1	Effects of heat stress on production, somatic cell score, and conception rate
2	in Holsteins
3	
4	Authors: Koichi HAGIYA ¹ , Kiyoshi HAYASAKA ² , Takeshi YAMAZAKI ³ , Tatsuo
5	SHIRAI ⁴ , Takefumi OSAWA ⁴ , Yoshinori TERAWAKI ⁵ , Yoshitaka NAGAMINE ⁶ , Yutaka
6	MASUDA ⁷ and Mitsuyoshi SUZUKI ¹
7	
8	Institute, address, country: ¹ Obihiro University of Agriculture and Veterinary Medicine,
9	Obihiro 080–8555, Japan, 2NARO Institute of Livestock and Grassland Science,
10	Nasushiobara, Tochigi 329-2793, Japan, ³ NARO Hokkaido Agricultural Research Center,
11	Sapporo 062–8555, Japan; ⁴ National Livestock Breeding Center, Nishigo, Fukushima
12	961-8511, Japan; ⁵ Rakuno Gakuen University, Ebetsu 069-8501, Japan; ⁶ Nihon
13	University, Fujisawa 252-8510, Japan; ⁷ University of Georgia, Athens 30602, USA
14	
15	Running head: HEAT STRESS IN HOLSTEINS
16	
17	Corresponding author: Koichi Hagiya, Obihiro University of Agriculture and Veterinary
18	Medicine, Obihiro 080-8555, Japan
19	E-mail: hagiya@obihiro.ac.jp

21 ABSTRACT

22	We examined the effects of heat stress (HS) on production traits, somatic cell score (SCS),
23	and conception rate at first insemination (CR) in Holsteins in Japan. We used a total of
24	228 242 records of milk, fat, and protein yields and SCS for the first three lactations, as
25	well as of CR in heifers and in first- and second-lactation cows that had calved for the
26	first time between 2000 and 2012. Records from 47 prefectural weather stations
27	throughout Japan were used to calculate the temperature-humidity index (THI); areas
28	were categorized into three regional groups: no HS (THI<72), mild HS (72 \leq THI<79),
29	and moderate HS (THI \geq 79). Trait records from the three HS-region groups were treated
30	as three different traits, and trivariate animal models were used. The genetic
31	correlations between milk yields from different HS groups were very high (0.91 to 0.99).
32	Summer calving caused the greatest increase in SCS, and in the first and second
33	lactations this increase became greater as THI increased. In cows, CR was affected by
34	the interaction between HS group and insemination month: with summer and early
35	autumn insemination, there was a reduction in CR, and it was much larger in the mild-
36	and moderate-HS groups than in the no-HS group.
37	
38	
39	Keywords: genetic correlation, heat-stress, Holsteins, temperature-humidity index
40	(THI).
41	
42	
43	

 $\mathbf{2}$

44 INTRODUCTION

45

46	Heat stress (HS) negatively affects production, health, and reproductive traits in dairy
47	cows (Kadzere <i>et al.</i> 2002; Ravagnolo & Misztal 2002; West 2003; Aguilar <i>et al.</i> 2009;
48	Boonkum et al. 2011). Although Holsteins are affected by HS more than are some other
49	dairy breeds (Garcia-Peniche et al. 2005), Holstein cows still produce larger volumes of
50	milk under severe HS than do Jersey cows (Smith <i>et al.</i> 2013). The magnitude of HS is
51	determined by the combined effects of temperature, relative humidity, solar radiation,
52	and wind speed (Dikmen & Hansen 2009), and the most common index of the degree of
53	HS affecting dairy cows is the temperature-humidity index (THI). Armstrong (1994), for
54	example, reported that HS begins to affect reproductive traits in dairy cows when
55	THI>72. Daily milk yield decreases at about 0.2 kg per unit increase in THI (Ravagnolo
56	et al. 2000). Aguilar et al. (2009) investigated the effect of HS on yield traits in the first
57	three lactations and found that susceptibility to HS increased from the first to the third
58	lactation. Ravagnolo and Misztal (2002) reported that reproductive performance
59	(non-return rate at 45 days) in Holsteins decreases with increasing THI.
60	Almost all dairy cattle in Japan are Holsteins, and the Japanese islands stretch from
61	45° N to 31° N. Average yearly temperatures in the 47 prefectural regions of Japan vary
62	from 9 to 23 °C. Wiersma developed formulas that expressed mild, moderate, and severe
63	heat stress in dairy cattle as a function of THI in Armstrong (1994). In accordance with
64	the categories devised by Wiersma, there are three HS regions in Japan: no HS
65	(THI<72), mild HS (72≤THI<79), and moderate HS (79≤THI<90; hereafter referred to as
66	THI≥79). Nagamine and Sasaki (2008) investigated the effects of environmental factors
67	on fertility in dairy cows in Japan and found a highly significant effect of temperature in
68	the southern regions. However, to our knowledge, no published report has yet used

69	THI-categorized regions to investigate the effects of HS on production, health, and
70	reproductive traits in dairy cows in Japan or northeast Asia.
71	Our objectives were to use HS groups to estimate the effects of HS and season on milk
72	yield, somatic cell score (SCS), and conception rate at first service (CR) in Holstein cows
73	in Japan. In addition, we used trivariate animal models to investigate the genetic
74	correlations among HS groups in terms of milk yield, SCS, and CR.
75	
76	
77	MATERIALS AND METHODS
78	
79	Data
80	Records of yield and somatic cell count (SCC) in the first three lactations in Holstein
81	cows, and of CR in heifers and first- and second-lactation cows that had calved for the
82	first time between 2000 and 2012, were provided by the Livestock Improvement
83	Association of Japan (Tokyo, Japan). Records were collected through the Dairy Herd
84	Improvement Program. Records of 305-day milk yield (MY), 305-day fat yield (FY), and
85	305-day protein yield (PY) were estimated by using a multiple-trait prediction (Schaeffer
86	& Jamrozik 1996) according to Wilmink's function (Wilmink 1987). Lactation records
87	that had fewer than eight test-day yields during the lactation period were eliminated.
88	Average SCCs were log-transformed into SCSs by using the formula SCS =
89	$\log_2(SCC/100\ 000) + 3$ (Ali & Shook 1980). Three subsets (for first, second, and third
90	lactations) were analyzed separately in the cases of yield and SCS. In addition, records
91	of CR were assigned separately as three subsets (heifers, and first- and second-lactation
92	cows). CR in heifers referred to the CR at first insemination (for first calving); CR in
93	cows referred to the CR at first insemination during the first and second lactation

94	periods (for the second and third calvings, respectively). Records of CR were defined as
95	binary traits of 0 or 1, where 1 indicated that the first insemination attempt successfully
96	achieved pregnancy, and 0 indicated otherwise.
97	Weather records from 47 prefectural weather stations were obtained from the website of
98	the Japan Meteorological Agency (2015; Tokyo, Japan). THI values were estimated from
99	average temperature, relative humidity, wind speed, and solar radiation in August over
100	the 5 years from 2008 to 2012. Adjusted THI (THI $_{\rm adj}$) values were calculated according to
101	the steps of Hammami et al. (2013). First, THI was estimated by using the following
102	formula (NRC 1971):
103	$\text{THI} = 1.8 \times t + 32 - (0.55 - 0.0055 \times \textit{rh}) \times (1.8 \times t - 26),$
104	where t is temperature in degrees Celsius and rh is relative humidity as a percentage.
105	THI was adjusted as follows (Mader <i>et al.</i> 2006):
106	$\text{THI}_{\text{adj}} = 4.51 + \text{THI} - 1.992 \times ws + 0.0068 \times sr,$
107	where ws is wind speed measured in meters per second and sr is solar radiation
108	measured in watts per square meter. Hereafter, we refer to $\mathrm{THI}_{\mathrm{adj}}$ as THI. The
109	distributions of the no-HS, mild-HS, and moderate-HS (Armstrong 1994; Smith et al.
110	2013) groups in our dataset by prefecture are shown in Figure 1. Smith <i>et al.</i> (2013) also
111	used severe HS (THI≥90), but none of the regions studied here fell into that category.
112	(The maximum THI was 81.) Areas were categorized into three regional groups: no HS
113	(THI<72), mild HS (72≤THI<79), and moderate HS (THI≥79). Our data contained
114	$782\ 710\ {\rm records}$ in the no-HS group, $162\ 909$ for mild HS, and $133\ 070$ for moderate HS.
115	About 75,000 records in each HS group were chosen randomly by herd. Pedigree records
116	obtained from the Holstein Cattle Association of Japan (Tokyo, Japan) were traced back
117	three generations. A total of 228 242 records were used, with 407 274 animals in
118	pedigree records.

 $\mathbf{5}$

119

120	Model
121	Genetic correlations among the three HS groups were estimated by using a trivariate
122	animal model that took into account the genetic covariance among records for HS
123	groups. The following linear model (1) was applied to MY, FY, PY, and SCS for cows:
124	$Y_{ijklm} = HY_i + HS_j \times MC_k + AC_l + u_{jm} + e_{ijklm} \dots (1)$
125	and model (2) applied to CR for heifers and cows:
126	$Y_{ijklm} = HY_i + HS_j \times MI_k + AI_l + u_{jm} + e_{ijklm} \dots (2)$
127	where Y_{ijklm} is MY, FY, PY, SCS, or CR; HY_i is the fixed effect of herd year <i>i</i> , u_{jm} is HS
128	group $j \times$ the random additive genetic effect of animal m ; and e_{ijklm} is the random
129	residual in both equations (1) and (2). $HS_j \times MC_k$ is the combined effect of HS group $j \times MC_k$
130	month at calving k (three HS-region groups and 12 calendar months); AC_l is the fixed
131	effect of age group at calving $I(18-20, 21-22, 23, 24, \dots 33, 34, and 35 months for first$
132	lactation; \leq 35, 36–37, 38–39, 40–41, 42–43, 44–45, 46–47, and 48–49 months for second
133	lactation; and \leq 45, 46–50, 51–55, 56–60, 61–65, and 66–83 months for third lactation) in
134	equation (1); $HS_j \times MI_k$ is the combined effect of HS group $j \times$ month at insemination k
135	(three HS groups and 12 calendar months); and AI_{l} is the fixed effect of age group at first
136	insemination $I \le 13, 14, 15, \dots 19, 20, 21-25, 26-30, 31-40, \ge 41 \text{ months}$ in equation (2).
137	The variances were defined as

138
$$\operatorname{var}\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G \otimes A & 0\\ 0 & R \otimes I \end{bmatrix}, \quad G = \begin{bmatrix} \sigma_{u1}^2 & \sigma_{u1u2} & \sigma_{u1u3} \\ \sigma_{u1u2} & \sigma_{u2}^2 & \sigma_{u2u3} \\ \sigma_{u1u2} & \sigma_{u2u3} & \sigma_{u3}^2 \end{bmatrix}, \quad R = \begin{bmatrix} \sigma_{e1}^2 & 0 & 0\\ 0 & \sigma_{e2}^2 & 0\\ 0 & 0 & \sigma_{e3}^2 \end{bmatrix}$$

where G is a 3×3 covariance matrix for additive genetics; R is a 3×3 diagonal matrix of 139residual variance corresponding to each trait (HS group); A is the matrix of additive 140genetics among animals; I is the identity matrix for records; subscripts 1, 2, and 3 are 141

142	traits in the No-HS, Mild-HS, and Moderate-HS groups, respectively; and \otimes is the
143	Kronecker product.
144	The GIBBS3F90 program (Misztal et al. 2002) was used for Gibbs sampling to estimate
145	the genetic parameters of the linear models. A flat prior was used for fixed effects, and
146	an inverted Wishart distribution was used as the prior on the random effects. For each
147	analysis, $50\ 000$ samples after a burn-in of $50\ 000$ iterations were used to calculate the
148	posterior means and standard deviations of the covariance components. Convergence
149	was determined from a visual inspection of the plotting of Gibbs samples.
150	Solutions for the fixed effects of HS \times month at calving or HS \times month at insemination
151	were obtained iteratively by using a preconditioned conjugate gradient algorithm with
152	iteration on data (Tsuruta et al. 2001) in a program developed for national evaluation in
153	Japan by the National Livestock Breeding Center (Nishigo-mura, Japan)
154	
155	
156	RESULTS
157	
158	Summary statistics
159	Mean MY ranged from 8080 kg to 10041 kg, mean FY from 321 kg to 390 kg, and mean
160	PY from 265 kg to 324 kg in the first three lactations (Table 1). SCS increased from the
161	first lactation (range 2.3 to 2.5) to the third lactation (range 2.7 to 3.0). CR ranged from
162	62% to $73%$ in heifers and from $39%$ to $45%$ in cows (Table 2). There were fewer CR
163	records for mild- and moderate-HS heifers than for no-HS heifers.
164	
165	Heritability estimates

 $_{166}$ Heritability estimates of MY declined with increasing parity, from 0.40 to 0.46 (first

 $\mathbf{7}$

lactation) to 0.27 to 0.29 (third lactation) (Table 3), in all HS groups. Heritability 167 estimates also decreased steadily with increasing parity, from 0.39 to 0.41 (first 168lactation) to 0.27 to 0.28 (third lactation) for FY and from 0.34 to 0.36 (first lactation) to 1690.23 to 0.26 (third lactation) for PY. In contrast, the patterns of change in the 170 heritabilities of SCS with increasing parity were not clear: the values ranged from 0.14 171(third lactation in the no-HS group) to 0.20 (first lactation in the moderate-HS group) 172and second lactation in the moderate-HS group). Heritability estimates for CR were 173very low, ranging from 0.01 to 0.03 (Table 4), with no large differences between heifers 174and cows. 175176

177 Genetic correlations

The posterior means of the genetic correlations among HS groups for yield traits and 178SCS were high (Table 5). The maximum was 0.99 and the minimum 0.90 through all 179 combinations. In general, slightly higher correlations were found for yields in first 180 lactation: the correlations ranged from 0.97 to 0.99 for MY, from 0.94 to 0.99 for FY, and 181from 0.95 to 0.99 for PY. The correlations for MY gradually decreased in later lactations. 182The genetic correlations between pairs of HS groups for SCS ranged from 0.90 (between 183 mild HS and moderate HS in third lactation) to 0.98 (between mild HS and moderate 184HS in second lactation) and did not differ greatly over the first three lactations. Those 185for CR ranged from 0.92 (between no HS and mild HS in first lactation) to 0.98 (between 186 mild HS and moderate HS in second lactation); the correlations did not differ markedly 187 between heifers and cows (Table 6). 188

189

190 Estimated effects of HS group and season

191 The combined effect of HS group and season (HS-MC) on MY in cows was positive for

Animal Science Journal

192	winter–spring calvings (first lactation: from +93 kg to 123 kg for January calvings and
193	from 134 kg to 159 kg for February calvings; second lactation: from +96 kg to +174 kg for
194	January to April calvings; third lactation: from +144 kg to +278 kg for January to March
195	calvings) (Fig. 2). In contrast, this effect was negative in the case of summer and early
196	autumn calvings (first lactation: from -120 kg to -162 kg for September calvings; second
197	lactation: from -213 kg to -249 kg for September calvings; third lactation: from -215 kg
198	to –301 kg for July–September calvings), but it did not differ among HS groups (Fig. 2).
199	The differences in the estimated effects between spring and summer calvings increased
200	in later lactations.
201	HS-MC had positive effects on SCS in the case of summer calvings and negative effects
202	in the case of winter calvings (Fig. 3). The effects of summer calving increased with
203	increasing THI in the first and second lactations, whereas the effects of $\operatorname{HS-MC}$ on SCS
204	in the third lactation did not differ among HS groups.
205	The combined effects of HS group and month at insemination (HS-MI) on CR in heifers
206	were slightly positive with spring insemination and negative with summer insemination
207	(Fig. 4a); however, the seasonal differences were very small and there were no marked
208	differences among HS groups.
209	In contrast, the seasonal effects of HS-MI on CR in first- and second-lactation cows were
210	very clear and were negative with summer (August) insemination and positive with
211	spring (March) insemination (Fig. 4b, 4c). The differences in effects between HS groups
212	were clear in first- and second-lactation cows, ranging from a 0% effect on CR in the
213	no-HS group to a -13% effect in the moderate-HS group in second lactation with
214	insemination in August (Fig. 4c).
215	

216

217 DISCUSSION

218

219	We assigned HS groups by using the adjusted THI of Mader <i>et al.</i> (2006), who indicated
220	that adjustments for wind speed and solar radiation were useful for assessing heat
221	stress. Nagamine and Sasaki (2008) investigated the environmental factors affecting CR
222	in Holsteins in Japan. They assigned two HS groups based on latitude and suggested
223	that CR was affected more by temperature than by humidity. Although the effects of
224	temperature, humidity, wind speed, and solar radiation on HS under Japanese climatic
225	conditions have not been clarified, we considered the adjusted THI useful because it
226	included various environmental factors affecting HS. Ravagnolo and Misztal (2002)
227	proposed using information from local weather stations to predict heat tolerance in dairy
228	cows.
229	Our posterior means of heritabilities for MY (ranging from 0.27 to 0.46), FY (ranging
230	from 0.27 to 0.41), and PY (ranging from 0.23 to 0.36) (Table 3) were similar to those
231	reported before for Holstein cows in Japan (Kawahara <i>et al.</i> 2006; Hagiya <i>et al.</i> 2013;
232	Yamazaki <i>et al.</i> 2013). Our heritability estimates for SCS (ranging from 0.14 to 0.20;
233	Table 3) were in agreement with those in recent studies of Holstein cows (Pritchard <i>et al.</i>
234	2013; Yamazaki <i>et al.</i> 2013). Our heritability estimates for reproductive traits were
235	generally low. Using a linear model, Bastin <i>et al.</i> (2010) estimated that the heritability of
236	the non-return rate at first lactation in Canadian Holstein cows was 0.026. Liu <i>et al.</i>
237	(2008) also used a linear model; they reported that the heritabilities of the non-return
238	rate in three European countries were 0.012 in heifers and 0.015 in dairy cows. Hagiya
239	et al. (2013), using a threshold animal model, reported that the heritabilities of CR were
240	0.031 in heifers, 0.034 in first-lactation cows, and 0.028 in second-lactation cows
241	(Japanese Holsteins). Our heritability estimates for CR (ranging from 0.01 to 0.03) were

Animal Science Journal

242in the general range of these reports but lower than those obtained by using the threshold model (Table 4). For analysis of binary traits, theoretically, the threshold 243244model is more accurate than the linear model (Gianola 1982), and heritability estimates obtained by using a threshold model are usually higher than those obtained by using a 245linear model (Weller & Ron 1992). However, the correlations between the estimated 246breeding values obtained from the threshold and linear models are very high (>0.99; 247Weller & Ron 1992). As described in detail by Jamrozik et al. (2005), routine genetic 248evaluation of binary fertility traits is performed mostly by using a linear model, because 249with the threshold animal model there is a problem with convergence. Therefore, our 250results obtained by using a linear model should be useful for routine genetic evaluation. 251252The genetic correlations of MY among the different HS groups declined slightly with 253increasing parity, whereas the genetic correlations of SCS and CR did not differ among 254lactations (Tables 5, 6). All posterior means of the genetic correlations were significantly 255(P < 0.001) smaller than 1.0. These results suggest the existence of interactions between HS group and breeding value for MY, FY, PY, SCS, and CR under Japanese climatic 256conditions. 257258HS-MC had the greatest negative effect on MY when cows calved from July to September, but this effect did not differ among HS groups. The differences among HS 259260groups in the seasonal effects on SCS in third-lactation cows were not clear, because the 26195% confidence interval was expanded (Fig. 3c). However, in the first two lactations the 262seasonal effects of increasing THI on SCS were highest with summer calving (Fig. 3a,

- 263 3b). In contrast, the effects of month at first insemination on CR in heifers were similar
- throughout the year in all HS groups (Fig. 4a). However, among cows inseminated in
- summer and early autumn (July to September), those in the mild- and moderate-HS
- 266 groups experienced a more negative effect on CR than did those in the no-HS group (Fig.

Page 12 of 35

267	4b, 4c). Therefore, interactions with HS group affected the health and reproductive
268	traits of cows, rather than the yield traits. In cows inseminated in August-especially
269	during second lactation—there were large differences among HS groups in terms of the
270	negative effect on CR (Fig. 4c). Aguilar et al. (2009) considered later-parity cows to be
271	more susceptible than first-parity cows to HS. Boonkum et al. (2011) also reported that
272	response to HS is strongly affected by parity. The differences we found in the effects on
273	CR among HS groups were in agreement with these findings. Nishiura <i>et al.</i> (2015)
274	found negative genetic correlations between test-day milk yield and fat-to-protein ratio
275	(as an index of energy balance) in Japanese cows; they suggested that a negative energy
276	balance in mid- to late lactation was associated with a reduction in milk yield. Negative
277	energy balance in milking cows likely affects the health and reproductive traits of
278	different HS groups to different degrees.
279	In conclusion, the effects of HS on CR in heifers were not very clear through the seasons.
280	However, there was an interaction between HS group and insemination season in cows:
281	the reduction in CR in cows—especially those inseminated in August—was much larger
282	in the mild- and moderate-HS groups than in the no-HS group. This finding should be
283	considered in statistical modeling in evaluations of the reproductive traits of cows from
284	various THI regions.
285	
286	
287	ACKNOWLEDGMENTS

288

- The authors thank S. Inoue from NARO Hokkaido Agricultural Research Center 289
- (Sapporo, Japan) for providing advice on the weather data. This work was supported by 290

- a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Development
- 292 of Breeding Technology for Animal Life Production).
- 293
- 294
- 295

296 **REFERENCES**

- 297
- 298 Aguilar I, Misztal I, Tsuruta S. 2009. Genetic components of heat stress in dairy cattle with
- 299 multiple lactations. Journal of Dairy Science 92, 5702–5711.
- 300 Ali AKA, Shook GE. 1980. An optimum transformation for somatic cell concentration in milk.
- 301 *Journal of Dairy Science* **63**, 487–490.
- Armstrong DV. 1994. Heat stress interaction with shade and cooling. *Journal of Dairy Science* 77,
 2044–2050.
- 304 Bastin C, Loker S, Gengler N, Sewalem A, Miglior F. 2010. Genetic relationships between body
- 305 condition score and reproductive traits in Canadian Holstein and Ayrshire first-parity cows.
- 306 *Journal of Dairy Science* **93**, 2215–2228.
- 307 Boonkum W, Misztal I, Duangjinda M, Pattarajinda V, Tumwasorn S, Sanpote J. 2011. Genetic
- 308 effects of heat stress on milk yield of Thai Holstein crossbreds. *Journal of Dairy Science* **94**,
- 309 487–492.
- 310 Dikmen S, Hansen PJ. 2009. Is the temperature-humidity index the best indicator of heat stress
- in lactating dairy cows in a subtropical environment? *Journal of Dairy Science* **92**, 109–116.
- 312 Garcia-Peniche TB, Cassell BG Pearson RE, Misztal I. 2005. Comparisons of Holsteins with
- 313 Brown Swiss and Jersey Cows on the same farm for age at first calving and first calving
- 314 interval. Journal of Dairy Science 88, 790–796.
- 315 Gianola D. 1982. Theory and analysis of threshold characters. Journal of Animal Science 54,

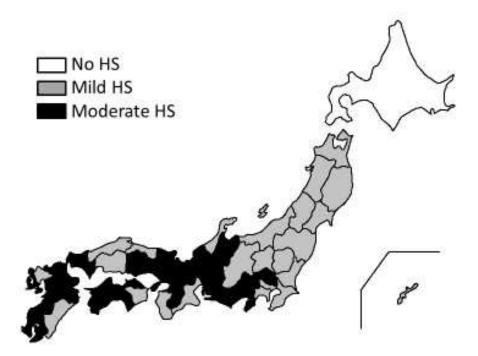
316 1079–1096.

- 317 Hagiya K, Terawaki Y, Yamazaki T, Nagamine Y, Itoh F, Yamaguchi S, Abe H, Gotoh Y,
- 318 Kawahara T, Masuda Y, Suzuki M. 2013. Relationships between conception rate in Holstein
- heifers and cows and milk yield at various stages of lactation. *Animal* **7**, 1423–1428.
- 320 Hammami H, Bormann J, M'hamdi N, Montalda MM, Gengler N. 2013. Evaluation of heat
- 321 stress effects on production traits and somatic cell score of Holsteins in temperate
- 322 environment. Journal of Dairy Science 96, 1844–1855.
- 323 Jamrozik J, Fatehi J, Kistemaker GJ, Schaeffer LR. 2005. Estimates of genetic parameters for
- 324 Canadian Holstein female reproduction traits. *Journal of Dairy Science* 88, 2199–2208.
- 325 Japan Meteorological Agency. 2015. Japan Meteorological Agency Climate Statistics, Historic
- 326 *Monthly Values* [homepage on the Internet]. Weather, Climate & Earthquake Information ;
- 327 [cited 4 August 2015]. Available from URL:
- 328 http://www.data.jma.go.jp/obd/stats/data/en/index.html.
- 329 Kadzere CT, Murphy MR, Silanikove N, Maltz E. 2002. Heat stress in lactating dairy cows: a
- 330 review. *Livestock Production Science* **77**, 59–91.
- 331 Kawahara T, Gotoh Y, Yamaguchi S, Suzuki M. 2006. Variance component estimates with
- dominance models for milk production in Holsteins of Japan using Method R.
- 333 Asian-Australian Journal of Animal Science 19, 769–774.
- 334 Liu A, Jaltner J, Relnhardt F, Pasman E, Rensing S, Reents R. 2008. Genetic Evaluation of
- 335 Fertility Traits of Dairy Cattle Using a Multiple-Trait Animal Model. Journal of Dairy Science
- **91**, 4333–4343.
- 337 Mader TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in
- 338 feedlot cattle. *Journal of Animal Science* **84**, 712–719.
- 339 Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. 2002. BLUPF90 and Related
- 340 Programs (BGF90). Proceedings of the 7th World Congress on Genetic Applied to Livestock

- 341 Production, CD-ROM Communication no. 28, 07, Montpellier, France.
- 342 Nagamine Y, Sasaki O. 2008. Effect of environmental factors on fertility of Holstein–Friesian
- 343 cattle in Japan. *Livestock Science* **115**, 89–93.
- 344 Nishiura A, Sasaki O, Aihara M, Takeda H, Satoh M. 2015. Genetic analysis of fat-to-protein
- ratio, milk yield and somatic cell score of Holstein cows in Japan in the first three lactations by
- 346 using a random regression model. *Animal Science Journal.* **86**, 961-969.
- 347 NRC. 1971. A guide to environmental research on animals. National Academy of Science,
- 348 Washington, DC.
- 349 Pritchard T, Coffey M, Mrode R, Wall E. 2013. Genetic parameters for production, health, fertility
- and longevity traits in dairy cows. *Animal* **7**, 34–46.
- 351 Ravagnolo O, Misztal I. 2002. Effect of heat stress on nonreturn rate in Holstein cows: Genetic
- analyses. Journal of Dairy Science **85**, 3092–3100.
- 353 Ravagnolo O, Misztal I, Hoogenboom G. 2000. Genetic Component of Heat Stress in Dairy Cattle,
- 354 Development of Heat Index Function. *Journal of Dairy Science* 83, 2120–2125.
- 355 Schaeffer LR, Jamrozik J. 1996. Multiple-trait prediction of lactation yields for dairy cows.
- 356 *Journal of Dairy Science* **80**, 3015–3022.
- 357 Smith DL, Smith T, Rude JB, Ward SH. 2013. Comparison of the effects of heat stress on milk
- 358 and component yields and somatic cell score in Holstein and Jersey cows. Journal of Dairy
- 359 *Science* **96**, 3028–3033.
- 360 Tsuruta S, Misztal I, Strandén I. 2001. Use of the preconditioned conjugate gradient algorithm as
- 361 a generic solver for mixed-model equations in animal breeding applications. *Journal of Animal*
- 362 Science **79**, 1166–1172.
- 363 Weller JI, Ron M. 1992. Genetic analysis of fertility traits in Israeli Holsteins by linear and
- 364 threshold models. *Journal of Dairy Science* **75**, 2541–2548.
- 365 West JW. 2003. Effects of Heat-Stress on Production in Dairy Cattle. Journal of Dairy Science 86,

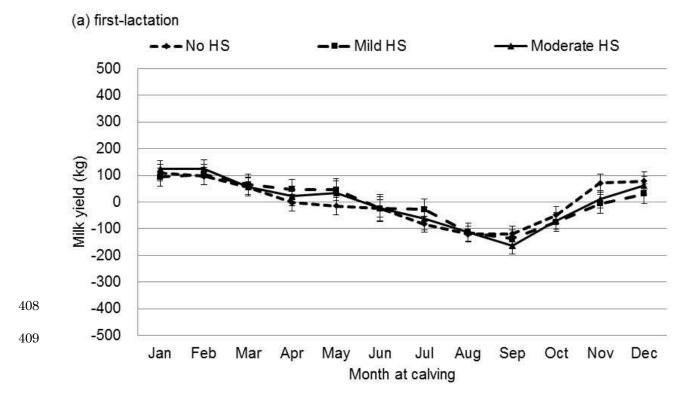
366 2131–2144.

367 Wilmink JBM. 1987. Adjustment of test-day milk, fat, and protein yield for age, season and stage

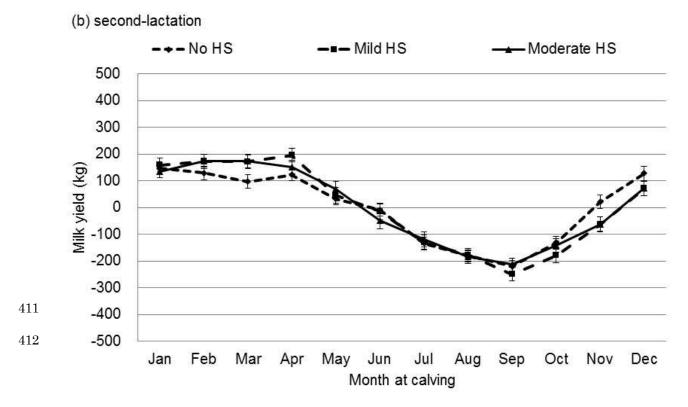

368 of lactation. *Livestock Production Science* **16**, 335–348.

- 369 Yamazaki T, Hagiya K, Takeda H, Sasaki O, Yamaguchi S, Sogabe M, Saito Y, Nakagawa S, Togashi K,
- 370 Suzuki K, Nagamine Y. 2013. Genetic correlations between lactation persistency and somatic cell
- 371 scores on test day within and across first and second lactations in Holstein cows. *Livestock Science*
- 372 **152**, 120–126.
- 373
- 374
- 375

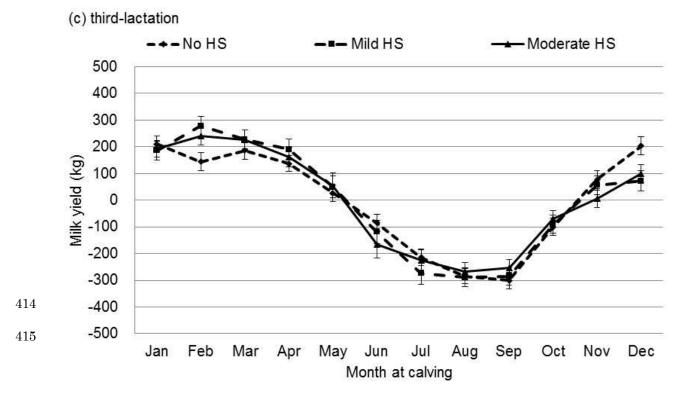
376	Figure legends
377	
378	Figure 1 Distribution of HS groups in the Japanese dataset, by prefecture
379	HS = heat stress; THI = temperature-humidity index; No HS = THI <72; Mild HS =
380	72 \leq THI<79; Moderate HS = THI \geq 79
381	
382	Figure 2 Effects and 95% confidence intervals (with bars) of calendar month at calving
383	on milk yield in cows in (a) first lactation, (b) second lactation, and (c) third lactation, by
384	HS group
385	HS = heat stress; THI = temperature-humidity index; No HS = THI <72; Mild HS =
386	72 \leq THI<79; Moderate HS = THI \geq 79
387	Average of effects was set to zero for each HS group.
388	
389	Figure 3 Effects and 95% confidence intervals (with bars) of calendar month at calving
390	on somatic cell score in cows in (a) first lactation, (b) second lactation, and (c) third
391	lactation, by HS group
392	HS = heat stress; SCS = somatic cell score; THI = temperature-humidity index; No HS =
393	THI<72; Mild HS = 72 \leq THI<79; Moderate HS = THI \geq 79
394	Average of effects was set to zero for each HS group.
395	
396	Figure 4 Effects and 95% confidence intervals (with bars) of calendar month of
397	insemination on conception rate at first insemination in (a) heifers, (b) cows inseminated
398	during first lactation period and (c) cows inseminated during second lactation period, by
399	HS group
400	HS = heat stress; THI = temperature-humidity index; No HS = THI < 72; Mild HS =

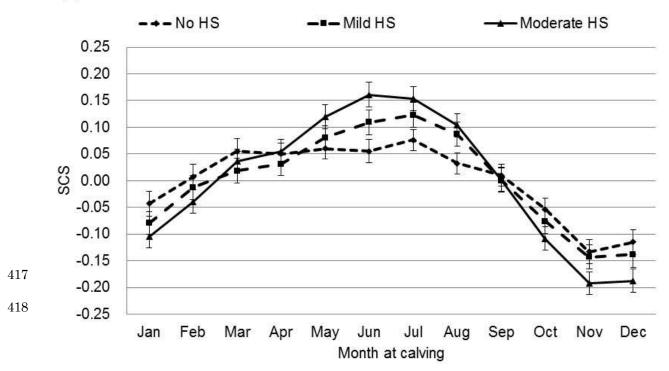

- 401 72 \leq THI<79; Moderate HS = THI \geq 79
- 402 Average of effects was set to zero for each HS group.

404 Fig. 1

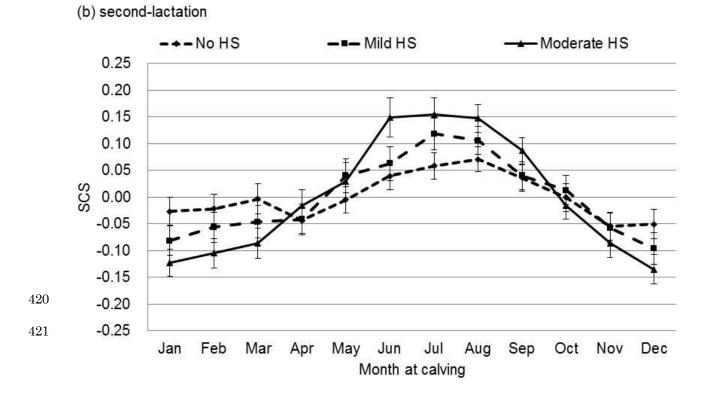


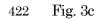
405

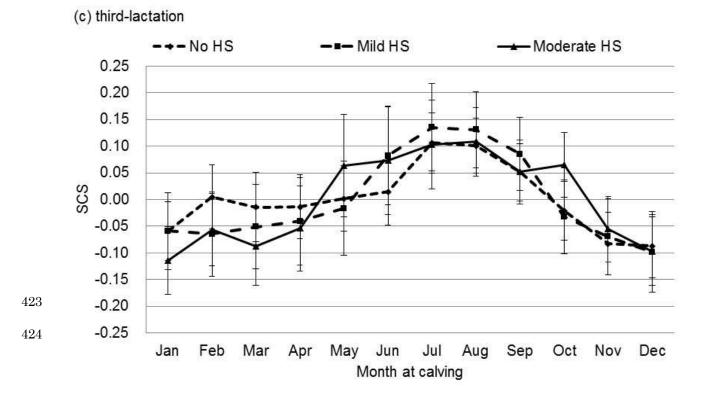

407 Fig. 2a

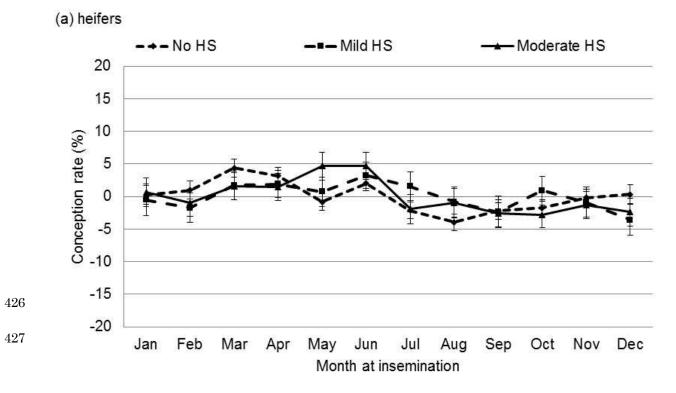


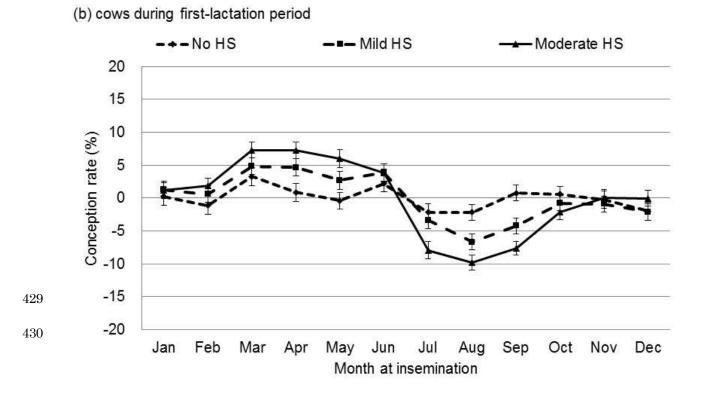
413 Fig. 2c




416 Fig. 3a




419 Fig. 3b



431 Fig. 4c

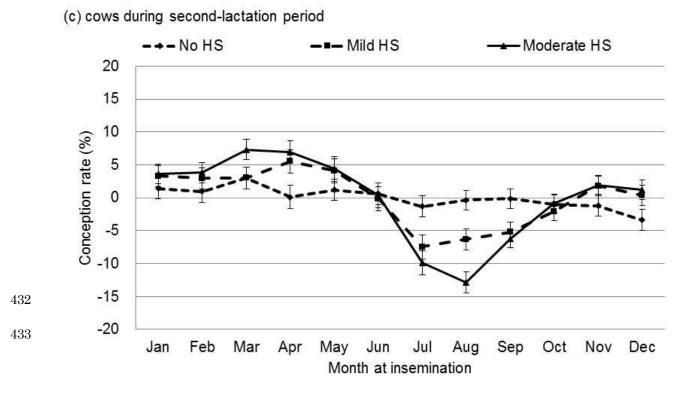


Table 1 Means (s.d.) of milk, fat, and protein yields and SCS in cows in different HS groups

Trait	No. of records [SCS]	Milk, kg/305 days		Fat, kg/305 days		Protein, kg/305 days		SCS	
First lactation									
No HS	79389[79217]	8080	(1493)	321	(58)	265	(48)	2.3	(1.1)
Mild HS	72 949 [72 668]	8608	(1484)	330	(56)	281	(46)	2.4	(1.2)
Moderate HS	75 904 [75 739]	8440	(1389)	323	(54)	274	(43)	2.5	(1.2)
Second lactation	on								
No HS	65 829 [65 504]	9371	(1798)	373	(70)	307	(56)	2.5	(1.3)
Mild HS	57 606 [57 238]	9709	(1803)	371	(69)	316	(55)	2.7	(1.4)
Moderate HS	61 376 [61 198]	9483	(1726)	363	(69)	309	(53)	2.8	(1.4)
Third lactation	L								
No HS	43 069 [42 889]	9743	(1874)	390	(75)	317	(58)	2.7	(1.4)
Mild HS	34 058 [33 934]	10041	(1858)	384	(72)	324	(57)	2.9	(1.5)
Moderate HS	36 759 [36 659]	9863	(1798)	379	(73)	317	(55)	3.0	(1.5)

HS = heat stress; SCS = somatic cell score; THI = temperature-humidity index;

No HS = THI<72; Mild HS = $72 \leq$ THI<79; Moderate HS = THI \geq 79

435

Table 2 Means (s.d.) of conception rate at first insemination of heifers and cows in different HS groups

Trait	No. of records	Conception rate at first insemination, %
Heifers		
No HS	$50\ 061$	62 (49)
Mild HS	11 204	73 (44)
Moderate HS	14 618	70 (46)
Cows in first lactation	period	
No HS	$57\ 165$	45 (50)
Mild HS	$54\ 320$	43 (49)
Moderate HS	$56\ 684$	41 (49)
Cows in second lactation	on period	
No HS	$35\ 192$	42 (49)
Mild HS	30 174	41 (49)
Moderate HS	31 900	39 (49)

HS = heat stress; THI = temperature-humidity index; No HS = THI<72; Mild HS =

72 \leq THI<79; Moderate HS = THI \geq 79

438

Table 3 Posterior means (s.d.) of heritabilities (h²) for milk, fat, and protein yields and SCS of cows in different HS groups

Trait	Milk		Fat	Fat		Protein		SCS	
	h^2	(s.d.)	h^2	(s.d.)	h^2	(s.d.)	h^2	(s.d.)	
First lactation									
No HS	0.46	(0.01)	0.39	(0.01)	0.35	(0.01)	0.15	(0.01)	
Mild HS	0.40	(0.01)	0.39	(0.01)	0.34	(0.01)	0.19	(0.01)	
Moderate HS	0.45	(0.01)	0.41	(0.01)	0.36	(0.01)	0.20	(0.01)	
Second lactation	n								
No HS	0.34	(0.01)	0.31	(0.01)	0.26	(0.01)	0.18	(0.01)	
Mild HS	0.32	(0.01)	0.32	(0.01)	0.29	(0.01)	0.18	(0.01)	
Moderate HS	0.32	(0.01)	0.28	(0.01)	0.26	(0.01)	0.20	(0.01)	
Third lactation									
No HS	0.27	(0.01)	0.28	(0.02)	0.23	(0.02)	0.14	(0.01)	
Mild HS	0.29	(0.01)	0.28	(0.02)	0.25	(0.01)	0.18	(0.02)	
Moderate HS	0.28	(0.01)	0.27	(0.02)	0.26	(0.02)	0.19	(0.01)	

 HS = heat stress; SCS = somatic cell score; THI = temperature-humidity index; No HS =

THI<72; Mild HS = 72 \leq THI<79; Moderate HS = THI \geq 79

441

Table 4 Posterior means (s.d.) of heritabilities (h²) for conception rate at first insemination of

	0					
Trait	Conception rate	Conception rate at first insemination				
	h^2	(s.d.)				
Heifers						
No HS	0.01	(0.00)				
Mild HS	0.02	(0.00)				
Moderate HS	0.03	(0.01)				
Cows in first lactation p	period					
No HS	0.01	(0.00)				
Mild HS	0.01	(0.00)				
Moderate HS	0.01	(0.00)				
Cows in second lactatio	n period					
No HS	0.01	(0.00)				
Mild HS	0.02	(0.00)				
Moderate HS	0.02	(0.00)				

heifers and cows in different HS groups

HS = heat stress; THI = temperature-humidity index; No HS = THI<72; Mild HS =

72 \leq THI<79; Moderate HS = THI \geq 79

444

Table 5 Posterior means (s.d.) of genetic correlations in HS groups for milk, fat, and proteinyields and SCS of cows

Trait	First lactation		Second lactation		Third lactation	
HS group	\mathbf{r}_{G}	(s.d.)	r_{G}	(s.d.)	\mathbf{r}_{G}	(s.d.)
Milk						
No $\mathrm{HS}-\mathrm{Mild}\ \mathrm{HS}$	0.98	(0.00)	0.97	(0.01)	0.96	(0.01)
No $\mathrm{HS}-\mathrm{Moderate}\ \mathrm{HS}$	0.97	(0.00)	0.95	(0.01)	0.92	(0.01)
Mild HS – Moderate HS	0.99	(0.00)	0.97	(0.00)	0.91	(0.01)
Fat						
No HS – Mild HS	0.95	(0.01)	0.96	(0.00)	0.96	(0.00)
No HS – Moderate HS	0.94	(0.01)	0.93	(0.01)	0.95	(0.01)
MildHS-ModerateHS	0.99	(0.00)	0.97	(0.00)	0.93	(0.02)
Protein						
No HS – Mild HS	0.97	(0.00)	0.97	(0.00)	0.95	(0.00)
No HS – Moderate HS	0.95	(0.01)	0.94	(0.01)	0.95	(0.01)
Mild HS – Moderate HS	0.99	(0.00)	0.96	(0.01)	0.91	(0.02)
SCS						
No HS – Mild HS	0.93	(0.02)	0.92	(0.01)	0.97	(0.01)
No HS – Moderate HS	0.94	(0.02)	0.95	(0.02)	0.93	(0.02)
Mild HS – Moderate HS	0.96	(0.01)	0.98	(0.00)	0.90	(0.02)

HS = heat stress; r_G = genetic correlation; SCS = somatic cell score; THI =

temperature–humidity index; No HS = THI<72; Mild HS = 72 ≤THI<79; Moderate HS = THI ≥79

Table 6 Posterior means (s.d.) of genetic correlations in HS groups for conception rate at first

 insemination of heifers and cows

Trait	Heifers		Cows in	Cows in first		Cows in second	
			lactation period		lactation period		
HS group	\mathbf{r}_{G}	(s.d.)	\mathbf{r}_{G}	(s.d.)	\mathbf{r}_{G}	(s.d.)	
Conception rate at first insemination							
No HS – Mild HS	0.97	(0.01)	0.93	(0.02)	0.96	(0.01)	
No HS – Moderate HS	0.92	(0.01)	0.94	(0.01)	0.95	(0.01)	
Mild HS – Moderate HS	0.97	(0.01)	0.98	(0.00)	0.97	(0.00)	

 $HS = heat stress; r_G = genetic correlation; THI = temperature-humidity index; No HS =$

THI<72; Mild HS = 72 \leq THI<79; Moderate HS = THI \geq 79

1 表題: ホルスタイン種における生産量,体細胞スコアおよび受胎率に対す

2 る暑熱ストレスの影響

- 3 著者名: 萩谷功一1・早坂貴代史2・山崎武志3・白井達夫4・大澤剛史4・寺
 4 脇良悟5・長嶺慶隆6・増田豊7・鈴木三義1
- 5 所属: 1带広畜産大学,帯広市 080-8555

6 ²畜産草地研究所,那須塩原市 329-2793

- 7 3北海道農業研究センター,札幌市豊平区 062-8555
- 8 4家畜改良センター,福島県西白河郡西郷村 961-8511
- 9 5酪農学園大学, 江別市 069-8501
- 10 6日本大学,藤沢市 252-8510
- 11 7ジョージア大学, Athens 30602, USA
- 12

日本のホルスタイン種における泌乳、体細胞スコアおよび初回授精受胎率 13 14(CR) に対する暑熱ストレス(HS)の影響を調査した. データは, 2000年 から2012年の間に初産分娩した雌牛の初産から3産次の乳量,乳脂量,乳タ 15 ンパク質量および体細胞スコア、未経産から2産分娩次までの初回授精に関す 16る228,242記録である.47都道府県の気象観測所のデータから温湿度指数 17 (THI) を計算し、47各都道府県をno HS (THI < 72), mild HS (72 \leq 18THI<79) およびmoderate HS (79≧THI) の3区分に割り当てた.分析 19 には、各HS区分の記録を異なる形質とみなした3形質アニマルモデルを使用 20 した. 各HS区分間の遺伝相関は非常に高かった(0.91から0.99). 夏分娩は 21SCSの上昇をもたらすが、特に初産および2産次にTHIの増加とともに上昇 22した. 経産牛において、CRはHS区分と授精月の相互作用に影響され、すな $2\,3$ わち,夏季から初秋の授精においてCRが低下し,no HSとの比較において 24mild HSとmoderate HSで顕著であった. 25