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ABSTRACT 25 

This study aimed to evaluate the trypanocidal activity of mycophenolic acid 26 

(MPA) and its derivatives for Trypanosoma congolense.  The proliferation of T. 27 

congolense was completely inhibited by adding less than 1 µM of MPA and its 28 

derivatives.  In addition, the inosine monophosphate dehydrogenase in T. 29 

congolense was molecularly characterized as the target of these compounds.  30 

The results suggested that MPA and its derivatives have the potential to be new 31 

candidates as novel trypanocidal drugs.  32 
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Trypanosoma congolense causes animal African trypanosomosis (AAT) in 37 

livestock.  The lack of effective vaccines makes the use of chemotherapeutic 38 

agents the most effective measure for controlling AAT.  Limited numbers of 39 

commercial drugs have long been used to treat AAT. The emergence of 40 

drug-resistant trypanosomes and cases of drug-refractory trypanosomosis have 41 

been reported (1-4), underscoring the need for the development of new drugs.   42 

A candidate target for drug development is inosine monophosphate 43 

dehydrogenase (IMPDH). This enzyme is very important in the Trypanosoma 44 

spp. because it lacks a de novo purine synthesis pathway, which makes the 45 

purine nucleotide synthesis in these parasites solely dependent on a salvage 46 

pathway in the glycosomes (5-7).  IMPDH converts inosine 5’-monophosphate 47 

(IMP) into xanthosine 5’-monophosphate (XMP) through this pathway, which is a 48 

rate-limiting step in the metabolism of guanine nucleotides (8).  Mycophenolic 49 

acid (MPA, 1) is a well-known IMPDH inhibitor (Fig. 1). Its enzymatic activity has 50 

already been proven in many protozoan parasites (9-14). The anti-protozoan 51 

activities of MPA against Babesia spp. have been reported in in vivo and in vitro 52 



studies (9, 15).  Thus, the activity of MPA against IMPDH is expected to lead to 53 

a novel strategy for the development of trypanocides.  54 

The novel IMPDH orthologue of T. congolense (TcIMPDH) (accession no. 55 

LC094350) was identified from the T. congolense re-sequencing data 56 

(unpublished data).  The recombinant TcIMPDH showed IMPDH activity in vitro 57 

(Supplemental Fig. 1-A and B).  The nanomolar levels of MPA clearly inhibited 58 

NADH production by TcIMPDH in a dose-dependent manner (IC50 = 26.2nM) 59 

(Supplemental Figure 1-C).  The expression profile and cellular localization of 60 

TcIMPDH were analyzed by Western blotting and immunofluorescence 61 

microscopy.  TcIMPDH was expressed in glycosomes as granulated forms 62 

throughout the life cycle stages of T. congolense (Supplemental Fig. 2).  63 

TcIMPDH was expressed at similar levels in bloodstream form (BSF), procyclic 64 

form (PCF), and epimastigote form (EMF). In contrast, TcIMPDH expression in 65 

the metacyclic form (MCF) was significantly lower than in the other stages 66 

(p<0.05, Tukey’s multiple comparison test).  This result suggests that purine 67 



synthesis is highly important in the proliferative stages of the parasite, but not in 68 

the non-proliferative MCF stage.  69 

The aim of this study was to reveal the trypanocidal activities of MPA 70 

derivatives for developing an effective trypanocidal drugs. Various inhibitory 71 

activities and the cell-differentiation activity of MPA derivatives against 72 

mammalian cells have been reported in vitro.  Some MPA derivatives (2, 4, 9 73 

and 10) have shown particularly significant inhibitory activities against human 74 

IMPDH and were observed to induce erythroid differentiation in K562 cells (16, 75 

17).  These previous reports suggested that some MPA derivatives might be 76 

specific inhibitors for Trypanosoma.  The chemical structures of the MPA 77 

derivatives in this study are shown in Figure 1.  We evaluated the trypanocidal 78 

activity against T. congolense, T. b. brucei and T. evansi using an ATP-based 79 

luciferase viability system (18).  To evaluate the trypanocidal activity of 1 and its 80 

derivatives in vitro, BSFs were cultivated with 1µM of each compound.  At 1µM, 81 

nine derivatives showed less than 10% anti-T. congolense activity (Table 1).  In 82 

contrast, only three compounds, 1, 2, and 4, inhibited T. congolense growth by 83 



99.60±0.38%, 94.46±3.89% and 98.87±0.78% at 1µM, respectively (Table 1).  84 

Although 1 showed high trypanocidal activity against T. b. brucei and T. evansi, 2 85 

and 4 showed lower inhibitory activities at 1µM against T. b. brucei and T. evansi 86 

than against T. congolense (Table 1).  The low plasma membrane permeability 87 

of 3, 5, 6, 7, 8, 11 and 12 might account for their low trypanocidal activity; while 88 

the low trypanocidal activity of 9 and 10 against all of the tested trypanosome 89 

species and of 2 against T. brucei and T. evansi suggest their low affinity with 90 

these trypanosome IMPDHs or the deactivation of these compounds by other 91 

species-specific enzymes in cytosol.  The IC50 of 1, 2, and 4 to T. congolense 92 

were 0.10±0.04µM, 0.56±0.21 µM, and 0.16±0.04µM, respectively (Table 2).  93 

The IC50 values of these three compounds to MDBK cells were 0.52±0.12, 94 

1.40±0.18, and 0.84±0.21µM, respectively.  The selectivity indices of MPA and 95 

the two derivatives in T. congolense were 5.14, 2.62, and 5.10, respectively 96 

(Table 2).  However, the higher IC50 values and lower selectivity indices of 97 

these 3 compounds were shown in T. b. brucei and T. evansi (Table 2).  The 98 

cytotoxicity of these compounds was higher than that of commercial drugs (19).  99 



However, the IC50 values of 1 and 4 for T. congolense BSF were comparable to 100 

those of two commercially available trypanocides (pentamidine [0.17µM] and 101 

diminazene [0.11µM]) against T. congolense (18).  These results suggested 102 

that 1, 2, and 4 might be potential lead compounds in the development of 103 

trypanocides, especially against T. congolense. 104 

To clarify the mode of action of 1 and 4 in trypanosomes, the effects of 105 

guanosine and xanthine supplementation on the trypanocidal effects of these 106 

compounds were examined.  The IC50 values of 1 and 4 were increased by 107 

guanosine in a dose-dependent manner (Table 3), while xanthine 108 

supplementation did not alter the IC50 values of either 1 or 4 in T. congolense 109 

BSF (Table 3).  These results suggest that guanosine was transported into the 110 

T. congolense BSF and converted into GMP as a purine nucleotide source, while 111 

no xanthine was transported or converted into XMP by hypoxanthine-gunaine 112 

phosphoribosyltransferase in T. congolense.  We therefore concluded that the 113 

proliferation inhibitory effects of MPA against T. congolense BSF were caused by 114 

the inhibition of intracellular TcIMPDH. 115 



Hypoxanthine and inosine were predicted to be the main purine sources in 116 

T. brucei (20).  Hypoxanthine and inosine have also been shown to be present 117 

in the blood at higher concentrations than other purines (21), suggesting their 118 

roles as the main purine sources in trypanosomes and that they are supplied via 119 

the salvage pathway.  The concentration of purine bases and nucleosides in the 120 

extracellular environment is lower than that in the intracellular environment (21).  121 

T. brucei spp. proliferate in blood circulation and then invade the central nervous 122 

system through the blood-brain barrier (22, 23), while T. congolense only 123 

proliferates in blood circulation by adhesion to the vascular endothelium (24).  124 

In conclusion, MPA and its derivatives might therefore also inhibit trypanosome 125 

proliferation in vivo, particularly in T. congolense.  126 
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Fig. 1. The structures of mycophenolic acid and its derivatives



Table 1. The trypanocidal activity of MPA (1) and its derivatives at 1 µM 

Compound Inhibition rate (%) 
T. congolense T. b. brucei T. evansi 

1 99.60±0.38  82.99±2.82 90.53±1.22 
2 94.46±3.89 5.24±13.12  14.21±8.64  
3 2.36±8.64  7.83±10.35  16.66±5.55  
4 98.87±0.78  46.13±5.21  42.79±4.58  
5 4.65±15.29  14.29±34.17  32.43±4.88  
6 1.45±10.94  22.27±4.81  17.11±6.14  
7 4.59±15.12  14.50±13.76  29.44±10.03  
8 3.59±14.06  22.99±12.90  19.94±8.44  
9 0.06±8.66  9.28±5.15  11.99±1.59  
10 3.15±8.43  9.03±7.91  9.49±6.13  
11 6.51±14.38  16.47±6.97  12.79±4.49  
12 3.03±12.91  11.56±4.17  13.61±8.67  

Pentamidine 99.93±0.07  99.96±0.06  99.94±0.07  
Control 0.00±1.74  0.48±1.58  -0.24±2.25  

The trypanocidal activity of MPA (1) and 11 MPA derivatives (see Fig. 1) 

at a concentration of 1µM was evaluated for T. congolense, T. b. brucei GUTat 

3.1 strain and T. evansi Tansui strain. Five hundred ng/mL of pentamidine was 

used as a 100% inhibition control (Pentamidine). HMI-9 media with 0.25% 

DMSO was used as a 0% inhibition control (Control). The inhibition rate (%) was 

calculated from 3 independent experiments, and expressed as the mean 

inhibition rate (%) ± standard deviation.  



 
Table 2. The IC50 value and selectivity index of MPA (1) and MPA 
derivatives 2 and 4 against T. b. brucei and T. evansi 

 IC50 (µM)  Selectivity indexa 

Compound T. congolense T. b. brucei T. evansi MDBK cell  T. congolense T. b. brucei T. evansi 

1 0.10±0.04 0.62±0.05 0.61±0.002 0.52±0.12 
 

5.14 0.84 0.85 

2 0.56±0.21 >2.5 >2.5 1.4±0.18 
 

2.62 ND ND 

4 0.16±0.04 1.26±0.009 1.38±0.10 0.84±0.21 
 

5.10 0.67 0.61 

All of the values were calculated from 3 independent experiments and 

expressed as the mean ± standard deviation. IC50: 50% inhibitory 

concentration; a, the mean IC50 of MDBK cells/the mean IC50 of trypanosomes; 

ND, not determined. 

  



Table 3. The effects of guanosine and xanthine on parasite proliferation 

under the IMPDH inhibition by MPA (1) and N-(2,3,5-triazolyl) mycophenolic 

amide (4) 

Guanosine or 

xanthine (µM) 

IC50 (µM) with guanosine  IC50 (µM) with xanthine 

1 4  1 4 

250 >5.0 >5.0  0.09±0.001 0.21±0.01 

50 0.29±0.19 0.50±0.31  0.09±0.003 0.22±0.01 

0 0.07±0.006 0.13±0.02  0.09±0.004 0.22±0.02 

The IC50 values of MPA (1) and 4 supplemented with 250, 50 and 0µM of 

guanosine or xanthine. All of the values were calculated from 3 independent 

experiments and are shown as the mean ± standard deviation. IC50, 50% 

inhibitory concentration. 

 

 



Supplemental Fig. 1. The enzymatic activity of TcIMPDH and the inhibition of TcIMPDH by mycophenolic acid	
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Supplemental Figure 1. The enzymatic activity of TcIMPDH 
and the inhibition of TcIMPDH by mycophenolic acid	
The activity of IMPDH was evaluated, based on the detection of 
the enzymatic product NADH, as the increasing absorbance at 
340 nm. The data represent the mean values of three 
independent experiments.	
(A) The dose-dependent assay of TcIMPDH. The assay was 
carried out for 60 minutes in standard IMPDH buffer with various 
concentrations of enzyme.	
(B) The time-course assay of TcIMPDH. The assay was carried 
out for various reaction times in standard IMPDH buffer with a 
TcIMPDH concentration of 40 nM.  
(C) MPA has been known as a specific noncompetitive inhibitor 
of IMPDH. A dose-dependent assay of MPA was carried out in 
the presence of 250 µM IMP, 800 µM β-NAD+, and 40 nM 
TcIMPDH. The data represent the mean values of three 
independent experiments.	
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Supplemental Fig. 2. The expression profile and localization of TcIMPDH	
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Supplemental Fig. 2. The expression profile and localization of TcIMPDH	
(A) Western blotting was performed with 5 µg of total cell protein extracted from BSF, PCF, EMF, 

and MCF using anti-TcIMPDH and anti-Tc α-tubulin antibodies. 	
(B)  Indirect immunofluorescence staining using anti-TcIMPDH antibody was observed by confocal 

laser scanning microscopy. Nucleolus and kinetoplast DNAs were subjected to Hoechest 33342 
staining and are shown in red. The images were constructed by merging a fluorescence image 
and a differential interference contrast image. Each of the microscopy images was captured 
using the same photomultiplier tube gain and voltage.	
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