1	Mycophenolic Acid and Its Derivatives as Potential Chemotherapeutic Agents
2	Targeting Inosine Monophosphate Dehydrogenase in Trypanosoma congolense
3	
4	Keisuke Suganuma ^a , Albertus Eka Yudistira Sarwono ^b , Shinya Mitsuhashi ^b ,
5	Marcin Jąkalski ^c , Tadashi Okada ^{a,d} , Molefe Nthatisi ^a , Junya Yamagishi ^e , Makoto
6	Ubukata ^b , Noboru Inoue ^{a,#}
7	
8	Running Head: Trypanocidal Activity of MPA and Its Derivatives
9	
10	National Research Center for Protozoan Diseases, Obihiro University of
11	Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, Japan ^a ; Division
12	of Applied Bioscience Research, Graduate School of Agriculture, Hokkaido
13	University, Sapporo, Hokkaido, Japan ^b ; Institute of Bioinformatics, Faculty of
14	Medicine, University of Münster, Münster, Germany ^c ; Department of Biomedical
15	Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi,
16	Japan ^d ; Division of Collaboration and Education, Research Center for Zoonosis

- 17 Control, Hokkaido University, Sapporo, Hokkaido, Japan^e
- 18
- 19 "Address correspondence to Prof. Noboru Inoue, D.V.M., Ph.D.,
- 20 ircpmi@obihiro.ac.jp
- 21 National Research Center for Protozoan Diseases, Obihiro University of
- 22 Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
- 23 Tel.: +81-155-49-5647; Fax: +81-155-49-5643
- 24

25 ABSTRACT

26	This study aimed to evaluate the trypanocidal activity of mycophenolic acid
27	(MPA) and its derivatives for <i>Trypanosoma congolense</i> . The proliferation of <i>T</i> .
28	congolense was completely inhibited by adding less than 1 μM of MPA and its
29	derivatives. In addition, the inosine monophosphate dehydrogenase in T.
30	congolense was molecularly characterized as the target of these compounds.
31	The results suggested that MPA and its derivatives have the potential to be new
32	candidates as novel trypanocidal drugs.
33	
34	Keywords: African trypanosomosis, Inosine monophosphate dehydrogenase,
35	Mycophenolic acid, Trypanocidal drug, Trypanosoma congolense.

36

37	Trypanosoma congolense causes animal African trypanosomosis (AAT) in
38	livestock. The lack of effective vaccines makes the use of chemotherapeutic
39	agents the most effective measure for controlling AAT. Limited numbers of
40	commercial drugs have long been used to treat AAT. The emergence of
41	drug-resistant trypanosomes and cases of drug-refractory trypanosomosis have
42	been reported (1-4), underscoring the need for the development of new drugs.
43	A candidate target for drug development is inosine monophosphate
44	dehydrogenase (IMPDH). This enzyme is very important in the Trypanosoma
45	spp. because it lacks a de novo purine synthesis pathway, which makes the
46	purine nucleotide synthesis in these parasites solely dependent on a salvage
47	pathway in the glycosomes (5-7). IMPDH converts inosine 5'-monophosphate
48	(IMP) into xanthosine 5'-monophosphate (XMP) through this pathway, which is a
49	rate-limiting step in the metabolism of guanine nucleotides (8). Mycophenolic
50	acid (MPA, 1) is a well-known IMPDH inhibitor (Fig. 1). Its enzymatic activity has
51	already been proven in many protozoan parasites (9-14). The anti-protozoan
52	activities of MPA against Babesia spp. have been reported in in vivo and in vitro

studies (9, 15). Thus, the activity of MPA against IMPDH is expected to lead to
a novel strategy for the development of trypanocides.

55The novel IMPDH orthologue of T. congolense (TcIMPDH) (accession no. LC094350) was identified from the T. congolense re-sequencing data 56(unpublished data). The recombinant TcIMPDH showed IMPDH activity in vitro 5758(Supplemental Fig. 1-A and B). The nanomolar levels of MPA clearly inhibited NADH production by TcIMPDH in a dose-dependent manner ($IC_{50} = 26.2$ nM) 5960 (Supplemental Figure 1-C). The expression profile and cellular localization of 61 TcIMPDH were analyzed by Western blotting and immunofluorescence 62 TcIMPDH was expressed in glycosomes as granulated forms microscopy. 63 throughout the life cycle stages of T. congolense (Supplemental Fig. 2). 64 TcIMPDH was expressed at similar levels in bloodstream form (BSF), procyclic form (PCF), and epimastigote form (EMF). In contrast, TcIMPDH expression in 65 66 the metacyclic form (MCF) was significantly lower than in the other stages 67 (p<0.05, Tukey's multiple comparison test). This result suggests that purine

synthesis is highly important in the proliferative stages of the parasite, but not in
 the non-proliferative MCF stage.

The aim of this study was to reveal the trypanocidal activities of MPA 7071derivatives for developing an effective trypanocidal drugs. Various inhibitory 72activities and the cell-differentiation activity of MPA derivatives against 73mammalian cells have been reported in vitro. Some MPA derivatives (2, 4, 9 74and **10**) have shown particularly significant inhibitory activities against human 75IMPDH and were observed to induce erythroid differentiation in K562 cells (16, 76 17). These previous reports suggested that some MPA derivatives might be specific inhibitors for Trypanosoma. The chemical structures of the MPA 7778derivatives in this study are shown in Figure 1. We evaluated the trypanocidal 79activity against T. congolense, T. b. brucei and T. evansi using an ATP-based luciferase viability system (18). To evaluate the trypanocidal activity of **1** and its 80 81 derivatives in vitro, BSFs were cultivated with 1µM of each compound. At 1µM, 82 nine derivatives showed less than 10% anti-T. congolense activity (Table 1). In contrast, only three compounds, 1, 2, and 4, inhibited *T. congolense* growth by 83

84	99.60±0.38%, 94.46±3.89% and 98.87±0.78% at 1µM, respectively (Table 1).
85	Although 1 showed high trypanocidal activity against T. b. brucei and T. evansi, 2
86	and 4 showed lower inhibitory activities at 1µM against <i>T. b. brucei</i> and <i>T. evansi</i>
87	than against <i>T. congolense</i> (Table 1). The low plasma membrane permeability
88	of 3, 5, 6, 7, 8, 11 and 12 might account for their low trypanocidal activity; while
89	the low trypanocidal activity of 9 and 10 against all of the tested trypanosome
90	species and of 2 against T. brucei and T. evansi suggest their low affinity with
91	these trypanosome IMPDHs or the deactivation of these compounds by other
92	species-specific enzymes in cytosol. The IC_{50} of 1 , 2 , and 4 to <i>T. congolense</i>
93	were 0.10±0.04µM, 0.56±0.21 µM, and 0.16±0.04µM, respectively (Table 2).
94	The IC ₅₀ values of these three compounds to MDBK cells were 0.52 \pm 0.12,
95	1.40 \pm 0.18, and 0.84 \pm 0.21 μ M, respectively. The selectivity indices of MPA and
96	the two derivatives in T. congolense were 5.14, 2.62, and 5.10, respectively
97	(Table 2). However, the higher IC_{50} values and lower selectivity indices of
98	these 3 compounds were shown in <i>T. b. brucei</i> and <i>T. evansi</i> (Table 2). The
99	cytotoxicity of these compounds was higher than that of commercial drugs (19).

However, the IC₅₀ values of **1** and **4** for *T. congolense* BSF were comparable to those of two commercially available trypanocides (pentamidine [0.17 μ M] and diminazene [0.11 μ M]) against *T. congolense* (18). These results suggested that **1**, **2**, and **4** might be potential lead compounds in the development of trypanocides, especially against *T. congolense*.

105 To clarify the mode of action of 1 and 4 in trypanosomes, the effects of 106 guanosine and xanthine supplementation on the trypanocidal effects of these 107 compounds were examined. The IC_{50} values of **1** and **4** were increased by 108 dose-dependent manner (Table 3), while xanthine guanosine in a 109 supplementation did not alter the IC_{50} values of either **1** or **4** in *T. congolense* 110 BSF (Table 3). These results suggest that guanosine was transported into the T. congolense BSF and converted into GMP as a purine nucleotide source, while 111 112 no xanthine was transported or converted into XMP by hypoxanthine-gunaine 113 phosphoribosyltransferase in *T. congolense*. We therefore concluded that the 114 proliferation inhibitory effects of MPA against *T. congolense* BSF were caused by the inhibition of intracellular TcIMPDH. 115

116	Hypoxanthine and inosine were predicted to be the main purine sources in
117	T. brucei (20). Hypoxanthine and inosine have also been shown to be present
118	in the blood at higher concentrations than other purines (21), suggesting their
119	roles as the main purine sources in trypanosomes and that they are supplied via
120	the salvage pathway. The concentration of purine bases and nucleosides in the
121	extracellular environment is lower than that in the intracellular environment (21).
122	T. brucei spp. proliferate in blood circulation and then invade the central nervous
123	system through the blood-brain barrier (22, 23), while T. congolense only
124	proliferates in blood circulation by adhesion to the vascular endothelium (24).
125	In conclusion, MPA and its derivatives might therefore also inhibit trypanosome
126	proliferation in vivo, particularly in T. congolense.
127	

128 ACKNOWLEDGMENTS

129	We thank Ms. Yoko Matsushita for her excellent technical assistance. This
130	study was financially supported by the Japan Society for the Promotion of
131	Science (JSPS), Grants-in-Aid for Scientific Research from the Ministry of
132	Education, Culture, Sports, Science and Technology (MEXT), and the
133	AMED/JICA SATREPS.
104	

134

135 **References**

- Baker N, de Koning HP, Maser P, Horn D. 2013. Drug resistance in
 African trypanosomiasis: the melarsoprol and pentamidine story.
 Trends Parasitol 29:110-118.
- Delespaux V, Geysen D, Van den Bossche P, Geerts S. 2008. Molecular
 tools for the rapid detection of drug resistance in animal trypanosomes.
 Trends Parasitol 24:236-242.
- Delespaux V, Dinka H, Masumu J, Van den Bossche P, Geerts S. 2008.
 Five-fold increase in *Trypanosoma congolense* isolates resistant to
 diminazene aceturate over a seven-year period in Eastern Zambia.
 Drug Resist Updat 11:205-209.
- 146 4. Pinder M, Authie E. 1984. The appearance of isometamidium
 147 resistant *Trypanosoma congolense* in West Africa. Acta Trop
 148 41:247-252.
- 149 5. Hammond DJ, Gutteridge WE. 1984. Purine and pyrimidine
 150 metabolism in the Trypanosomatidae. Mol Biochem Parasitol
 151 13:243-261.
- 152 6. Boitz JM, Ullman B, Jardim A, Carter NS. 2012. Purine salvage in
 153 Leishmania: complex or simple by design? Trends Parasitol
 154 28:345-352.
- Vertommen D, Van Roy J, Szikora JP, Rider MH, Michels PA,
 Opperdoes FR. 2008. Differential expression of glycosomal and
 mitochondrial proteins in the two major life-cycle stages of *Trypanosoma brucei*. Mol Biochem Parasitol 158:189-201.
- Shu Q, Nair V. 2008. Inosine monophosphate dehydrogenase (IMPDH)
 as a target in drug discovery. Med Res Rev 28:219-232.
- 9. Cao S, Aboge GO, Terkawi MA, Zhou M, Luo Y, Yu L, Li Y, Goo Y,
 Kamyingkird K, Masatani T, Suzuki H, Igarashi I, Nishikawa Y, Xuan
 X. 2013. Cloning, characterization and validation of inosine
 5'-monophosphate dehydrogenase of *Babesia gibsoni* as molecular
 drug target. Parasitol Int 62:87-94.
- 166 10. Umejiego NN, Li C, Riera T, Hedstrom L, Striepen B. 2004.
 167 Cryptosporidium parvum IMP dehydrogenase: identification of

- 168 functional, structural, and dynamic properties that can be exploited
 169 for drug design. J Biol Chem 279:40320-40327.
- Sullivan WJ Jr., Dixon SE, Li C, Striepen B, Queener SF. 2005. IMP
 dehydrogenase from the protozoan parasite *Toxoplasma gondii*.
 Antimicrob Agents Chemother 49:2172-2179.
- 173 12. Dobie F, Berg A, Boitz JM, Jardim A. 2007. Kinetic characterization of
 174 inosine monophosphate dehydrogenase of *Leishmania donovani*. Mol
 175 Biochem Parasitol 152:11-21.
- Bessho T, Morii S, Kusumoto T, Shinohara T, Noda M, Uchiyama S,
 Shuto S, Nishimura S, Djikeng A, Duszenko M, Martin SK, Inui T,
 Kubata KB. 2013. Characterization of the novel *Trypanosoma brucei* inosine 5'-monophosphate dehydrogenase. Parasitology 140:735-745.
- 180 14. Digits JA, Hedstrom L. 1999. Kinetic mechanism of *Tritrichomonas* 181 *foetus* inosine 5'-monophosphate dehydrogenase. Biochemistry
 182 38:2295-2306.
- 183 15. Cao S, Aboge GO, Terkawi MA, Zhou M, Kamyingkird K, Adjou
 184 Moumouni PF, Masatani T, Igarashi I, Nishikawa Y, Xuan X. 2014.
 185 Mycophenolic acid, mycophenolate mofetil, mizoribine, ribavirin, and
 186 7-nitroindole inhibit propagation of Babesia parasites by targeting
 187 inosine 5'-monophosphate dehydrogenase. J Parasitol 100:522-526.
- 188 16. Sunohara K, Mitsuhashi S, Shigetomi K, Ubukata M. 2013. Discovery
 189 of N-(2,3,5-triazoyl)mycophenolic amide and mycophenolic
 190 epoxyketone as novel inhibitors of human IMPDH. Bioorg Med Chem
 191 Lett 23:5140-5144.
- Mitsuhashi S, Takenaka J, Iwamori K, Nakajima N, Ubukata M. 2010. 19217. 193 Structure-activity relationships for inhibition of inosine 194monophosphate dehydrogenase and differentiation induction of K562 195cells among the mycophenolic acid derivatives. Bioorg Med Chem 196 **18**:8106-8111.
- 197 18. Suganuma K, Allamanda P, Hakimi H, Zhou M, Angeles JM, Kawazu
 198 S, Inoue N. 2014. Establishment of ATP-based luciferase viability
 199 assay in 96-well plate for *Trypanosoma congolense*. J Vet Med Sci
 200 76:1437-1441.

- 19. Sykes ML, Baell JB, Kaiser M, Chatelain E, Moawad SR, Ganame D,
 202 Ioset JR, Avery VM. 2012. Identification of compounds with
 anti-proliferative activity against *Trypanosoma brucei brucei* strain
 427 by a whole cell viability based HTS campaign. PLoS Negl Trop Dis
 6:e1896.
- 206 20. de Koning HP, Bridges DJ, Burchmore RJ. 2005. Purine and
 207 pyrimidine transport in pathogenic protozoa: from biology to therapy.
 208 FEMS Microbiol Rev 29:987-1020.
- 209 21. Traut TW. 1994. Physiological concentrations of purines and
 210 pyrimidines. Mol Cell Biochem 140:1-22.
- 211 22. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo
 212 JJ, Krishna S. 2003. The trypanosomiases. Lancet 362:1469-1480.
- 213 23. Mulenga C, Mhlanga JD, Kristensson K, Robertson B. 2001.
 214 Trypanosoma brucei brucei crosses the blood-brain barrier while tight
 215 junction proteins are preserved in a rat chronic disease model.
 216 Neuropathol Appl Neurobiol 27:77-85.
- 217 24. Shakibaei M, Milaninezhad M, Risse HJ. 1994. Immunoelectron
 218 microscopic studies on the specific adhesion of *Trypanosoma*219 congolense to cultured vascular endothelial cells. J Struct Biol
 220 112:125-135.
- 221
- 222

Fig. 1. The structures of mycophenolic acid and its derivatives

Compound	Inhibition rate (%)					
Compound	T. congolense	T. b. brucei	T. evansi			
1	99.60±0.38	82.99±2.82	90.53±1.22			
2	94.46±3.89	5.24±13.12	14.21±8.64			
3	2.36±8.64	7.83±10.35	16.66±5.55			
4	98.87±0.78	46.13±5.21	42.79±4.58			
5	4.65±15.29	14.29±34.17	32.43±4.88			
6	1.45±10.94	22.27±4.81	17.11±6.14			
7	4.59±15.12	14.50±13.76	29.44±10.03			
8	3.59±14.06	22.99±12.90	19.94±8.44			
9	0.06±8.66	9.28±5.15	11.99±1.59			
10	3.15±8.43	9.03±7.91	9.49±6.13			
11	6.51±14.38	16.47±6.97	12.79±4.49			
12	3.03±12.91	11.56±4.17	13.61±8.67			
Pentamidine	99.93±0.07	99.96±0.06	99.94±0.07			
Control	0.00±1.74	0.48±1.58	-0.24±2.25			

Table 1. The trypanocidal activity of MPA (1) and its derivatives at 1 μ M

The trypanocidal activity of MPA (**1**) and 11 MPA derivatives (see Fig. 1) at a concentration of 1 μ M was evaluated for *T. congolense, T. b. brucei* GUTat 3.1 strain and *T. evansi* Tansui strain. Five hundred ng/mL of pentamidine was used as a 100% inhibition control (Pentamidine). HMI-9 media with 0.25% DMSO was used as a 0% inhibition control (Control). The inhibition rate (%) was calculated from 3 independent experiments, and expressed as the mean inhibition rate (%) ± standard deviation.

Table 2. The IC₅₀ value and selectivity index of MPA (1) and MPA derivatives 2 and 4 against *T. b. brucei* and *T. evansi*

	IC ₅₀ (μM)				Selectivity index ^a		
Compound	T. congolense	T. b. brucei	T. evansi	MDBK cell	T. congolense	T. b. brucei	T. evansi
1	0.10±0.04	0.62±0.05	0.61±0.002	0.52±0.12	5.14	0.84	0.85
2	0.56±0.21	>2.5	>2.5	1.4±0.18	2.62	ND	ND
4	0.16±0.04	1.26±0.009	1.38±0.10	0.84±0.21	5.10	0.67	0.61

All of the values were calculated from 3 independent experiments and

expressed as the mean \pm standard deviation. IC₅₀: 50% inhibitory

concentration; ^a, the mean IC₅₀ of MDBK cells/the mean IC₅₀ of trypanosomes;

ND, not determined.

Table 3. The effects of guanosine and xanthine on parasite proliferation under the IMPDH inhibition by MPA (1) and *N*-(2,3,5-triazolyl) mycophenolic

amide (4)
---------	----

Guanosine or	IC 50 (μ M) with guanosine			IC 50 (μ M) with xanthine		
xanthine (µM)	1	4		1	4	
250	>5.0	>5.0		0.09±0.001	0.21±0.01	
50	0.29±0.19	0.50±0.31		0.09±0.003	0.22±0.01	
0	0.07±0.006	0.13±0.02		0.09±0.004	0.22±0.02	

The IC₅₀ values of MPA (**1**) and **4** supplemented with 250, 50 and 0 μ M of guanosine or xanthine. All of the values were calculated from 3 independent experiments and are shown as the mean ± standard deviation. IC₅₀, 50% inhibitory concentration.

Supplemental Fig. 1. The enzymatic activity of TcIMPDH and the inhibition of TcIMPDH by mycophenolic acid

Supplemental Figure 1. The enzymatic activity of TcIMPDH and the inhibition of TcIMPDH by mycophenolic acid

The activity of IMPDH was evaluated, based on the detection of the enzymatic product NADH, as the increasing absorbance at 340 nm. The data represent the mean values of three independent experiments.

(A) The dose-dependent assay of TcIMPDH. The assay was carried out for 60 minutes in standard IMPDH buffer with various concentrations of enzyme.

(B) The time-course assay of TcIMPDH. The assay was carried out for various reaction times in standard IMPDH buffer with a TcIMPDH concentration of 40 nM.

(C) MPA has been known as a specific noncompetitive inhibitor of IMPDH. A dose-dependent assay of MPA was carried out in the presence of 250 μ M IMP, 800 μ M β -NAD⁺, and 40 nM TcIMPDH. The data represent the mean values of three independent experiments.

Supplemental Fig. 2. The expression profile and localization of TcIMPDH

μm

Supplemental Fig. 2. The expression profile and localization of TcIMPDH

- (A) Western blotting was performed with 5 μ g of total cell protein extracted from BSF, PCF, EMF, and MCF using anti-TcIMPDH and anti-Tc α -tubulin antibodies.
- (B) Indirect immunofluorescence staining using anti-TcIMPDH antibody was observed by confocal laser scanning microscopy. Nucleolus and kinetoplast DNAs were subjected to Hoechest 33342 staining and are shown in red. The images were constructed by merging a fluorescence image and a differential interference contrast image. Each of the microscopy images was captured using the same photomultiplier tube gain and voltage.