooling ability continued to decrease until day 9 of the deaccli-

mation treatment at 20�C, when it reached �6.6�C. There was little

change in the appearance of ‘Yamasachi’ buds by day 9 of deacclima-

tion at 20�C, but distinct bud swelling was visible on day

11 (Figure S1).

F IGURE 4 Transmission electron micrograph of developing vessel
elements in a non-deacclimated primary bud. This image shows a part
of bud tissue approximately 200 μm away from the xylem-bud
boundary. Arrows indicate xylem cells having walls with annular or
spiral secondary wall thickenings. Some organelles were present in
these cells. Scale bar, 10 μm.

F IGURE 5 Acquisition of
vessel function in ‘Yamasachi’
buds during deacclimation
treatments. Fluorescein was taken
up at the cut surfaces of cane
xylem. (A) Deacclimation at 4�C
for 9 days; (B) deacclimation at
20�C for 5 days; (C) deacclimation
at 20�C for 7 days; (D) magnified
image of region marked by white
square in (C); (E) deacclimation at
20�C for 9 days; (F) magnified
image of region marked by white
square in (E). Arrowheads in
(D) and (F) indicate the
fluorescence from vessels.
Fluorescein signal spread into
primordial tissues in (E) and (F).
Scale bars in (A), (B), (C), and
(E), 3 mm.
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3.2 | Cells with characteristics of vessel elements
in basal parts of compound buds

We calculated the mean number of cells with secondary walls in a vas-

cular bundle in each bud as an indicator of the progress of secondary

wall formation (Figure 2). Cells with secondary wall thickening were

present even in non-DA buds. On average, each vascular bundle

contained approximately two cells with secondary wall thickening.

This number showed little increase during the 9-day deacclimation

treatments at both 4�C and 20�C. No significant differences were

detected among the data points in Figure 2.

Phloroglucinol-HCl staining revealed the presence of lignified

cells in non-DA ‘Yamasachi’ buds (Figure 3). Lines of stained cells ran

from the xylem of canes to the inside of buds.

Transmission electron microscopy analyses provided further evi-

dence for the presence of cells with developed secondary walls in

non-DA ‘Yamasachi’ buds. Figure 4 shows a part of bud tissue

200 μm away from the boundary between the xylem and the bud.

The non-DA buds contained some cells with walls with annular or spi-

ral wall thickenings. This characteristic thickening is formed as the

innermost layer of the secondary walls of xylem cells. Organelles were

present in these cells, suggesting that programmed cell death, autoly-

sis of the cell contents, and subsequent acquisition of the hollow

tube-like structure of vessel elements had not yet occurred in non-DA

buds of ‘Yamasachi’.

3.3 | Establishment of xylem continuity in
compound buds during deacclimation treatments

To clarify when vessels in ‘Yamasachi’ buds acquire their hydraulic

conductivity function during deacclimation, we conducted dye-uptake

experiments. Fluorescein did not penetrate into non-DA buds and

buds deacclimated at 4�C (Figure 5A). In contrast, although fluorescein

did not penetrate into buds by day 5 of deacclimation at 20�C

(Figure 5B), weak fluorescence of the dye was detected from the ves-

sels in two out of eight tested buds on day 7 of deacclimation at 20�C

(Figure 5C,D). By day 9 of deacclimation at 20�C, fluorescence was

detected not only from vessels but also from primordial tissues in all

tested buds (Figure 5E, F). These results indicated that vessels in

‘Yamasachi’ buds start to function from around day 7 of deacclima-

tion at 20�C.

4 | DISCUSSION

It was surprising for us to observe secondary-wall-deposited and ligni-

fied cells in non-DA ‘Yamasachi’ buds (Figures 2 and 3) because it has

been reported previously that supercooled winter compound buds of

the grape variety ‘Chardonnay’ lack vessel elements (Xie et al., 2018).

The lack of cells with characteristics of vessel elements during the

dormant season has also been reported in supercooled flower buds of

Prunus species (Ashworth, 1984) and apical buds of Norway spruce

(Picea abies) (Lee et al., 2017). In these buds, vessels differentiate dur-

ing deacclimation. If a water conduit across the junction of the bud

and cane forms as a hollow pipe with a diameter larger than several

micrometers, then freezing in canes will easily give rise to freezing in

the buds through the conduit. The differentiation of xylem cells,

including vessel elements, occurs in an overlapping series of events

after cell division: primary wall synthesis, cell elongation, secondary

wall synthesis dominated by polysaccharide production, secondary

wall maturation dominated by lignification, and programmed cell

death (Meents et al., 2018). In addition, partial degradation of primary

walls occurs on end walls and at pits in vessel elements (Butterfield &

Meylan, 1982). In the secondary xylem of oak (Quercus rubra) and

poplar (Populus nigra var. italica), the degradation of the end walls

occurs at about the same time as the disintegration of the protoplasm

of vessel elements (Murmanis, 1978; Benayoun et al., 1981). Our elec-

tron microscopic observations revealed the presence of organelles in

vessel elements in non-DA ‘Yamasachi’ buds (Figure 4). This result

indicates that the vessel elements were still alive and had end walls in

the non-DA buds. We expect that the end walls of vessel elements

effectively function as a barrier against ice propagation from the

canes. Very recently, Villouta et al. (2022) reported that cranberry

(Vaccinium macrocarpon) buds that exhibited extraorgan freezing had

tracheids at the base during winter. Although the authors did not test

the viability of the tracheid cells, they expected that the tracheid cells

were not fully functional during bud formation in the late summer and

would remain in this state through the winter.

In a previous study, dye-uptake experiments on ‘Chardonnay’
revealed that hydraulic cells became functional in primordial tissues

around the end of March when most buds lost their scales (Xie

et al., 2018). In contrast, in this study, the initiation of fluorescein dye

uptake into vessels of ‘Yamasachi’ buds occurred at day 7 of a deaccli-

mation treatment at 20�C (Figure 5). At this time point, swelling of the

buds was barely detectable based on their external appearance

(Figure S1). Although we have to consider the differences in the deac-

climation conditions between the two studies, these results suggest

that, in addition to vessel formation, the initiation of the establishment

of xylem continuity occurs earlier in ‘Yamasachi’ buds than in ‘Char-
donnay’ buds in spring. Kovaleski et al. (2018) suggested that the

growth of Vitis riparia was earlier and the deacclimation rates of

V. riparia and Vitis amurensis were faster at low above-freezing temper-

atures compared with those of V. vinifera varieties. The earlier bud

growth of hardy species might be explained by the evolutionary neces-

sity for rapid development during short growing seasons (Ferguson

et al., 2014; De Rosa et al., 2021). ‘Yamasachi’ was developed by cross-

ing ‘Seibel 13053’ as the seed parent with a local wild mountain grape

(probably V. amurensis) as the pollen parent. The pedigree of the seed

parent ‘Seibel 13053’ includes some North American Vitis species,

including V. riparia (Fisher, 1980). Earlier development of vessel ele-

ments in winter buds might be a characteristic of cold-hardy Vitis spe-

cies and interspecific hybrid varieties, and may be related to their

earlier bud growth compared with that of V. vinifera varieties.

Although xylem continuity had been completely established in all

tested ‘Yamasachi’ buds by day 9 of deacclimation at 20�C (Figure 5),
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LTE peaks from the buds were clearly separated from HTE peaks in

profiles of differential thermal analyses at this time point (Figure S2).

This result indicates that some weak but functional ice barriers still

existed in the water transport pathway. The reproductive shoots of an

alpine woody shrub Calluna vulgaris can supercool to below �20�C,

even though xylem continuity is already established because they

have ice barrier tissues at the base of the pedicels (Kuprian

et al., 2016). In the barrier tissues, only tracheids are present as con-

ducting xylem cells, and the structural characteristics of pits of the tra-

cheids are thought to prevent ice propagation into supercooled

reproductive shoots. So far, the mechanisms that prevent ice propaga-

tion into grape buds after the establishment of xylem continuity

remain unclear. However, the supercooling events observed during

the bud break of grape (Hamed et al., 2000) support the possibility

that there are barrier structures in the water transport pathway in

buds in the early stages of bud break.

In this study, a decrease in the supercooling ability of ‘Yamasachi’
buds was detected from day 1 of deacclimation treatments at both

4�C and 20�C (Figure 1). However, the establishment of xylem conti-

nuity into the buds only occurred from day 7 of a deacclimation treat-

ment at 20�C (Figure 5). Therefore, the decreased bud supercooling

ability detected at day 9 of the deacclimation treatment at 4�C and

day 5 of the deacclimation treatment at 20�C were not directly

induced by the establishment of xylem continuity in buds. This raises

the question as to which factors are involved in changing the super-

cooling ability of buds.

It has been proposed that quantitative and qualitative changes in

pectin in the cell walls of the barrier tissues are involved in the func-

tional decline of the ice barrier of supercooled plant cells or tissues

during deacclimation (Panter et al., 2020; Takahashi et al., 2021). In

the xylem parenchyma cells of peach (Prunus persica), which adapt to

subfreezing temperatures by deep supercooling, swelling of an amor-

phous layer in the vicinity of pit membranes was observed in water-

soaked twigs during a deacclimation treatment (Wisniewski &

Davis, 1989). A treatment of peach twigs with a pectinase-rich

enzyme mixture, macerase, resulted in extensive structural modifica-

tions of both the pit membrane and amorphous layer and the disap-

pearance of LTE peaks from the differential thermal analysis profiles

(Wisniewski et al., 1991). Those findings suggested that modifications

in pectin around pit membranes are involved in the decrease in the

supercooling ability of the xylem parenchyma during deacclimation. In

dormant buds of Norway spruce, a short-day treatment induced an

increase in the un-esterified pectin content in crown tissues, which

act as an ice barrier against extraorgan ice crystals, and a subsequent

long-day treatment resulted in decreased un-esterified pectin content

(Lee et al., 2017). Seasonal changes in un-esterified pectin contents

were also detected in the bud axis subtending the floral primordium in

floral buds of peach (Wisniewski & Davis, 1995). A monoclonal anti-

body against un-esterified pectins, JIM5, labeled intercellular spaces

in the bud axis in samples harvested in winter, but not in those har-

vested in summer. Cross-linking between un-esterified pectin and cal-

cium ions might reduce the microcapillary size in ice barrier tissues.

Lee et al. (2017) detected callose deposition at the plasmodesmata in

crown cells in dormant buds of Norway spruce and a reduction in cal-

lose deposition induced by a long-day treatment. The opening of plas-

modesmata by the degradation of callose might contribute to the

enlargement of ice propagation pathways. In addition, ongoing degra-

dation of primary walls at end walls and pits (Murmanis, 1978;

Benayoun et al., 1981) can weaken the barrier function of tissues near

the xylem-bud boundary.

The breakdown of the supercooled state of water is induced not

only by ice propagation from external ice but also by spontaneous ice

nucleation in supercooled water. Deacclimation processes might

increase the possibility of intracellular ice nucleation events. The

strength of osmolality of a solution affects the spontaneous ice nucle-

ation temperatures colligatively, as well as affects the melting point

(Rasmussen & MacKenzie, 1972; Charoenrein & Reid, 1989). During

deacclimation of grape buds, the water content increases (Ershadi

et al., 2016; Meitha et al., 2018; Xie et al., 2018) and there are

decreases in the contents of soluble carbohydrates (Jones et al., 1999;

Grant & Dami, 2015; Ershadi et al., 2016) and proline (Ershadi

et al., 2016). These physiological changes would cause a reduction of

osmolality of the intracellular solution in grape buds.

In this study, we attempted to clarify the deacclimation mecha-

nisms of winter buds in an interspecific hybrid grape variety, focusing

on vessel formation. Our results indicate that there are complex

mechanisms underlying the decrease in the supercooling ability of

grape compound buds during deacclimation. Several transcriptomic

studies have focused on deacclimating grape buds (Meitha

et al., 2018; Kovaleski & Londo, 2019), although more studies have

focused on the cold acclimation process (Xin et al., 2013; Fennell

et al., 2015; Kim et al., 2017; Ma et al., 2022). Such comprehensive

analyses may shed light on the factors contributing to the reduction in

supercooling ability as well as dormancy release and growth resump-

tion in grape buds. Further studies are required to explore the mecha-

nisms of seasonal changes in the supercooling ability of grape buds,

including acclimation in fall and deacclimation in spring.
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