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Abstract 

Animals consume energy for reproduction, as well as survival. Excess or insufficient 

energy investment into reproduction, respectively, threatens the survival of parents or 

leads to the failure of reproduction. Management of energy consumption in reproduction 

is important, not only for the success of the process, but also for the survival of the parents. 

Reproductive behaviors, such as mating and parental behavior, are indispensable for 

achieving each event of reproduction including gametogamy, parturition, and lactation. 

Therefore, reproductive behavior is one of the important factors in managing energy 

consumption for reproduction. Orexigenic and anorexigenic molecules in the 

hypothalamus have been implicated in the regulation of reproductive functions. An 

orexigenic neuropeptide, neuropeptide Y (NPY), has been also implicated in the 

regulation of both reproduction and energy state of animals. In this review, we will first 

summarize the neuronal mechanism for regulating reproductive functions by orexigenic 

and anorexigenic molecules in the hypothalamus. Second, we will focus on the NPY 

neuronal pathways regulating reproductive behavior in the intra- and extra-hypothalamic 

brain areas. We will highlight the NPY neuronal pathway from the arcuate nucleus to the 

dorsal raphe nucleus as a novel extra-hypothalamic pathway for energy state-dependent 

regulation of reproductive behavior. Finally, we will propose a biological significance of 
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the extra-hypothalamic NPY neuronal pathway, which plays an important role in the 

associative control of feeding and reproductive behaviors. 
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1. Introduction 

An appropriate balance between energy intake and its expenditure is essential 

for the survival of animals. Although, under food-abundant conditions, animals adjust 

energy intake to meet all of the demands, excess energy intake over its expenditure 

induces obesity, which increases the risk of various diseases including type 2 diabetes, 

hypertension, coronary heart disease, cholelithiasis, and sleep-breathing disorders 

(Kopelman, 2000). On the other hand, under food-scarce conditions, animals need to 

adjust their energy expenditure to their finite energy intake. Excess energy expenditure 

decreases body weight and causes malnutrition, leading to starvation in the worst case 

scenario. Although individual’s survival seems to have the paramount priority in animals, 

animals do not consume their energy only for their own survival, such as 

thermoregulation, basal metabolism, and maintenance of physical activity. Energy 

investment in reproduction represents energy consumption aimed at non-self. Parents 

obtain the benefits of transferring their genomic information to the offspring. However, 

energy investment in reproduction may decrease energy available for the survival of the 

parents, because all of the reproductive events, including gametogenesis, mating, 

pregnancy, parturition, and rearing of the young consume parental energy. 

The mechanism for energy state-dependent regulation of reproduction has been 
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studied at multiple levels from cells (e.g. gametocytes) to behaviors (e.g., mating behavior 

and parental care). Lack of balance in energy intake and its expenditure increases the risk 

of infertility. Excess energy intake over its expenditure causes obesity, increasing the risk 

of miscarriage and reducing spermatogenesis in humans (Pasquali et al., 2007). Obesity 

decreases sperm mobility and fertility in male mice (Ghanayem et al., 2010) and 

pregnancy rates in female mice (Tortoriello et al., 2004). Similarly, negative energy 

balance also delays the onset of puberty (Kirkwood et al., 1987; Merry and Holehan, 

1979) and induces infertility (Evans and Anderson, 2012; Kalra and Kalra, 1996). 

Food abundance during the reproductive periods ensures sufficient energy 

supply to parents, who can partition their energy sufficiently for both their survival and 

reproduction. In contrast, parents need to restrict the energy partitions of each process, to 

combine their survival and reproduction under food-scarce conditions. Because animals 

cannot always obtain abundant food in the wild, they cannot necessarily combine their 

own survival and reproduction. Under negative energy balance, animals suppress not only 

their basal activities, but also reproductive activities (Evans and Anderson, 2012; Kalra 

and Kalra, 1996). These findings suggest that animals regulate reproduction, as well as 

their basal activities, in an energy state-dependent manner. 

Energy partitions are also regulated at multiple levels from cells to behaviors. 
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Regulation of behavior is one of the important mechanisms for managing energy partition, 

because reproductive behaviors, as well as cellular events such as gametogenesis, are 

indispensable for achieving each process of reproduction. Reproductive behavior is 

defined as a series of behaviors aimed at producing or rearing offspring, including search 

for mate, courtship, mating, childbirth, and rearing of the young. Orexigenic and 

anorexigenic molecules in the hypothalamus have been implicated as the mediators 

between energy state and reproductive behavior (Ammar et al., 2000; Bertoldi et al., 2011; 

Clark, 1995; Inaba et al., 2016; Muroi and Ishii, 2015). Neuropeptide Y (NPY), which is 

one of the orexigenic molecules released in the hypothalamus in response to negative 

energy balance (Hahn et al., 1998), has been implicated in the regulation of reproductive 

behavior under low energy conditions (Inaba et al., 2016; Muroi and Ishii, 2015). Here, 

we will first review the neuronal mechanism for regulating reproductive functions 

mediated by a variety of the orexigenic and anorexigenic molecules in the hypothalamus. 

Secondly, we will focus on the neuronal mechanism for regulating reproductive behavior. 

We will highlight the NPY neuronal pathways in the intra- and extra-hypothalamic sites. 

Finally, we will propose a biological significance of the extra-hypothalamic NPY 

neuronal pathway to control the balance between feeding behavior and reproductive 

behavior. 
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2. Orexigenic and anorexigenic molecules in the hypothalamus 

The hypothalamus has been studied, as a center for regulating feeding behavior. 

The orexigenic or anorexigenic neuropeptides have been characterized in the 

hypothalamus. The arcuate nucleus (Arc) in the hypothalamus, which is located in the 

proximity of the third ventricle and has less restricted blood-brain barrier (Rodríguez et 

al., 2010), directly senses the signaling molecules related to the energy status. The Arc 

contains the neurons co-expressing orexigenic molecules NPY and agouti-related peptide 

(AgRP) (Hahn et al., 1998), and those co-expressing anorexigenic molecules 

proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript 

(CART) (Vrang et al., 1999). NPY/AgRP or POMC/CART neurons also release gamma 

aminobutyric acid (GABA) (Cowley et al., 2001) or both glutamate and GABA (Hentges 

et al., 2009), as the co-transmitters, respectively. NPY/AgRP neurons innervate 

POMC/CART neurons to inhibit their activity through GABAergic inputs (Cowley et al., 

2001) and NPY inputs via the Y1 receptor (Broberger et al., 1997; Cowley et al., 2001; 

Fuxe et al., 1997). NPY/AgRP and POMC/CART neurons in the Arc innervate neurons 

in the hypothalamic nuclei, including the paraventricular nucleus (PVN), ventromedial 

nuclei of the hypothalamus (VMH), and lateral hypothalamic area (LHA), which also 
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reciprocally project to the Arc (Krashes et al., 2014; Mercer et al., 2011; Sternson et al., 

2005). NPY/AgRP and POMC/CART neurons in the Arc also project to the brainstem, 

including the nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN) 

(Jobst et al., 2004). The activities of the NPY/AgRP neurons and POMC/CART neurons 

are regulated in an energy state-dependent manner. The NPY/AgRP neurons or 

POMC/CART neurons are activated or inhibited under low energy conditions, 

respectively (Waterson and Horvath; 2015). Moreover, under low energy conditions, the 

expression of NPY and AgRP mRNA (Hahn et al., 1998) or that of POMC and CART 

mRNA (Kristensen, 1998; Mizuno et al., 1998) also increases or decreases, respectively. 

 

3. The mechanism for detecting energy state by NPY/AgRP neurons and 

POMC/CART neurons 

NPY/AgRP and POMC/CART neurons directly detect nutritional molecules 

including glucose (Thorens, 2012) and fatty acids (Jo et al., 2009). Glucose-sensing 

neurons were first identified by Anand et al. (Anand et al., 1964). They were classified 

into two groups, glucose-excited and glucose–inhibited neurons, which increase and 

decrease their activities in response to glucose concentration, respectively (Thorens, 

2012). Glucose directly inhibits NPY/AgRP neurons (Lee et al., 2005, Parton et al., 2007) 
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and activates POMC/CART neurons (Ibrahim et al., 2003). Glucose also regulates the 

synthesis of neurotransmitters, such as AgRP (Chalmers et al., 2014). Furthermore, 

NPY/AgRP and POMC/CART neurons also detect the energy state via hormones released 

from the peripheral tissues in response to the energy levels (MacDougald et al., 1995; 

Toshinai et al., 2001). Ghrelin is an orexigenic hormone released from stomach under low 

energy conditions (Kojima et al., 1999), whereas leptin is an anorexigenic hormone 

originating from adipose tissue under energy-rich conditions (Zhang et al., 1994). Insulin 

is also an anorexigenic hormone secreted from beta cells of the pancreas (Lois and Kumar, 

2009). The majority of NPY/AgRP and POMC/CART neurons in the Arc express leptin 

receptor, leptin receptor (LepR) (Baskin, 1999; Cheung et al., 1997; Baskin et al., 1999), 

and ghrelin receptor, growth hormone secretagogue receptor (GHSR) (Baskin et al., 1999; 

Cheung et al., 1997; Quennell et al., 2009). These neurons also express insulin receptors 

(Benoit et al., 2002; Könner et al., 2007; Marks et al., 1992). Ghrelin activates NPY/AgRP 

neurons (Andrews et al., 2008; Cowley et al., 2003), and inhibits POMC neurons (Cowley 

et al., 2003). Conversely, leptin (van den Top et al., 2004) and insulin (Könner et al. 2007; 

Qiu et al. 2014) inhibit NPY/AgRP neurons. Although leptin activates POMC/CART 

neurons (Cowley et al. 2001; Hill et al., 2010; Williams et al., 2010), insulin has been 

reported to inhibit POMC/CART neurons (Hill et al., 2010; Williams et al., 2010). 
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Because leptin and insulin have anorexigenic effects, their antagonistic effects on 

POMC/CART neurons have been a long-standing enigma. Qui et al. (2014) reported that 

the inhibitory effect of insulin on POMC/CART neurons is due to the zinc contained 

within the insulin formulation. In fact, they demonstrated that insulin by itself activates 

POMC/CART neurons. 

 

4. The regulation of gonadotropin-releasing hormone neurons by NPY/AgRP and 

POMC/CART neurons 

The hormonal mechanism, by which NPY/AgRP and POMC/CART neurons 

detect energy state, has been implicated in the regulation of reproductive functions. 

NPY/AgRP (Li et al., 1999) and POMC/CART (Leranth et al., 1988) neurons form the 

synapses with gonadotropin-releasing hormone (GnRH) neurons, and directly regulate 

the activity of GnRH neurons (Roa and Herbison, 2012). NPY neurons directly innervate 

GnRH neurons (Li et al., 1999; Roa and Herbison, 2012) to inhibit their activity (Roa and 

Herbison, 2012). POMC/CART neurons also directly project their axons to GnRH 

neurons (Backholer et al., 2013; Cravo, et al., 2011; True et al., 2013). Alpha-melanocyte-

stimulating hormone (α-MSH), which is one of the proteolytic cleavage products of 

POMC, activates GnRH neurons via melanocortin receptors type 3 and 4 (Roa and 
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Herbison, 2012). Although GnRH neurons express no LepR (Cunningham et al., 1999; 

Quennell et al., 2009), the intraperitoneal injection of leptin increases GnRH secretion in 

rats (Reynoso et al., 2003). Leptin also increases GnRH-stimulated release of luteinizing 

hormone (LH) in LbetaT2 gonadotropes (Avelino-Cruz et al., 2009), indicating that 

NPY/AgRP and POMC/CART neurons mediate leptin-induced GnRH secretion. 

In contrast to leptin, ghrelin directly regulates the activity of GnRH neurons via 

GHSR (Farkas et al., 2013). Ghrelin decreases GnRH secretion (Fernández-Fernández et 

al., 2005; Lebrethon et al., 2007), followed by the decrease in the release of LH 

(Fernández-Fernández et al., 2005; Martini et al., 2006) and FSH (Fernández-Fernández 

et al., 2005; Furuta et al., 2001; Martini et al., 2006). Furthermore, NPY/AgRP and 

POMC/CART neurons also express GHSR (Kristensen et al., 1998; Willesen et al., 1999). 

Thus, ghrelin directly and indirectly regulates the activity of GnRH neurons. Moreover, 

insulin also directly regulates the activity of GnRH neurons. Although GnRH neuron-

specific deletion of insulin receptor had no effect on puberty timing and fertility in lean 

mice (Divall et al., 2010), the deletion improved fertility in mice with diet-induced obesity 

(DiVall et al., 2015), indicating that insulin receptor signaling in GnRH neurons is 

involved in the infertility of obese mice.  

The suppression of reproductive functions under low energy conditions has been 
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implicated in the inhibition of gonadal functions. Food restriction inhibits the release of 

GnRH, followed by the decrease in the levels of LH and FSH (Aloi et al., 1997; 

Bergendahl et al., 1991; Cameron et al., 1991; Campbell et al., 1977). NPY/AgRP and 

POMC/CART neurons regulate the activity of GnRH neurons, not only directly, but also 

indirectly via kisspeptin neurons. The kisspeptin neuronal system has been studied, as the 

link between energy balance and reproduction (De, Bond, and Smith, 2014; Wahab et al., 

2013). Kisspeptin neurons are distributed in the Arc and the anterior periventricular 

nucleus in rodents (Brailoiu et al., 2005; Shahab et al., 2005; Ramaswamy et al., 2008; 

Wahab et al., 2011). The kisspeptin receptor (Kiss1r) is expressed in various regions of 

the central nervous system including the striatum, hippocampus, hypothalamus, and 

amygdala (Kotani et al., 2001; Shibata et al. 2007), and in the peripheral tissues, including 

placenta and pancreas (Kotani et al., 2001; Lee et al., 1996; Muir et al., 2001; Ohtaki et 

al., 2001). GnRH neurons express kisspeptin receptors (Han et al., 2005; Irwig et al., 

2004; Smith et al., 2008). Neuronal fibers immunoreactive to kisspeptin appose to the 

GnRH neuronal cell bodies or fibers (Clarkson and Herbison, 2006; Kinoshita et al., 2005; 

Smith et al, 2008). Administration of kisspeptin induces the release of GnRH in vivo (Han 

et al. 2005; Irwig et al., 2004; Messager et al., 2005). Kisspeptin directly activates GnRH 

neurons (Han et al., 2005; Irwig et al., 2004; Messager et al., 2005; Pielecka-Fortuna et 
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al., 2008) to induce LH and FSH secretion (Han et al. 2005; Irwig et al., 2004; Messager 

et al., 2005). Thus, kisspeptin neurons increase the activity of GnRH neurons. 

The intracerebroventricular injection of NPY decreases GnRH secretion in vivo 

(Catzeflis et al., 1993; Kalra, 1993). However, it has not been clarified whether NPY 

directly regulates kisspeptin neurons (De, Bond, and Smith, 2014). In contrast to NPY, 

POMC and CART directly regulate kisspeptin neurons. Kisspeptin neurons express 

melanocortin receptor type 4 (Cravo et al., 2011). Moreover, CART depolarizes 

kisspeptin neurons in the Arc (True et al., 2013), indicating that POMC/CART neurons 

activate kisspeptin neurons to increase GnRH neuronal activity. Otherwise, kisspeptin 

neurons directly mediate the signaling of leptin, insulin, and ghrelin to regulate GnRH 

neuronal activity. Kisspeptin neurons express lepR (Backholer et al., 2010; Smith et al., 

2006), insulin receptor (Qiu et al., 2013), and GHSR (Frazao et al., 2014). 

 

5. The regulation of reproductive behavior by NPY/AgRP and POMC/CART 

neurons 

As well as gonadal function (Bronson, 1990), energy state also affects 

reproductive behavior, including the search for mate, courtship, mating, and rearing of 

the young. Food restriction delays puberty (Kirkwood et al., 1987; Merry and Holehan, 



  

14 
 

1979), suppresses sexual behavior in both sexes (Gill and Rissman, 1997; Inaba et al., 

2016; Klingerman et al., 2013; Sabau and Ferkin, 2013), inhibits maternal care (Andrews 

and Rosenblum, 1991; Muroi and Ishii, 2015), and advances the termination of lactation 

in dams (Eillen 1991). Orexigenic and anorexigenic molecules have also been implicated 

in the regulation of reproductive behaviors. Subcutaneous or intraventricular treatment 

with orexigenic molecules suppresses reproductive behavior, while treatment with 

anorexigenic molecules facilitates reproductive behavior. In rodents, NPY (Ammar et al., 

2000; Clark et al., 1985; Inaba et al., 2016) and ghrelin (Bertoldi et al., 2011) inhibit 

sexual behavior, whereas leptin (Ammar et al., 2000; Wade, et al., 1997) and α-MSH 

(Thody et al., 1979; Thody et al., 1981) stimulate sexual behavior. Moreover, NPY 

decreases (Muroi and Ishii, 2015) while leptin increases (French et al., 2009) maternal 

behavior. 

One mechanism for regulating reproductive behavior by orexigenic or 

anorexigenic molecules may be the regulation of the hypothalamic-pituitary-gonadal 

(HPG) axis via the regulation of GnRH secretion. This possibility is supported by the 

finding that gonadoectomy-induced inhibition of reproductive behavior can be recovered 

using hormonal treatment. Although gonadoectomy disrupts sexual behavior, hormonal 

treatments can improve it in both sexes of rodents (Cross and Roselli, 1999; Hardy and 
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DeBold, 1976; Henrik and Gerall, 1976; Hull and Dominguez, 2007; Krey and McGinnis, 

1990; McGinnis and Dreifuss, 1989; Muroi et al., 2006). Although the level of 

testosterone in the serum reaches undetectable value by 24 h after castration (Krey and 

McGinnis, 1990), male rats can display mounting, intromission, and ejaculation even a 

few weeks after castration (Davidson, 1966). These findings indicate that gonadal 

hormones regulate reproductive behavior slowly, possibly via genomic regulation. On the 

other hand, the treatment with estradiol improves chemoinvestigation and mounting 

behavior in castrated males within 35 min (Cross and Roselli, 1999). Thus, the gonadal 

hormones can also rapidly exert their effect on rats, possibly via the membrane receptors 

(Schwartz et al., 2016). Repeated exposure to pups can induce maternal behavior in virgin 

females of rats and mice. Hypophysectomy and ovariectomy does not affect maternal 

behavior in virgin female rats (Rosenblatt, 1967) and mice (Leblond and Nelson, 1937), 

indicating that gonadal hormones may not be involved in regulating the basal level of 

maternal responsiveness. However, changes in estrogen (Rosenblatt and Siegel, 1975) 

and progesterone (Bridges et al., 1978) levels before delivery affect the onset of maternal 

behavior in rats. The increase in estrogen levels and the steep decrease in progesterone 

levels toward the end of pregnancy shorten the latency to the onset of maternal behavior 

in ovariectomized nulliparous rats (Bridges, 1984; Moltz et al., 1970). Implantation of 
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estradiol into the medial preoptic area, which is indispensable for regulating maternal 

behavior (Tsuneoka et al., 2013), also facilitates the onset of maternal behavior (Fahrbach 

and Pfaff, 1986; Numan et al., 1977). Therefore, gonadal hormones may be required for 

displaying maternal behavior, when dams are exposed to pups for the first time, namely 

at the first parturition, and they may not be required for the instant regulation of maternal 

behavior. On the other hand, cats hypophysectomized during the gestational period, 

showed no maternal care, even though the delivery was normal (Allan and Wiles, 1932). 

Although orexigenic or anorexigenic molecules may regulate reproductive behavior 

through the HPG axis, their role may be different for different aspects of reproductive 

behaviors, the timing of their expression, and the species. 

Another mechanism is that orexigenic or anorexigenic molecules directly 

regulate the neuronal activities involved in the regulation of reproductive behaviors. 

Direct injection of the agonist or antagonist against the receptors for NPY into the DRN 

or ghrelin into the laterodorsal tegmental area or the ventral tegmental area affects sexual 

(Inaba et al., 2016; Prieto-Garcia et al., 2015) or maternal behavior (Muroi and Ishii, 

2015). In the next section, we will focus on the NPY neuronal pathway, which directly 

regulates the neuronal activities involved in the control of reproductive behavior. 
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6. The regulation of reproductive behavior through the extra-hypothalamic NPY 

neuronal pathway 

NPY is expressed in a variety of brain regions (Allen et al., 1983; Chronwall et 

al., 1985; Danger et al., 1990; de Quidt and Emson, 1986). NPY-positive cell bodies are 

distributed in the cortex, striatum, amygdala, and hippocampus, whereas the fibers are 

distributed in the locus coreuleus, periaqueductal gray (PAG), nucleus raphe pallidus, and 

ventral tegmental area. NPY has been implicated in a variety of physiological functions 

including anxiety, circadian rhythm, learning, and thermoregulation (Bi et al., 2013; 

Borbély et al., 2013; Heilig, 2004; Morin, 2012). These multiple functions are mediated 

via the five types of receptors, which are classified into Y1, 2, 4, 5, or 6 (Michel et al., 

1998). All types are coupled with trimetric Gi/o protein. 

NPY/AgRP neurons in the Arc form the intra-hypothalamic and extra-

hypothalamic pathways (Betley et al., 2013; Broberger et al., 1998). Within the 

hypothalamus, the NPY/AgRP neurons innervate the PVN, LHA, and VMH (Mercer et 

al., 2011; van Swieten et al., 2014), which are the second order structures involved in 

feeding behavior. In addition to these orexigenic pathways, another intra-hypothalamic 

NPY neuronal pathway has been characterized, as the reproductive pathway (Kalra and 

Kalra, 1996) that regulates the HPG functions as mentioned above (Celik et al., 2015; De 
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Bond et al., 2014; Nestor et al., 2014; Wahab et al., 2013). 

We recently reported that NPY signaling in the dorsal raphe nucleus (DRN) is 

involved in energy state-dependent regulation of maternal behavior (Muroi and Ishii, 

2015) and male sexual behavior in mice (Inaba et al., 2016). The DRN is located in the 

midbrain and receives innervation from many brain regions, including the medial 

prefrontal cortex, lateral habenula, and hypothalamus (Soiza-Reilly and Commons, 2011). 

The DRN contains a large number of serotonergic neurons, which project their axons to 

various brain regions, including the olfactory bulb, cortex, hippocampus, hypothalamus, 

and amygdala (Michelsen et al., 2007). The DRN has also been implicated in a variety of 

physiological functions, including cognition, sleep, circadian rhythms, reward, and pain 

(Zhao et al., 2015), and pathological functions, including anxiety disorder, depression, 

and panic disorder (Paul et al., 2014; Paul and Lowry, 2013). Previous studies reported 

that AgRP-positive neurons project from the Arc into the PAG (Betley et al., 2013; 

Broberger et al., 1998), which is located in the midbrain dorsolaterally to the DRN. 

Moreover, the immunohistochemical analysis indicated that AgRP-positive fibers are also 

distributed in the dorsal part of the DRN (Betley et al., 2013). AgRP neurons in the Arc 

coexpress NPY (Hahn et al., 1998), and some of the NPY neurons in the Arc project to 

the DRN (Yoon et al., 2013). NPY-immunopositive neuronal processes are also 
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distributed in the PAG and the dorsal part of the DRN (Inaba et al., 2016; Muroi and Ishii, 

2015; Yoon et al., 2013). We asked whether NPY-positive neuronal processes form 

synapses in the DRN. A presynaptic marker, synaptophysin, was colocalized with NPY 

in the dorsal part of the DRN in mice (Inaba et al., 2016; Muroi and Ishii, 2015), indicating 

that NPY neurons form synapses in the DRN. The Y1, 2, and 5 receptor mRNA are also 

expressed in the DRN of rats (Durkin et al., 2000; Parker and Herzog, 1999). The Y1 and 

Y2 receptors regulate neuronal activities in the DRN (Díaz-Cabiale et al., 2011; Durkin 

et al., 2000). Therefore, we examined whether NPY signaling into the DRN is involved 

in some physiological functions in an energy state-dependent manner. 

First, we examined whether NPY signaling into the DRN is involved in energy 

state-dependent regulation of maternal behavior in mice (Muroi and ishii, 2015). Food 

deprivation for 9 h inhibits maternal behavior including nest maintenance, pup retrieval, 

and crouching behavior in dams. Direct injection of NPY into the DRN inhibited the 

expression of maternal behavior in free-fed dams, whereas an antagonist to the Y1 

receptor, BIBP-3226, recovered maternal behavior in fasted dams. The Y1 receptor was 

expressed in serotonergic neurons or GABAergic interneurons in the DRN. These results 

indicate that NPY inhibits neuronal activity via the Y1 receptor, because this receptor has 

an inhibitory effect on cellular activity (Nakamura et al., 1995; Thorsell, 2010). The 
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pharmacological treatments to suppress serotonergic neuronal activity or GABAergic 

signaling, also inhibited maternal behavior in free-fed dams, while the treatments to 

increase the activity of serotonergic neurons or GABAergic signaling improved maternal 

behavior in fasted dams (Muroi and Ishii, 2015). These results suggest that NPY signaling 

in the DRN mediates the suppression of maternal behavior under low energy conditions. 

These findings may seem contradictory because GABAergic neurons inhibit the activity 

of serotonergic neurons in the DRN. The temporal pattern and the intensity of 

serotonergic neuronal activation affect the responses of neurons receiving serotonergic 

innervation (Gartside et al., 2000; Puig et al., 2005). Because GABAB receptor-mediated 

GABAergic signaling can regulate the activity of serotonergic neurons in the DRN in an 

inhibitory or excitatory manner (Abellán et al., 2000), GABAergic modulation is 

important for regulating serotonergic neuronal activity. NPY may inhibit serotonergic 

neuronal activity and reduce GABAergic signaling. This, in turn, would suppress 

maternal behavior. 

Similar results were obtained for male sexual behavior in mice (Inaba et al., 

2016). Fasting for 24 h inhibited male sexual behavior including mounting, intromission, 

and ejaculation. Direct injection of NPY into the DRN inhibited the expression of sexual 

behavior in free-fed males, whereas BIBP-3226 recovered sexual behavior in fasted males. 
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Direct injection of (±)-8-hydroxy-2-dipropylaminotetralin, which is a 5-HT1A receptor 

agonist that inhibits the activity of serotonergic neurons, into the DRN inhibited sexual 

behavior in fed males, while (+)-DOI hydrochloride, a 5-HT2A/2C receptor agonist that 

activates serotonergic neurons, recovered sexual behavior in fasted males. These results 

suggest that NPY signaling in the DRN also mediates the suppression of sexual behavior 

under low energy conditions. 

These findings suggest that NPY signaling into the DRN is involved in energy 

state-dependent regulation of maternal behavior and male sexual behavior, and that the 

inhibition of serotonergic neurons by NPY results in the suppression of those behaviors. 

Serotonin has been implicated in reproductive behavior, including maternal behavior 

(Alenina et al., 2009; Lerch-Haner et al., 2008; Zhao and Li, 2010) and sexual behavior 

(Rubio-Casillas et al., 2015; Snoeren et al., 2014; Uphouse, 2014). However, the way, in 

which serotonergic neurons in the DRN regulate reproductive behavior, is complicated to 

understand. Serotonergic neurons in the DRN project to a variety of brain regions 

including the olfactory bulb, cortex, hippocampus, hypothalamus, and amygdala 

(Michelsen et al., 2007). Serotonin receptors are classified into seven subtypes containing 

at least thirteen members (Hannon and Hoyer, 2008). Serotonin can increase or decrease 

the activities of identical neurons via different members of the serotonergic receptor 
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family (Hori et al., 1996; Huang and Kandel, 2007). At the behavioral level, different 

serotonin receptors also have a stimulatory or inhibitory effect on the identical parameter 

of sexual behavior, such as lordosis of female rats (Uphouse, 2014). Moreover, an 

identical member of the serotonergic receptor family, 5-HT1A, regulates different 

parameters of reproductive behavior, such as copulatory and ejaculatory behaviors in 

male rats (Snoeren et al., 2014). Thus, different serotonin receptors regulate different 

parameters of reproductive behavior in a many-to–many relationship. Moreover, 

histochemical studies demonstrated that different members of the serotonin receptor 

family overlap in their distribution (Shukla et al., 2014; Wirth et al. 2016). Because each 

receptor utilizes different signaling pathways (Hannon and Hoyer, 2008), the overlap of 

the receptor expression also generates the diversity of the signal transduction. For 

example, 5-HT4B receptor increases or decreases the cellular activity, depending on the 

activity of protein kinase A (Cai et al., 2002). Thus, the intracellular signaling also 

increases the diversity of the regulation by the serotonergic signaling. More research is 

required to clarify how serotonergic neurons in the DRN mediate energy state-dependent 

regulation of reproductive behavior. 

 

7. Conclusion 
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NPY/AgRP neurons in the Arc innervate the extra-hypothalamic nuclei: the NTS, 

PBN, and PAG (Broberger et al., 1998). In rats, NPY regulates the cardiovascular 

functions in the NTS (Díaz-Cabiale et al., 2007; Tai et al., 2007), and mediates anti-

nociceptive effect (Wang et al., 2000, 2001) and anxiolytic effect (Kask et al., 1998a, b) 

in the PAG. It has been unclear whether these pathways are associated with feeding 

behavior. We propose that the NPY neuronal pathway from the Arc to the DRN regulates 

reproductive behavior in the association with feeding behavior, as follows: NPY neurons 

in the Arc are activated under low energy conditions. Some of the NPY neurons transduce 

their signals into the PVN, VMH, and LHA to stimulate feeding behavior, whereas others 

transduce their signals into the DRN to inhibit reproductive behavior (Fig. 1). These 

pathways control the energy partition at the behavioral level, leading to prioritizing of 

feeding behavior over reproductive behavior, under low energy conditions. 
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Figure captions 

A diagram showing the NPY neuronal pathways from the Arc that coordinate 

feeding and reproductive behaviors. NPY neurons in the Arc are activated under low 

energy conditions. Some of the NPY neurons transduce their signals into the PVN, VMH, 

and LHA to stimulate feeding behavior, whereas others transduce their signals into the 

DRN to inhibit reproductive behavior. 
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