
A lognormal distribution of the lengths of terminal twigs on 1 

self-similar branches of elm trees 2 

 3 

Kohei Koyama1, Ken Yamamoto2,3  and Masayuki Ushio4,5,6,7 4 

1Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-5 

8555, Japan. 6 
2Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan. 7 
3The present address: Department of Physics, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 901-0213, 8 

Japan. 9 
4Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta 10 

Oe-cho, Otsu 520-2194, Japan. 11 
5Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan 12 
6The present address-1: Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan. 13 
7The present address-2: PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. 14 

 15 

Author for correspondence: 16 

Kohei Koyama 17 

e-mail:koyama@obihiro.ac.jp 18 

 19 

20 



 2

Abstract 21 

Lognormal distributions and self-similarity are characteristics associated with a wide 22 

range of biological systems. The sequential breakage model has established a link 23 

between lognormal distributions and self-similarity and has been used to explain species 24 

abundance distributions. To date, however, there has been no similar evidence in studies 25 

of multicellular organismal forms. We tested the hypotheses that the distribution of the 26 

lengths of terminal stems of Japanese elm trees (Ulmus davidiana), the end products of a 27 

self-similar branching process, approaches a lognormal distribution. We measured the 28 

length of the stem segments of three elm branches and obtained the following results: (1) 29 

each occurrence of branching caused variations or errors in the lengths of the child stems 30 

relative to their parent stems; (2) the branches showed statistical self-similarity; the 31 

observed error distributions were similar at all scales within each branch; and (3) the 32 

multiplicative effect of these errors generated variations of the lengths of terminal twigs 33 

that were well approximated by a lognormal distribution, although some statistically 34 

significant deviations from strict lognormality were observed for one branch. Our results 35 

provide the first empirical evidence that statistical self-similarity of an organismal form 36 

generates a lognormal distribution of organ sizes. 37 

 38 

Keywords: allometry, fractal, phenotypic plasticity, shoot size, stochastic process, 39 

WBE theory 40 

 41 

1. Introduction 42 
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Modelling individual and ecosystem metabolism is one of the central goals of 43 

ecophysiology [1-7]. There have been two distinct approaches to modelling the 44 

metabolism (respiration or photosynthesis) of individual plants. One approach is to use 45 

biological scaling theories, which focus on allometric (i.e., power-law) relationships 46 

between organismal size and metabolism [8-15]. Among biological scaling theories, 47 

metabolic scaling theories [8-11], which are based on the self-similarity of plant vascular 48 

networks, are one of the most successful approaches, because they enable modelling of 49 

metabolism from individuals to ecosystems [10, 16, 17]. The other approach is to use 50 

canopy optimization models [18-20], which consider whole plants or stands of plants as a 51 

heterogeneous set of terminal organs (e.g., leaves). The optimization models are based on 52 

theoretical arguments [18-21] and observations [18, 22, 23] that terminal organs show 53 

plasticity in terms of size, function, and direction (e.g., leaf angle), and that this plasticity 54 

increases whole-plant photosynthetic rates. The use of optimization models has also been 55 

a standard approach for modelling ecosystem carbon gain [19, 20]. 56 

 These two approaches have been equally successful, but to date the synergism of 57 

the two approaches has not been achieved. Previous biological scaling theories, such as 58 

metabolic scaling theories, ignore the phenotypic plasticity of terminal organs and instead 59 

make the simplifying assumption that the size and function of terminal organs (such as 60 

twigs or leaves) are invariant within individual organisms [e.g., 1, 3, 4, 8, 9, 13, 14, 16, 61 

17, 24, 25]. In contrast, optimization models [19, 20] consider each set of terminal organs 62 

within a given space as a canopy and ignore the fact that those terminal organs are 63 

connected to a self-similar resource transportation network and that they are part of an 64 

individual plant that obeys allometric relationships. Hence, there has been a discrepancy 65 
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between metabolic scaling theories and canopy optimization models. Enquist and Bentley 66 

[10] have suggested that taking account of the variability of the size of terminal organs 67 

will improve present metabolic scaling theories. Smith et al. [26], as well as Hunt and 68 

Savage [27], have analysed how plasticity of branching morphology affects individual 69 

metabolism. However, to date current biological scaling theories have not successfully 70 

modelled plasticity of terminal organs. 71 

 The distributions of size in biology have often been approximated by lognormal 72 

distribution functions [28-34]. The use of lognormal distributions can be rationalized in 73 

part by a mathematical model called the sequential breakage process, which predicts a 74 

lognormal size distribution of the end products of a self-similar cascade process [35-38]. 75 

In ecology, the sequential breakage of ecological niche spaces has been proposed to 76 

explain patterns in the distributions of species abundance [39, 40]. To date, however, only 77 

indirect evidence has been consistent with this model [e.g., 40]. Many biological studies 78 

that have reported lognormal distributions [28, 31-34] have not shown that the processes 79 

underlying the distributions were characterized by self-similar geometries. Furthermore, 80 

there has been no evidence to support a linkage between lognormal distributions and self-81 

similarity of the forms of individual organisms. Because the relationship between self-82 

similarity and allometry has already been established by biological scaling theories [1, 3, 83 

4, 9, 10, 14, 24], demonstration of a mechanism that connects self-similarity and 84 

lognormal distributions would lead to a unified understanding of self-similarity, allometry, 85 

and lognormal distributions in biology. 86 

Plant vascular networks are a convenient model system for studying self-87 

similarity of organismal forms [8, 10, 11, 13, 14, 24-26, 41, 42]. Here, we applied the 88 
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sequential breakage model of Kolmogorov [35] to self-similar plant forms and 89 

hypothesized that the size distribution of the end products of a self-similar process (i.e., 90 

the lengths of the terminal twigs of a tree branch) would be approximated by a lognormal 91 

distribution. The objective of the present study was to provide the first empirical evidence 92 

that statistical self-similarity of the form of an individual organism generates a lognormal 93 

distribution of the size of its terminal organs. 94 

 95 

2. The model 96 

(a) Multiplicative process 97 

The fact that a lognormal distribution can be generated by a stochastic, multiplicative 98 

process was first formulized by Gibrat [43]. Let the size of a system (e.g., an organ, 99 

organism, or population) at time t be X(t). Each system is assumed to grow or shrink by a 100 

randomly changing ratio R(t) [29]: 101 

 102 

( 1)  ( ) ( )     ( 0,1,..., 1)X t R t X t t n          (2.1) 103 

 104 

The log-transformed size of an object at final time n is then expressed as [29]: 105 

 106 

1

0

ln ( ) ln (0)  ln ( )
n

t

X n X R t




  
       (2.2) 107 

 108 

The term lnX(0), the logarithm of the initial size, is assumed to be a fixed value. The term 109 

lnR(t) is then decomposed into two factors [44]: 110 
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 111 

ln ( ) ( ) ( )R t M t t          (2.3) 112 

 113 

In equation (2.3), M(t) is the mean of lnR(t) at time t, and ε(t) is the deviation of lnR(t) 114 

from M(t). The log-transformed final size is therefore [44]: 115 

 116 

1 1

0 0

ln ( )  ln (0)  ( )  ( )
n n

t t

X n X M t t
 

 

   
      (2.4) 117 

 118 

The second term on the right-hand side of equation (2.4) has the same value for all the 119 

final objects and hence does not affect the shape of the final distribution. If values of ε(t) 120 

are independent and come from the same distribution function, then the distribution of 121 

lnX(n) will asymptotically approach a normal distribution when n is large enough [44]. 122 

As discussed by Koch [29], the model described above is the mathematical equivalent of 123 

the sequential breakage process proposed by Kolmogorov [35] when R(t) is the size ratio 124 

of an object after a single occurrence of breakage expressed as a fraction of the size 125 

before breakage. 126 

 127 

(b) Application to plant form 128 

We applied the sequential breakage process described above to the branching structure of 129 

Japanese elm trees (Ulmus davidiana), a temperate, deciduous tree species that grows 130 

new branches once a year. Following the plant model of Lindenmayer [45], we consider a 131 

tree branch to be the result of an iterative branching process. Let us consider a branch that 132 
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has many twigs. Let the age (denoted as T) of the oldest stem be n years (T = n). The stem 133 

branches off several younger stems (child stems, age T = n – 1). Each of these child stems 134 

further branches off younger stems (T = n – 2), and so on to the terminal 1-year-old twigs 135 

at the branch periphery (T = 1). 136 

The stem age described above is a centripetally ordered variable, which starts at 137 

the terminal twigs (T = 1) and increases toward the oldest stem (T = n). To make our 138 

model consistent with the terminology used in the sequential breakage model, we convert 139 

T to centrifugal ordering (denoted as t), which increases toward the terminal twigs: 140 

 141 

     ( 0,1,..., 1)t n T t n            (2.5) 142 

 143 

The oldest stem is characterized by order t = 0 (the initial single stem segment), and 1-144 

year-old stems by order t = n – 1 (the terminal stem segments). The new ordering is 145 

therefore consistent with the sequential breakage process (as is t in equations (2.1–2.4)), 146 

in which one object progressively generates several objects (figure 1). In accordance with 147 

the terminology used in river network analysis [46], we regard the order t as a scale 148 

parameter that represents a sequence of scales within the system. Note that a single child 149 

stem (t = a + 1) connected to a parent stem (t = a) differs in age and order from the parent 150 

stem by 1, unlike the Horton–Strahler order [47], in which the two stems have the same 151 

order. 152 

As in the sequential breakage model, the length of a stem of order t is denoted by 153 

X(t), and the ratio of its length to the length of its parent is denoted by R(t) (equation 154 

(2.1)). Note that in the present model R(t) could be greater than one when a child stem is 155 
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longer than its parent, unlike Kolmogorov’s sequential breakage model, in which R(t) < 1. 156 

Fractal-like objects in nature are characterized by statistical self-similarity, which 157 

includes undescribed variations or errors at all scales [25, 41, 46]. We therefore allowed 158 

R(t) to vary among child stems of the same parent by decomposing lnR(t) into M(t), the 159 

mean of lnR(t) averaged within each order t, and ε(t), the error term that allows variation 160 

of lengths among the child stems within each order t (equation (2.3)). Statistical self-161 

similarity implies that probability distributions of a stochastic variable as measured over a 162 

range of scales are similar to each other [46]. Our first hypothesis was that the branching 163 

structure of elm trees is statistically self-similar. This hypothesis implies that the 164 

distributions of the errors, ε(t), should be similar at all values of t. If this condition is 165 

satisfied, then equation (2.4) predicts that the distribution of the sum of ε(t) will approach 166 

a normal distribution when n is large enough. Our second hypothesis was therefore that 167 

the distribution of the lengths of the terminal stems would approach a lognormal 168 

distribution as n increases (figure 1). 169 

 170 

3. Materials and methods 171 

(a) Measurements 172 

The sampling site was a cool temperate natural riparian forest on the banks of the Urikari 173 

River (42°52′N, 143°10′E; elevation: 75 m) in the city of Obihiro in northern Japan. 174 

Three young Japanese elm trees (Ulmus davidiana) were selected on 9 July 2013. One 175 

healthy branch with no significant damage was harvested from each tree (branches “1”, 176 

“2”, and “3”); the ages of the branches were 7, 8, and 13 years, respectively. The 177 

diameters at breast height of the trees from which the branches were harvested were 6.7, 178 
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2.4, and 2.1 cm for branches 1, 2, and 3, respectively. Their lengths (the maximum 179 

distance between the branch base and the tip) were 150, 126, and 130 cm, respectively. 180 

After harvesting, the branches were air-dried in a ventilated laboratory for three reasons: 181 

(1) to prevent rotting and deterioration during storage; (2) to allow sufficient time for the 182 

lengths of the samples to stabilize after harvesting; and (3) to be consistent with previous 183 

analyses of the allometry of tree forms that have used dried materials [e.g., 48]. The 184 

laboratory measurements were conducted from October 2013 to June 2014. 185 

U. davidiana is a winter-deciduous species that elongates new shoots only once 186 

per year. We determined the order (t) of each stem part by counting the number of 187 

terminal bud scars from the tip to the base of each branch; a stereomicroscope (SZ61, 188 

Olympus, Tokyo, Japan) was used to help discern the oldest, most basal bud scars. With 189 

pruning shears or a saw, we decomposed each branch into “stem parts”, each of which 190 

was of a different order (rectangles in figure 1), while simultaneously recording the 191 

connection topology, i.e., all of the parent-child relationships among the stem parts 192 

(figure 2). We defined terminal stem parts as new branches that had elongated and 193 

matured in the preceding year. These terminal stem parts were 1-year-old shoots, 194 

excluding the current-year shoots, which were still immature at the time of harvest in 195 

early summer. We recognized a stem part as being alive when at least one green leaf was 196 

attached to its descendant current-year shoots; only living stem parts were measured. We 197 

did not measure small epicormic shoots, which can elongate to fill canopy gaps when 198 

regular shoots die [49]. The healthy young branches that we sampled had no large 199 

epicormic shoots. 200 
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We measured the lengths of long stem parts (> 10 cm) with a measuring tape and 201 

the lengths of short ones with a digital calliper (CD-15CPX, Mitutoyo, Kawasaki, Japan). 202 

We used length, rather than diameter, as an indicator of the size of a stem part for two 203 

reasons: (1) when the diameter was measured, the value depended on the small pressure 204 

of the calliper, especially for the small stem parts (< 1 mm diameter), and (2) the cross-205 

section of the stem was neither an ideal circle nor an ellipse. Mainly for these two reasons, 206 

when we tried to measure the diameter of a same small stem repeatedly, the values we 207 

obtained were unstable. This instability would have caused considerable variability in the 208 

estimates of the sizes of small stem parts, especially if sized are recorded on a logarithmic 209 

scale. We therefore did not think that diameter was an appropriate metric of size in the 210 

present study, which focused on the variation of size on a logarithmic scale. In contrast, 211 

length was measured without contact between the calliper and a stem part when the 212 

calliper was set parallel to the main axis of a stem part. In addition, the length of a stem 213 

part was uniquely determined by the distance between the tip (i.e., the terminal bud scar) 214 

and the base of the stem part. We measured a total of 1968 stem parts (n = 813 from 215 

branch 1, n = 471 from branch 2, and n = 684 from branch 3), including 827 terminal 216 

stem parts (n = 422 from branch 1, n = 200 from branch 2, and n = 205 from branch 3; 217 

the electronic supplemental material, table S1, shows the number of data points at each 218 

order). Five small stem parts were lost before they could be measured, and their lengths 219 

were therefore not included in the analysis. 220 

 221 

(b) Data analysis 222 
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We calculated the ratio of the length of each stem part to the length of its parent, R(t) 223 

(equation (2.1)) and determined the value of ε(t) (equation (2.3)) after calculating M(t), 224 

the mean of lnR(t) averaged over all order t stem parts on each branch. The distribution of 225 

ε(t) for each order of each branch was defined as the observed relative frequency 226 

distribution of ε(t) pooled over each order on each branch [46]. All statistical analyses 227 

were performed with R ver. 3.3.1 [50]. 228 

 229 

(c) Testing statistical self-similarity 230 

As shown in figure 1 (the model) and table S1 (the data structure), the total number of 231 

stems at each order t increased exponentially toward the periphery on each branch. There 232 

were hence only few stem parts on the proximal positions, whereas there were large 233 

numbers of stem parts on the distal positions. According to the self-similar hypothesis, 234 

the error distribution curve should converge to a common distribution as more data are 235 

incorporated with increasing branching order. If the self-similar hypothesis is true, each 236 

distribution would therefore be similar to the error distribution at the terminal (the most 237 

distal) position. We used the bootstrap method proposed by Clauset et al. [51] to evaluate 238 

the goodness-of-fit of the error distribution at each order (ε(t)) to the error distribution at 239 

the terminal position. First, for each branch we compared the distribution of ε(t) at each 240 

order with the terminal error distribution by using the two-sample Kolmogorov–Smirnov 241 

(K-S) test, and we then calculated the D statistic (hereafter called Dobs). The results 242 

indicate that there was no significant difference between the ε(t) at each order and the 243 

terminal error distribution (p > 0.25 for all the branches). Next, random samples were 244 

taken from the terminal error distribution to obtain the same sample size as the size of the 245 
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error distribution at each order by using the R function sample with replacement. For 246 

each set of samples, a two-sample K-S test was performed to compare the sample 247 

distribution with the terminal error distribution, and the resultant D statistic (hereafter 248 

called Dsim) was calculated. This procedure was repeated 100,000 times, and the p-value 249 

was defined as the fraction of Dsim values that were larger than Dobs [51]. We found two 250 

pairs of data with tied ranks and tested whether the effect of these tied ranks significantly 251 

affected the results. Because the true ratio of the lengths, which is a continuous variable, 252 

should be different for each pair of stem parts, we added 10-12 to one value of ε(t) from 253 

each pair of ε(t) values with tied ranks and repeated the above test: we obtained 254 

essentially the same results, as shown in the Results section. 255 

 256 

 (d) Testing lognormality 257 

The two-parameter lognormal distribution is defined by equation (3.1) [44]: 258 

 259 

 2
total

2

ln
( ) exp

22

x mN
f x

x  

  
   

 
       (3.1) 260 

 261 

In equation (3.1), x is the length of a terminal stem part (mm), f(x) is the density of 262 

terminal stem parts with length x, Ntotal is the total number of terminal stem parts on each 263 

branch, and m (mean of ln x) and σ (standard deviation of ln x) are the curve-fitting 264 

parameters. The parameters (m and σ) in equation (3.1) were estimated by maximum 265 

likelihood estimation (MLE) by using the R package fitdistrplus [52]. The cumulative 266 

distribution function (CDF) of the lognormal distribution is given by equation (3.2) [34]: 267 
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 268 

total ln
( ) 1 erf

2 2

N x m
N x


       

       (3.2) 269 

 270 

In equation (3.2), N(x) (1 ≤ N(x) ≤ Ntotal) is the cumulative number of all terminal stem 271 

parts as long as or longer than x. The function erf(z) is the Gauss error function and is 272 

defined by equation (3.3) [34]: 273 

 274 

2

0

2
erf( ) exp( ) 

z

z y dy
         (3.3) 275 

 276 

We then determined whether each one of the lognormal distribution function and 277 

normal distribution function was significantly better than the other in terms of goodness-278 

of-fit to our dataset by using the Vuong likelihood ratio test [51, 53]. The CDF of the 279 

normal (Gaussian) distribution is given by equation (3.4): 280 

 281 

total
( ) 1 erf

2 2

N x m
N x


       

       (3.4) 282 

 283 

The parameters of the normal distribution function (mʹ and σʹ) were also estimated by 284 

MLE. We then calculated the log likelihood ratio between the lognormal and normal 285 

distributions and tested whether the log of the ratio was significantly different from zero 286 

by using the equations described in Clauset et al. [51]. 287 
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Next, after log-transformation of the data, several normality indices of the 288 

empirical distributions were compared with the theoretical normal distribution by using 289 

Monte Carlo methods. For each branch, the R function rnorm was used to generate 290 

normal random numbers with the same mean and variance as the empirical distribution 291 

and with the same sample size as the experimental data. The distributions of normality 292 

indices were then calculated (i.e., the 3rd- and 4th-order moments, skewness, kurtosis, and 293 

D statistic for the Lilliefors normality test [54], which in this case was equivalent to the 294 

good-ness-of fit test of Clauset et al. [51]. For each branch this simulation was repeated 295 

100,000 times, and the distributions of these indices were calculated (hereafter called the 296 

simulated distributions of the indices). For each branch we tested whether each index of 297 

the empirical data was within the 95th percentile of the simulated distribution of the 298 

index. Several terminal stem parts on the same branch had exactly the same length (e.g., 299 

2.23 mm) because of the limited resolution of the digital calliper (0.01 mm). We made 300 

the same adjustment as described above for these tied ranks, and we obtained essentially 301 

the same results as shown in the Results section. 302 

 303 

4. Results 304 

Our first hypothesis, that the branching structure of elm trees is statistically self-similar, 305 

was supported by the similarity of the observed empirical cumulative distributions of ε(t) 306 

for different values of the scale parameter t (figure 3). The results of Clauset et al. [51]’s 307 

goodness-of-fit tests showed that there were no significant difference between the error 308 

distributions at each order and the terminal error distribution (p > 0.17 in all cases, see 309 

electronic supplemental material, table S2 for the p-value of each test). We tested whether 310 
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the distribution of the p-values that we obtained differed significantly from a uniform 311 

distribution by using the two-sample K-S test and the R function punif. For this test, all 312 

the p-values from the three branches were pooled (N = 23). The result was not significant 313 

(p = 0.41), the indication being that the p-values were not significantly biased. 314 

Our second hypothesis, that the distribution of the lengths of the terminal stems 315 

would approach a lognormal distribution, was also supported by the good approximation 316 

of the distributions of the lengths of terminal stem parts to a lognormal distribution 317 

(figure 4). The Vuong likelihood ratio test showed that a lognormal distribution function 318 

(the red curve in figure 4) was significantly preferred over a normal distribution function 319 

(the blue curve in figure 4) (p < 0.01 for all the branches). However, after log-320 

transformation of the data, we found significant deviations from a theoretical normal 321 

distribution on the basis of two statistical tests for branch-1 (table 1), which had the 322 

lowest terminal branching order (t = 6) with the largest number of terminal stems (Ntotal = 323 

422). For branch-2 (t = 8) and branch-3 (t = 12), which had larger terminal branching 324 

orders, the distributions of the log-lengths were not significantly different from 325 

theoretical normal distributions on the basis of any normality test. These results agree 326 

with the model prediction that the distribution of the terminal twig lengths should 327 

approach a lognormal distribution as the terminal branching order increases. 328 

 329 

5. Discussion 330 

The results are consistent with the assertion that the within-scale error distribution is 331 

often approximated by a lognormal rather than normal distribution in biological allometry 332 

[30, 33]. However, a strictly lognormal distribution would be approached only if the 333 
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terminal branching order (t) approached infinity. In the case of such a distribution, the 334 

probability of observing some very small and some very large stems would increase as 335 

the sample size increases. Because this possibility is biologically unrealistic, there might 336 

be no strictly normal or lognormal distribution in real biological data if the sample size is 337 

sufficiently large and the order finite. In the present case, the terminal branching order of 338 

branch-1 (t = 6) may not have been large enough to satisfy the assumption of the model. 339 

Also, in the case of elm trees, our results seem to indicate that there was a lower limit to 340 

terminal stem size; the shortest terminal stem lengths on each branch were 1.30, 1.59, and 341 

1.23 mm for branch-1, -2, and -3, respectively. That shorter stems were not found might 342 

reflect the fact that the smaller stems did not survive or that smaller buds became dormant. 343 

The observed deviation from a theoretical lognormal distribution in branch-1 may have 344 

been caused by these biological systematic deviations from strict lognormality. 345 

 Many empirical studies have demonstrated that variations in diverse biological 346 

phenomena are well approximated by lognormal distributions [28-34], but in those 347 

studies rigorous statistical tests were not performed. Those distributions may not have 348 

been theoretical lognormal distributions in the strict sense, even if the processes that 349 

underlay them were multiplicative. In this study, we proposed a lognormal distribution as 350 

a theoretically motivated simple model, because the underlying process was statistically 351 

self-similar and multiplicative. Including detailed biological factors, such as the limits of 352 

organ size, would further improve the predictive power of the model in future studies. 353 

These results constitute an idealized approximation that we propose as a starting 354 

point. Plant form in nature is affected by wind, herbivory, and competition with 355 

neighbours [55, 56]. These factors can be expected to cause deviations from ideal self-356 
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similarity and hence from lognormality. Further study is therefore needed to improve the 357 

analytical model before it can be applied in real-world situations. 358 
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Table and figure legends (one table and four figures) 492 

 493 

Table 1

Indices

Log-transformed
our dataset

Significance
Lower limit of 95%

precentile
Median value

Upper limit of 95%
percentile

Branch -1
3rd-order moment 15.23  N.S.a 13.56 14.94 16.39
4th-order moment 46.32 N.S. 38.33 43.67 49.55
Skewness 0.54 P  < 0.05 -0.23 0.00 0.23
Kurtosis 3.10 N.S. 2.59 2.96 3.51
D  statistic (K-S test) 0.061 P  < 0.05 ---b 0.030 0.044

Branch -2
3rd-order moment 30.29 N.S. 26.47 30.31 34.52
4th-order moment 110.58 N.S. 92.60 111.12 132.72
Skewness -0.02 N.S. -0.34 0.00 0.34
Kurtosis 2.59 N.S. 2.44 2.93 3.75
D  statistic (K-S test) 0.042 N.S. --- 0.043 0.063

Branch- 3
3rd-order moment 17.09 N.S. 14.74 17.03 19.57
4th-order moment 52.84 N.S. 43.30 52.61 63.63
Skewness 0.07 N.S. -0.33 0.00 0.33
Kurtosis 2.49 N.S. 2.45 2.93 3.74
D  statistic (K-S test) 0.054 N.S. --- 0.042 0.063
a
Not significant (p  > 0.05). 

b
One-sided tests (D  statistics).

The percentile of the indices and D statistic
simulated from the theoretical normal distribution

 494 

 495 

Table 1. The percentile of the indices and D statistic simulated from the theoretical 496 

normal distribution function and those of our log-transformed datasets. 497 

498 
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 499 

 500 

 501 

Figure 1. Model of the tree branching structure. The centrifugal order (t) in the sequential 502 

breakage model increases with decreasing age of the stem parts (T). 503 

504 
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 505 

Figure 2. Decomposition of stem parts. (a) A photograph of stored samples taken on 26 506 

May 2016 during preparation of the manuscript. (b) Labelling procedure; numbers within 507 

each generation are ordered from the proximal to the distal position of each parent stem 508 

part. Immediately after decomposition, each stem part was stored in a labelled envelope. 509 

510 
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 511 

 512 

 513 

Figure 3. Empirical cumulative distribution functions (ECDFs) of ε(t). Different colour 514 

lines indicate different orders (t) on each branch. Statistical self-similarity is evidenced by 515 

the fact that the distributions of different orders collapsed into approximately a single 516 

curve. The deviations of the initial orders were a consequence of the fact that there were 517 

few child stem parts. 518 

519 
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 520 

 521 

 522 

Figure 4. Distributions of the lengths of terminal twigs (i.e., 1-year-old stem parts). Red 523 

curves show the cumulative distribution functions (CDFs) of lognormal distributions 524 

(equation (3.2); branch 1: Ntotal = 422, m = 2.19, σ = 0.815; branch 2: Ntotal = 200, m = 525 

2.80, σ = 0.997; branch 3: Ntotal = 205, m = 2.27, σ = 0.889) and the blue curves show the 526 

CDFs of the normal distributions (equation (3.4); branch 1: m = 13.1, σ = 14.8; branch 2: 527 

m = 26.5, σ = 28.9; branch 3: m = 14.3, σ = 13.7). The parameters of both the lognormal 528 

and normal CDFs were determined by using the maximum likelihood estimation. 529 


