2	cold treatment of <i>Babesia bovis in vitro</i> culture
3	
4	Takahiro Ishizaki ^a , Thillaiampalam Sivakumar ^a , Kyoko Hayashida ^a , Bumduuren
5	Tuvshintulga ^a , Ikuo Igarashi ^a , and Naoaki Yokoyama ^{a,*}
6	
7	^a National Research Center for Protozoan Diseases, Obihiro University of Agriculture
8	and Veterinary Medicine, Hokkaido 080-8555, Japan
9	
10	*Corresponding author:
11	National Research Center for Protozoan Diseases, Obihiro University of Agriculture
12	and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
13	Tel: +81-155-49-5649; Fax: 81-155-49-5643.
14	E-mail: yokoyama@obihiro.ac.jp
15	

RBC Invasion and invasion-inhibition assays using free merozoites isolated after

17 Abstract

Babesia bovis is an apicomplexan hemoprotozoan that can invade bovine red blood 1920cells (RBCs), where it multiplies asexually. RBC invasion assays using free viable 21merozoites are now routinely used to understand the invasion mechanism of *B. bovis*, 22and to evaluate the efficacy of chemicals and antibodies that potentially inhibit RBC 23invasion by the parasite. The application of high-voltage pulses (high-voltage $\mathbf{24}$ electroporation), a commonly used method to isolate free merozoites from infected 25RBCs, reduces the viability of the merozoites. Recently, a cold treatment of B. bovis in 26vitro culture was found to induce an effective release of merozoites from the infected 27RBCs. In the present study, we incubated *in vitro* cultures of *B*. *bovis* in an ice bath to 28liberate merozoites from infected RBCs and then evaluated the isolated merozoites in 29RBC invasion and invasion-inhibitions assays. The viability of the purified merozoites (72.4%) was significantly higher than that of merozoites isolated with high-voltage 30 31electroporation (48.5%). The viable merozoites prepared with the cold treatment also 32invaded uninfected bovine RBCs at a higher rate (0.572%) than did merozoites prepared with high-voltage electroporation (0.251%). The invasion-blocking capacities of 33

34	heparin, a polyclonal rabbit antibody directed against recombinant B. bovis rhoptry
35	associated protein 1, and <i>B. bovis</i> -infected bovine serum were successfully
36	demonstrated in an RBC invasion assay with the live merozoites prepared with the cold
37	treatment, suggesting that the targets of these inhibitors were intact in the merozoites.
38	These findings indicate that the cold treatment technique is a useful tool for the isolation
39	of free, viable, invasion-competent B. bovis merozoites, which can be effectively used
40	for RBC invasion and invasion-inhibition assays in Babesia research.
41	
19	Keywords, Rahasia howis Cold treatment Invasion-inhibition assay Merozoite

42 Keywords: *Babesia bovis*, Cold treatment, Invasion-inhibition assay, Merozoite
43 isolation, RBC invasion

1. Introduction

62	protozoan molecules secreted from the micronemes and rhoptries of <i>B. bovis</i> during
63	merozoite invasion of RBCs, including merozoite surface antigens, rhoptry associated
64	protein 1 (RAP-1), apical membrane antigen 1, and thrombospondin-related anonymous
65	protein (Yokoyama et al., 2006), has been documented. Antisera directed against these
66	protozoan antigens are reported to inhibit the asexual growth of the parasite in vitro
67	(Gaffer et al., 2004a,b; Mosqueda et al., 2002a,b; Suarez et al., 2000; Yokoyama et al.,
68	2002), but their exact roles in RBC invasion are not fully understood, hindering the
69	development of an effective vaccine against this parasite. Other molecules that induce
70	neutralizing antibodies against <i>B. bovis</i> are still being investigated (Silva et al., 2010;
71	Suarez et al., 2011; Terkawi et al., 2013). In vitro invasion assays are essentially used to
72	clarify the mechanism of RBC invasion, which involves parasite molecules (Sun et al.,
73	2011). Similarly, invasion-inhibition assays (in vitro neutralization assays) are useful
74	for investigating neutralizing antibodies raised against parasite antigens that are
75	potential candidate vaccines (Gaffer et al., 2004a,b) or for analyzing the utility of
76	invasion-blocking chemicals as possible chemotherapeutic agents against <i>B. bovis</i> (Bork
77	et al., 2004; Nakamura et al., 2007; Okubo et al., 2007). High-quality, free, viable,

invasion-competent *B. bovis* merozoites are essential for both invasion and
invasion-inhibition assays, if reliable results are to be obtained.

80	At present, two main methods are used to prepare free merozoites from in vitro
81	cultures of B. bovis. With the first method, the merozoites are isolated from the
82	supernatants of <i>in vitro</i> cultures (Hines et al., 1992; Rodriguez et al., 1986; Sun et al.,
83	2011), whereas in the second method, the merozoites are released from RBCs
84	physically ruptured by the application of high-voltage pulses (high-voltage
85	electroporation) and collected (Franssen et al., 2003). Large volumes of <i>in vitro</i> cultures
86	are required for the first method, to obtain sufficient free merozoites for RBC invasion
87	assays, because the numbers of free merozoites in culture supernatants are very low
88	(Suarez and McElwain, 2008; Sun et al., 2011). In contrast, large quantities of free
89	merozoites can be obtained with high-voltage electroporation, but the viability of the
90	merozoites is greatly affected by the harsh isolation method (Rodriguez et al., 2014).
91	Therefore, the establishment of a new method is required to obtain large quantities of
92	free, viable, invasion-competent merozoites from <i>in vitro</i> cultures of <i>B. bovis</i> .

93

A previous study reported that when in vitro cultures of Babesia parasites (B.

94	divergens and B. major) were stored at 4 °C, the paired form of the intraerythrocytic
95	parasites was released into the culture medium as free merozoites (Konrad et al., 1985).
96	Consistent with this observation, Rodriguez et al. (2014) reported the use of cold
97	treatment to isolate free merozoites of B. bovis. However, the merozoites liberated by
98	that group were not evaluated for their potential suitability for invasion and
99	invasion-inhibition assays. Therefore, in the present study, in vitro cultures of B. bovis
100	were subjected to cold treatment in an ice bath. The free merozoites released from the
101	infected RBCs were purified and analyzed for their potential utility in RBC invasion
102	and invasion-inhibition assays.

105	
106	2.1. In vitro <i>culture of</i> B. bovis
107	Babesia bovis (Texas strain) was cultured in purified bovine RBCs in
108	serum-free GIT medium (Wako, Osaka, Japan), as described previously (Bork et al.,
109	2005). Parasite cultures with about 30% parasitemia were used to isolate B. bovis
110	merozoites.
111	
112	2.2. Optimization of the duration of cold treatment and purification of free merozoites
113	An aliquot (1 ml) of an <i>in vitro</i> culture of <i>B. bovis</i> , containing 100 µl of RBCs
114	(10% hematocrit), was subjected to cold treatment for 1, 2, 3, or 4 h in an ice bath. After
115	treatment, each culture was resuspended in 10 ml of GIT medium, and slowly overlaid
116	onto 2 ml of 30% (1.043 g/ml density) Percoll/phosphate-buffered saline (PBS) solution
117	(GE Healthcare, Buckinghamshire, UK) at the bottom of a 50 ml centrifuge tube
118	(Corning, Corning, NY, USA). The tubes were then centrifuged (Himac CF-9RX,
119	Hitachi Koki, Tokyo, Japan) at 280 × g for 5 min at 4 °C, and then at 330 × g for 20 min

2. Materials and methods

120	An aliquot (10 ml) of the supernatant was transferred to a new tube and centrifuged at
121	$1,500 \times g$ for 5 min at 4 °C. The resulting pellet, containing free merozoites, was
122	washed twice with GIT medium and then suspended in 1 ml of GIT medium. The
123	concentration of purified merozoites was determined with a disposable hemocytometer
124	(AR Brown, Tokyo, Japan). The viability of the merozoites was assessed with
125	6-carboxyfluorescein diacetate (6-CFDA; Invitrogen Corp., Carlsbad, CA, USA), which
126	stains only live merozoites, and propidium iodide (PI; Dojindo, Kumamoto, Japan),
127	which stains both live and dead merozoites, as described previously (McElwain et al.,
128	1987; Zotta et al., 2012). Briefly, 100 µl of merozoite-containing GIT was mixed with
129	6-CFDA and PI at final concentrations of 50 μM and 20 $\mu M,$ respectively, and
130	incubated at room temperature for 15 min. After the samples were washed with PBS,
131	the numbers of total (both live and dead merozoites) and the numbers of live merozoites
132	were counted with a disposable hemocytometer under a fluorescence microscope
133	(Keyence, Osaka, Japan) to calculate the viability of the merozoites.
134	

135 2.3. Dynamics of intraerythrocytic parasite stages during cold treatment

136	An aliquot (1 ml) of <i>B. bovis in vitro</i> culture, containing 100 µl of RBCs, was
137	incubated in an ice bath or at 37°C for 1, 2, 3, or 4 hours. Erythrocyte smears prepared
138	at the each time point of incubation were stained with Giemsa and observed under a
139	light microscope to determine the percentages of paired and single parasite stages
140	within the erythrocytes. The experiment was repeated thrice.
141	
142	2.4. Comparison of RBC invasion efficiencies of free merozoites obtained with cold
143	treatment or high-voltage electroporation
144	The efficiencies of the free merozoites of B. bovis obtained with cold
145	treatment or electroporation in invading fresh RBCs in vitro were analyzed and
146	compared. Babesia bovis cultures (100 μ l) with 30% parasitemia were incubated on ice
147	for the optimal time. The liberated free merozoites were purified and their viability
148	analyzed, as described in section 2.2. Babesia bovis-infected RBCs sourced from the
149	same in vitro culture were also used to isolate the merozoites by the application of
150	high-voltage pulses, as described previously, with minor modifications (Franssen et al.,
151	2003; Sun et al., 2011). Briefly, 100 µl of <i>B. bovis</i> -infected RBCs with 30% parasitemia

152	were mixed with 300 μ l of GIT medium. The mixture was added to a 0.2 cm cuvette
153	(Bio-Rad, Hercules, CA, USA) and subjected to five intermittent (10 s, 0 °C),
154	high-voltage pulses (1.5 kV, 400 Ω , 25 μ F) with a Bio-Rad Gene Pulser II to rupture the
155	RBCs. The mixture was then washed three times with GIT medium to eliminate the
156	debris from the burst RBCs. The viability of the free merozoites was determined as
157	described in section 2.2.
158	To assess and compare the RBC invasion efficiencies of the isolated
159	merozoites, 50 μl of an uninfected bovine erythrocyte mass, containing 2.21 \times 10^6
160	RBCs, was added to 1 ml of GIT medium containing 9.28×10^6 free viable merozoites
161	(at a multiplicity of infection [MOI] of 4.2) isolated with the cold treatment or
162	electroporation, in triplicate in 24-well plates (Thermo Scientific, K. K., Waltham, MA,
163	USA), and incubated in an atmosphere of 5% CO_2 and 5% O_2 at 37 °C. Thin blood
164	smears were prepared after incubation for 5, 20, or 60 min, and the percentage
165	parasitemia was determined with light microscopy, based on the numbers of parasitized
166	RBCs in 5,000 total RBCs (Bork et al., 2005).

168 2.5. RBC invasion-inhibition assays

169

170 2.5.1. Invasion-inhibition assay using heparin

171	Heparin, which is reported to inhibit the invasion of <i>B. bovis</i> (Bork et al.,
172	2004), was used to assess whether the merozoites obtained with the cold treatment were
173	suitable for invasion-inhibition assays to investigate invasion-blocking chemicals.
174	Uninfected bovine RBCs (50 μ l) were added to GIT medium containing 4, 20, or 100
175	units (U) of heparin sodium (Wako) and purified free merozoites at an MOI of 4.2, in
176	triplicate in a 24-well plate, as described in section 2.3. The cultures were incubated,
177	and the percentage parasitemia was determined after incubation for 60 min.
178	
179	2.5.2. Invasion-inhibition assays using B. bovis-specific antibodies
180	Two kinds of antibodies, an antiserum raised in a rabbit against recombinant
181	B. bovis RAP-1 (rRAP-1) and serum from a cow experimentally infected with B. bovis,
182	were used in this study to assess whether the merozoites isolated with the cold treatment
183	can be used effectively in invasion-inhibition assays to investigate B. bovis-specific

184	neutralizing antibodies. Recombinant RAP-1 was expressed and purified as a
185	glutathione S-transferase (GST) fusion protein (GST-rRAP-1), as described previously
186	(Yokoyama et al., 2002). Japanese white rabbits (CLEA, Tokyo, Japan) were
187	immunized with the GST-rRAP-1 or GST antigen (control) to produce polyclonal
188	antibodies (rabbit anti-GST-rRAP-1 or rabbit anti-GST, respectively), with a previously
189	described method (Terkawi et al., 2013). The serum from a cow experimentally infected
190	with B. bovis was described in a previous report (Terkawi et al., 2011). Immunization
191	experiments in animals were conducted in accordance with the standards for the care
192	and management of experimental animals stipulated by the Obihiro University of
193	Agriculture and Veterinary Medicine, Hokkaido, Japan.
194	In the RBC invasion-inhibition assays performed in triplicate in a 96-well
195	plate, uninfected bovine RBCs were added to GIT medium containing rabbit
196	anti-GST-rRAP-1 immune serum (diluted 1:100, 1:500, or 1:1000) or experimentally
197	infected B. bovis bovine serum (diluted 1:100, 1:500, or 1:2500) with purified free
198	merozoites at an MOI of 4.2. Medium without serum, medium with rabbit anti-GST,
199	and medium with uninfected bovine serum were used as the negative controls. The

- 200 percentage parasitemia in each culture was determined after incubation for 60 min, and
- 201 then compared with those of the corresponding controls.
- 202
- 203 2.6. Statistical analyses
- All data were analyzed with an independent-samples Student's t test. P values <
- 205 0.05 were considered statistically significant.
- 206
- 207

208 **3. Results**

209

210 3.1. Isolation of free viable merozoites with cold treatment

211 In vitro cultures of B. bovis were incubated for 1-4 hours in an ice bath to 212induce the release of free merozoites from the infected RBCs. The merozoites liberated 213from the RBCs were purified with Percoll-gradient centrifugation, and the numbers of 214viable merozoites were counted. The results confirmed that the cold treatment released 215free viable merozoites from the infected RBCs, and that the maximum number of viable 216 merozoites was obtained after ice-bath incubation for 2 h (Fig. S1). When the cultures 217were incubated for more than 2 h, the viable merozoite counts declined with time. 218Therefore, a period of 2 h was considered optimal for the ice-bath treatment, and was 219 used in subsequent experiments involving cold-treatment-based merozoite isolation. 220The viability of the merozoites isolated with the cold treatment or 221high-voltage electroporation was compared. The viability of the merozoites isolated 222with the cold treatment (72.4%) was much higher than the viability of those isolated

223 with high-voltage electroporation (48.5%; P < 0.05).

224	When the <i>in vitro</i> culture was incubated in an ice bath for 2 or more hours,
225	the percentage of paired merozoites within erythrocytes significantly decreased as
226	compared to that determined at 0-hour incubation (Table 1). Therefore, the percentage
227	of single forms relatively increased during cold treatment. In contrast, such differences
228	were not observed in culture that had been incubated at 37°C.
229	
230	3.2. RBC invasion assays using viable merozoites prepared with cold treatment or
231	high-voltage electroporation
232	The free B. bovis merozoites prepared with cold treatment or high-voltage
233	electroporation were incubated with uninfected bovine RBCs in GIT medium, and
234	parasitemia was monitored at different time points (5, 20, and 60 min) to determine the
235	invasion efficiencies of the merozoites. The parasitemia in the cultures initiated with
236	free merozoites obtained with both methods gradually increased with increasing
237	incubation time, but the merozoites released by the cold treatment caused significantly
238	
	greater parasitemia at all the time points examined than did those liberated with

240	invasion efficiency of the viable merozoites isolated with the cold treatment (0.572%)
241	was higher than that of the merozoites isolated with high-voltage electroporation
242	(0.251%), when calculated from the MOI (4.2) and the 60 min parasitemia values.

244 3.3 Invasion-inhibition assays using invasion-blocking agents

245To confirm the potential utility of the free merozoites liberated with the cold 246treatment in the *in vitro* assays used to screen chemical and biological agents that may 247inhibit RBC invasion by *B. bovis* merozoites, invasion-inhibition assays were performed 248using heparin or *B. bovis*-specific antibodies. RBC invasion by the free viable 249merozoites prepared with the cold treatment was significantly inhibited by 4–100 U of 250heparin but not in the control cultures, which contained no heparin (P < 0.05; Fig. 2A). 251When rabbit anti-GST-rRAP-1 antiserum and the *B. bovis*-infected bovine serum were 252analyzed in the invasion-inhibition assays with free merozoites isolated with the cold 253treatment, RBC invasion by the merozoites was significantly inhibited by both sera at 254low dilutions (1:100) compared with the controls (Figs. 2B and 2C, respectively), suggesting that the free merozoites prepared with the cold treatment can be effectively 255

used to screen chemical and biological agents that inhibit RBC invasion by *B. bovis*.

4. Discussion

261	The currently available methods used to isolate free, viable merozoites, which
262	are essential for RBC invasion and invasion-inhibition assays, are constrained by either
263	the requirement for a large volume of <i>in vitro</i> culture or the low viability of the
264	merozoites obtained (Rodriguez et al., 2014; Suarez and McElwain, 2008; Sun et al.,
265	2011). On the other hand, the cold treatment method reported by Rodriguez et al. (2014)
266	could be an alternative technique to obtain free, viable B. bovis merozoites. However,
267	the merozoites liberated by cold treatment were not evaluated for their utility in RBC
268	invasion and invasion-inhibition assays. Therefore, in the present study, we analyzed
269	the suitability of the free merozoites prepared with the cold treatment for RBC invasion
270	and invasion-inhibition assays.
271	When <i>in vitro</i> cultures of <i>B</i> . <i>bovis</i> were incubated in an ice bath for 1–4 h, the
272	number of free viable merozoites isolated increased steadily for 2 h, after which a
273	significant reduction was observed, suggesting that the viability of the free merozoites
274	released into the culture medium was affected by exposure to cold for more than 2 h.
275	Therefore, 2 h was considered the optimal duration of the cold treatment (Rodriguez et

276	al., 2014). We then compared the viability of free merozoites isolated with the cold
277	treatment or high-voltage electroporation. In agreement with Rodriguez et al. (2014),
278	the viability of the cold-isolated merozoites was significantly higher than that of
279	merozoites isolated with high-voltage pulses. The physical damage caused by the
280	high-voltage pulses could explain the lower viability of these liberated merozoites
281	(Rodriguez et al., 2014).
282	We also analyzed the ratio of different morphological forms of the parasite in
283	the RBCs before and after the cold treatment, and found that the paired merozoites
284	decreased significantly after the cold treatment, while the single forms relatively
285	increased. This suggests that the cold treatment induces the preferential release of the
286	paired merozoites, which are ready to egress and invade new RBCs (Konrad et al.,
287	1985). In contrast, although large numbers of merozoites can be obtained with
288	high-voltage electroporation, different morphological forms, including immature stages
289	and dead parasites, are invariably released with this technique, resulting in a low
290	viability of isolated merozoites. This could also explain why the merozoites isolated
291	with the cold treatment invaded the RBCs more efficiently than those isolated with

292high-voltage electroporation, even though the viable merozoites prepared with both 293 methods were added to the culture at the same MOIs. Furthermore, even the paired 294merozoites liberated by high-voltage pulses may not invade the RBCs effectively, 295because their membrane properties may have been altered by the harsh treatment. 296Having confirmed the viability and RBC invasion efficacy of the free 297 merozoites prepared with the cold treatment, we tested whether these merozoites can be 298 effectively used for RBC invasion-inhibition assays, which are used widely to 299 investigate invasion-blocking chemicals and to analyze the antibodies raised against 300 candidate vaccine antigens. Lower parasitemia was observed in cultures containing 301 heparin or antibodies directed against B. bovis than in the corresponding controls, 302 suggesting that the targets of these inhibitors are intact in the merozoites prepared with 303 the cold treatment and that they can therefore be effectively used in invasion-inhibition 304 assays. 305 In summary, the cold treatment technique, which unlike high-voltage 306 electroporation requires no sophisticated equipment, is an effective tool with which to

21

prepare large quantities of free, viable, invasion-competent merozoites from in vitro

308	cultures of <i>B. bovis</i> . The merozoites obtained with this method are well suited to the
309	RBC invasion and invasion-inhibition assays. Therefore, the cold treatment will
310	facilitate research into the mechanism of RBC invasion by B. bovis, novel candidate
311	vaccines, and invasion-blocking chemicals, allowing the development of improved
312	control and preventive strategies for <i>B. bovis</i> .

315 Acknowledgements

317	This study was supported by grants from the Science and Technology
318	Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry,
319	and from the JSPS KAKENHI (grant numbers: 15H00891, 15K14862, and 25660235).
320	

321 **References**

322

Bock, R.E., Jackson, L., de Vos, A., Jorgensen, W., 2004. Babesiosis of cattle.
Parasitology 129 (Suppl), S247–S269.

325

Bork, S., Okamura, M., Matsuo, T., Kumar, S., Yokoyama, N., Igarashi, I., 2005. Host
serum modifies the drug susceptibility of *Babesia bovis in vitro*. Parasitology. 2005,
130, 489–492.

329

Bork, S., Yokoyama, N., Ikehara, Y., Kumar, S., Sugimoto, C., Igarashi, I., 2004.
Growth-inhibitory effect of heparin on *Babesia* parasites. Antimicrob. Agents
Chemother. 48, 236–241.

333

- Everitt, J.I., Shadduck, J.A., Steinkamp, C., Clabaugh, G., 1986. Experimental *Babesia bovis* infection in Holstein calves. Vet. Pathol. 23, 556–62.
- 336
- Franssen, F.F., Gaffar, F.R., Yatsuda, A.P., de Vries, E., 2003. Characterisation of
 erythrocyte invasion by *Babesia bovis* merozoites efficiently released from their host
 cell after high-voltage pulsing. Microbes Infect. 5, 365–372.

- 341 Gaffar, F.R., Yatsuda, A.P., Franssen, F.F., de Vries, E., 2004a. Erythrocyte invasion by
- 342 Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides

- 343 derived from a homologue of *Plasmodium falciparum* apical membrane antigen 1.
 344 Infect. Immun. 72, 2947–2955.
- 345

merozoite

346 Gaffar, F.R., Yatsuda, A.P., Franssen, F.F., de Vries, E., 2004b. A Babesia bovis

domain

348 thrombospondin-related anonymous protein (TRAP) present in *Plasmodium* sporozoites.

architecture

highly

similar

the

to

349 Mol. Biochem. Parasitol. 136, 25–34.

protein

with

а

- 350
- Hines, S.A., Palmer, G.H., Jasmer, D.P., McGuire, T.C., McElwain, T.F., 1992.
 Neutralization-sensitive merozoite surface antigens of *Babesia bovis* encoded by
 members of a polymorphic gene family. Mol. Biochem. Parasitol. 55, 85–94.
- 354
- Homer, M.J., Aguilar-Delfin, I., Telford, S.R., Krause, P.J., Persing, D.H., 2000.
 Babesiosis. Clin. Microbiol. Rev. 13, 451–469.
- 357
- Hunfeld, K.P., Hildebrandt, A., Gray, J.S., 2008. Babesiosis: recent insights into an
 ancient disease. Int. J. Parasitol. 38, 1219–1237.
- 360
- Konrad, J., Canning, E.U., Phipps, L.P., Donnelly, J., 1985. Maintenance of *in vitro*cultures of *Babesia divergens* and *Babesia major* at low temperatures. Z. Parasitenkd.
 71, 313–316.
- 364

McElwain, T.F., Perryman, L.E., Davis, W.C., McGuire, T.C., 1987. Antibodies define
multiple proteins with epitopes exposed on the surface of live *Babesia bigemina*merozoites. J. Immunol. 138, 2298–2304.

368

Mosqueda, J., McElwain, T.F., Palmer, G.H., 2002a. *Babesia bovis* merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infect. Immun. 70, 6448–6455.

373

Mosqueda, J., McElwain, T.F., Stiller, D., Palmer, G.H., 2002b. *Babesia bovis*merozoite surface antigen 1 and rhoptry-associated protein 1 are expressed in
sporozoites, and specific antibodies inhibit sporozoite attachment to erythrocytes. Infect.
Immun. 70, 1599–1603.

378

Nakamura, K., Yokoyama, N., Igarashi, I., 2007. Cyclin-dependent kinase inhibitors
block erythrocyte invasion and intraerythrocytic development of *Babesia bovis in vitro*.
Parasitology 134, 1347–1353.

382

383 Okubo, K., Yokoyama, N., Govind, Y., Alhassan, A., Igarashi, I., 2007. *Babesia bovis*:
384 effects of cysteine protease inhibitors on *in vitro* growth. Exp. Parasitol. 117, 214–217.
385

386 Rodriguez, S.D., Buening, G.M., Vega, C.A., Carson, C.A., 1986. Babesia bovis:

- purification and concentration of merozoites and infected bovine erythrocytes. Exp.Parasitol. 61, 236–43.
- 389
- 390 Rodriguez, A.E., Florin-Christensen, M., Flores, D.A., Echaide, I., Suarez, C.E.,
- Schnittger, L., 2014. The glycosylphosphatidylinositol-anchored protein repertoire of *Babesia bovis* and its significance for erythrocyte invasion. Ticks Tick Borne Dis. 5,
 343–348.
- 394
- 395 Silva, M.G., Ueti, M.W., Norimine, J., Florin-Christensen, M., Bastos, R.G., Goff, W.L.,

Brown, W.C., Oliva, A., Suarez, C.E., 2010. *Babesia bovis* expresses a
neutralization-sensitive antigen that contains a microneme adhesive repeat (MAR)
domain. Parasitol. Int. 59, 294–297.

- 399
- 400 Suarez, C.E., Florin-Christensen, M., Hines, S.A., Paler, G.H., Brown, W., McElwain,
- 401 T.F., 2000. Characterization of allelic variation in the Babesia bovis merozoite surface
- 402 antigen (MSA-1) locus and identification of a cross-reactive inhibition-sensitive MSA-1
- 403 epitope. Infect. Immun. 68, 6665–6670.
- 404
- 405 Suarez, C.E., Laughery, J.M., Bastos, R.G., Johnson, W.C., Norimine, J., Asenzo, G.,
- 406 Brown, W.C., Florin-Christensen, M., Goff, W.L., 2011. A novel neutralization
- 407 sensitive and subdominant RAP-1-related antigen (RRA) is expressed by *Babesia bovis*
- 408 merozoites. Parasitology 138, 809–818.

- Suarez, C.E., McElwain, T.F., 2008. Transient transfection of purified *Babesia bovis*merozoites. Exp. Parasitol. 118, 498–504.
- 412
- 413 Sun, Y., Moreau, E., Chauvin, A., Malandrin, L., 2011. The invasion process of bovine
- 414 erythrocyte by *Babesia divergens*: knowledge from an *in vitro* assay. Vet. Res. 42, 62.
- 415
- 416 Terkawi, M.A., Huyen, N.X., Wibowo, P.E., Seuseu, F.J., Aboulaila, M., Ueno, A., Goo,
- Y.K., Yokoyama, N., Xuan, X., Igarashi, I., 2011. Spherical body protein 4 is a new
 serological antigen for global detection of *Babesia bovis* infection in cattle. Clin.
 Vaccine Immunol. 18, 337–342.
- 420
- 421 Terkawi, M.A., Ratthanophart, J., Salama, A., AbouLaila, M., Asada, M., Ueno, A.,
- 422 Alhasan, H., Guswanto, A., Masatani, T., Yokoyama, N., Nishikawa, Y., Xuan, X.,
- 423 Igarashi, I., 2013. Molecular characterization of a new Babesia bovis
- 424 thrombospondin-related anonymous protein (BbTRAP2). PLoS One. 8, e83305.
- 425
- 426 Yokoyama, N., Okamura, M., Igarashi, I., 2006. Erythrocyte invasion by Babesia
- 427 parasites: current advances in the elucidation of the molecular interactions between the
- 428 protozoan ligands and host receptors in the invasion stage. Vet. Parasitol. 138, 22–32.
- 429
- 430 Yokoyama, N., Suthisak, B., Hirata, H., Matsuo, T., Inoue, N., Sugimoto, C., Igarashi,

- 431 I., 2002. Cellular localization of *Babesia bovis* merozoite rhoptry-associated protein 1
- 432 and its erythrocyte-binding activity. Infect. Immun. 70, 5822–5826.
- 433
- 434 Zotta, T., Guidone, A., Tremonte, P., Parente, E., Ricciardi, A., 2012. A comparison of
- 435 fluorescent stains for the assessment of viability and metabolic activity of lactic acid
- 436 bacteria. World J. Microbiol. Biotechnol. 28, 919–927.
- 437
- 438
- 439

440 Figure Legends

Fig. 1. Comparison of RBC invasion efficiencies of free viable merozoites prepared 442443 with the cold treatment or high-voltage electroporation. Free viable merozoites 444 prepared with the cold treatment or high-voltage electroporation were added in triplicate 445to culture plates containing uninfected bovine RBCs at MOI = 4.2. The percentage 446 parasitemia of the cultures was measured after incubation for 5, 20, and 60 min. The 447asterisks indicate that the parasitemia in cultures initiated with merozoites prepared with the cold treatment was significantly higher (P < 0.05) at all three time points than that 448 449 of cultures initiated with merozoites obtained with high-voltage electroporation, 450indicating that the merozoites prepared with the former method invaded the RBCs more efficiently than those obtained with the latter technique. 451452

457	bovine RBCs were incubated (at $MOI = 4.2$) in duplicate with free merozoites prepared
458	with the cold treatment in the presence of 4, 20, or 100 U of heparin (A), rabbit
459	anti-GST-rRAP-1 (diluted 1:100, 1:500, or 1:1000) or rabbit anti-GST antiserum
460	(diluted 1:100) (B), or <i>B. bovis</i> -infected bovine serum (diluted 1:100, 1:500, or 1:2500)
461	or uninfected bovine serum (diluted 1:100) (C). Culture medium containing no inhibitor
462	was also used as a control. Parasitemia was determined after incubation for 60 min.
463	Data are expressed as the percentage of the mean parasite growth rate relative to that in
464	the control culture without inhibitors. The asterisks indicate that the relative growth
465	rates were significantly reduced ($P < 0.05$) by heparin (4–100 U), rabbit
466	anti-GST-rRAP-1 antiserum (1:100), and <i>B. bovis</i> -infected serum (1:100) compared
467	with the growth rates of the corresponding controls, indicating that RBC invasion by the
468	merozoites was inhibited by heparin and by the specific antibodies directed against B .
469	bovis.

470

В

Α

С

Hours post-incubation	Intraerythrocytic stages (%) ^a		SDb	P value ^c
	Paired	Single		
Ice-bath incubation		-		
0	46.41	53.59	2.01	
1	43.14	56.86	0.93	0.104
2	39.66	60.34	1.12	0.014 ^d
3	40.84	59.16	1.86	0.045 ^d
4	39.15	60.85	0.44	0.007 ^d
37°C incubation ^e				
0	45.75	54.25	2.87	
1	45.99	54.01	3.28	0.940
2	45.07	54.93	2.58	0.815
3	44.42	55.58	1.11	0.576
4	45.37	54.63	1.16	0.873

Table 1. The changes in the percentage of paired and single stages of *B*. *bovis* within the erythrocytes during the incubation of *in vitro* cultures in ice bath

^a Giemsa-stained erythrocyte smears prepared at each time point of incubation were observed under a light microscope to determine the percentage of paired and single parasite stages.

^b SD, Standard deviation

^c P values were calculated as compare to 0-hour incubation.

^d The percentage of paired merozoites within the erythrocytes significantly decreased (P < 0.05) in *in vitro* cultures incubated in ice-bath for 2 or more hours.

^e The percentages of paired as well as single parasite stages did not change with time when the *in vitro* cultures were incubated at 37°C for 4 hours.

Fig. S1. Cold-treatment-induced release of free viable *B. bovis* merozoites from infected RBCs. Panel A: A light microscopic image of a Giemsa-stained thin blood smear prepared from an *in vitro* culture of *B. bovis* that was subjected to cold treatment in an ice bath for 2 h, showing the release of free merozoites. Arrows indicate free merozoites found inside and outside the RBC ghosts. Panel B: Total number of free viable merozoites purified with Percoll-gradient centrifugation from 100 ml of RBCs from *in vitro* cultures of *B. bovis* after incubation in an ice bath for 1, 2, 3, or 4 h. The asterisk indicates that the highest number of free viable merozoites was isolated from the culture incubated in the ice bath for 2 h, compared with those incubated for 0, 1, 3, or 4 h (P < 0.05).