Title

2	Depletion of phagocytic cells during nonlethal Plasmodium yoelii infection causes
3	severe malaria characterized by acute renal failure in mice
4	Running title
5	Role of phagocytic cells in malaria
6	Authors
7	Mohamad Alaa Terkawi ^{a †} , Maki Nishimura ^{a †} , Hidefumi Furuoka ^b , Yoshifumi
8	Nishikawa ^a
9	Affiliations
10	^a National Research Center for Protozoan Diseases, Obihiro University of Agriculture
11	and Veterinary Medicine, Obihiro, Japan.
12	^b Department of Basic Veterinary Medicine, Obihiro University of Agriculture and
13	Veterinary Medicine, Obihiro, Japan.
14	Correspondence
15	Yoshifumi Nishikawa (PhD)
16	Tel: +81-155-49-5641
17	Fax: +81-155-49-5643
18	E-mail: nisikawa@obihiro.ac.jp
	1

 † Both authors contributed equally to this work.

21 Abstract

22In the current study, we examined the effects of phagocytes depletion on the progression of *Plasmodium yoelii*-17XNL infection in mice. Strikingly, the depletion of phagocytic 23cells, including macrophages with clodronate in the acute-phase of infection 2425significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damages included coagulative necrosis in liver and 2627thrombi in the glomeruli, fibrin deposition, and tubulonecrosis in kidney. The severity 28of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of 29endothelial integrity in the liver and kidney. Aspirin was administered to the mice to 30 31minimize the risk of excessive activation of the coagulation response and fibrin 32deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of 33 phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, 34including macrophages in the acute-phase of infection increases the severity of malarial 3536 infection, typified by multiorgan failure and high mortality.

37 I

Key words: Phagocytes; macrophages; phagocytosis; Plasmodium yoelii.

38 Introduction

39	Malaria remains the most devastating protozoan infection in the world, with a
40	heavy disease burden estimated to affect 300-500 million individuals, with 0.6 million
41	deaths annually. Plasmodium falciparum is the most important etiological agent of
42	malaria, causing high levels of morbidity and mortality worldwide. The severity of
43	infection is broad ranging, from a slight febrile illness to severe complications, which
44	can include cerebral malaria, acidosis, acute respiratory distress syndrome, and acute
45	renal and hepatic failure [1-3]. Transmission occurs via the bite of an infected female
46	Anopheles mosquito, which releases sporozoites into the bloodstream. The inoculated
47	motile sporozoites invade the hepatocytes and replicate intracellularly. Following the
48	clinically silent liver stage, the merozoite progeny move into the bloodstream and
49	initiates the blood stage, which is associated with the clinical manifestations of malaria
50	[1, 4].
51	The intensive replication of the parasite within the erythrocytes (red blood cells,

RBCs) and the exportation of parasite proteins to the RBC surface alter the RBC membrane characteristics, allowing RBCs to adhere to the endothelium and causing their sequestration in the blood microvessels of various organs. Parasitized erythrocytes (pRBC) can also adhere to other RBCs, leukocytes, and platelets, forming intravascular

56	rosettes and clumps, which can impede the microcirculation and disrupt the
57	microvascular blood flow, leading to hypoxia and multiorgan failure [4]. In fact,
58	disruption of the microvascular blood flow is commonly observed in experimental and
59	human clinical studies of severe malaria. Together with this sequestration, the
60	overproduction of inflammatory cytokines and soluble mediators by the host immune
61	cells at the sites of infection promote endothelial cell injury [5-7]. The loss of the
62	endothelial barrier integrity results in microvascular leakage and organ injury and
63	dysfunction. Thrombosis is triggered by the exposure of tissue factor (TF) expressed on
64	the surfaces of endothelial cells and monocytes to thrombin, leading to fibrin deposition
65	in the blood vessels and obstruction to blood flow [6, 7].
66	Efficient control of <i>Plasmodium</i> infection by the host is dependent on the
07	
67	function of spleen via filtering pRBCs and regulating the consequence immune response
67	function of spleen via filtering pRBCs and regulating the consequence immune response to the infection [8]. In the spleen, the blood leaves the terminal arterioles into sinuses of
67 68 69	function of spleen via filtering pRBCs and regulating the consequence immune response to the infection [8]. In the spleen, the blood leaves the terminal arterioles into sinuses of marginal zone, where marginal zone macrophages and marginal metallophilic
68 69 70	function of spleen via filtering pRBCs and regulating the consequence immune response to the infection [8]. In the spleen, the blood leaves the terminal arterioles into sinuses of marginal zone, where marginal zone macrophages and marginal metallophilic macrophages are positioned at a ring form surrounding the sinus. This strategic position
6768697071	function of spleen via filtering pRBCs and regulating the consequence immune response to the infection [8]. In the spleen, the blood leaves the terminal arterioles into sinuses of marginal zone, where marginal zone macrophages and marginal metallophilic macrophages are positioned at a ring form surrounding the sinus. This strategic position of macrophages allows them to sufficiently trap and phagocytize blood pathogens [9,
 67 68 69 70 71 72 	function of spleen via filtering pRBCs and regulating the consequence immune response to the infection [8]. In the spleen, the blood leaves the terminal arterioles into sinuses of marginal zone, where marginal zone macrophages and marginal metallophilic macrophages are positioned at a ring form surrounding the sinus. This strategic position of macrophages allows them to sufficiently trap and phagocytize blood pathogens [9, 10]. However, it is still unclear that splenic macrophages are crucial for the clearance of

74	splenic phagocytes, mainly macrophages in marginal zone and red pulp [10, 11] was
75	used to investigate the contribution of macrophages on the host protection against blood
76	stage of <i>P. yoelii</i> infection in C57BL/6 mice. Our data show that resistance to nonlethal
77	P. yoelii infection is crucially dependent on the function of phagocytic cells including
78	macrophages in mice.

80 Materials and methods

81	Mice and infection: Specific-pathogen-free 6-8-week-old female C57BL/6 mice
82	purchased from Clea (Tokyo, Japan) were used in this study. Plasmodium yoelii
83	17-XNL was recovered from frozen pRBC stock by passage in mice after
84	intraperitoneal (i.p.) inoculation, and the challenge infections were induced with i.p.
85	inoculations of 1×10^7 fresh pRBCs from donor mice. Parasitemia and survival rates
86	were monitored daily thereafter. Parasitemia was determined by microscope in
87	methanol-fixed thin blood smears stained with 10% Giemsa solution. This study was
88	performed in strict accordance with the recommendations in the Guide for the Care and
89	Use of Laboratory Animals of Ministry of Education, Culture, Sports, Science and
90	Technology, Japan. The protocol was approved by the Committee on the Ethics of
91	Animal Experiments of the Obihiro University of Agriculture and Veterinary Medicine
92	(Permit number 24-17, 25-66).

93 Depletion of phagocytes and treatment with aspirin: Phagocytes were depleted by 94 the i.p. administration of 300 µl of CLL once on day -2 postinfection (p.i.) for the 95 early-phase of infection, on day 6 p.i. for the acute-phase of infection, on day 14 p.i. for 96 the lately acute-phase of infection, and on day 30 p.i. for the resolved-phase of infection. 97 Another group of mice were injected in parallel with PBS liposomes (PL). Uninfected

98	mice received either CLL or PL. CCL and PL were purchased from
99	www.clodronateliposomes.org (Haarlem, the Netherlands). In a separate experiment,
100	mice infected with P. yoelii were injected i.p. with either 25 mg/kg aspirin
101	(acetylsalicylic acid; Sigma-Aldrich, St. Louis, MO, USA) or PBS from day 5 to day 8
102	p.i. [12]. On day 6 p.i., the mice received either CLL or PL (300 μ l) by i.p. injection.
103	Quantitative real-time polymerase chain reaction (qRT–PCR): The mice were killed
104	and their organs harvested (including spleen, liver, kidney, lungs, heart, and brain) and
105	placed in TRI Reagent (Sigma). Total RNA was then isolated and reverse transcribed to
106	first-strand cDNA (Invitrogen, Carlsbad, CA, USA), according to manufacturer's
107	instructions. The expression of P. yoelii 18S rRNA (Py18S), cytokines, and adhesion
108	molecules was analyzed with qRT-PCR using an ABI Prism Genetic Analyzer (Applied
109	Biosystems, Carlsbad, CA, USA) with SYBR Green (Applied Biosystems) and the
110	specific primers (Table S1). The primers for qRT-PCR were designed with the Primer
111	Express software (Applied Biosystems). Specific gene expression was normalized to the
112	expression of ubiquitin, using β -actin, glyceraldehyde 3-phosphate dehydrogenase
113	(GAPDH), and 18S rRNA as the housekeeping genes. The optimal reference gene was
114	selected based on the Cotton EST database (http://www.leonxie.com). Relative gene
115	expression was calculated with the $\Delta\Delta^{CT}$ method (User Bulletin no. 2, Perkin-Elmer,

116 Boston, MA, USA).

117Detection of serum cytokines and coagulation factors: Each mouse serum sample was assayed with an enzyme-linked immunosorbent assay (ELISA) for IFN- γ , TNF- α , 118 IL-1β, IL-10 (Pierce Biotechnology, Rockford, IL, USA), prothrombin (Ptn; USCN Life 119120Science, Wuhan, China), fibrinogen (Fbg), and D-dimer (DD; BMASSY, Beijing, China), according to each manufacturer's instruction. 121Hematology and serum biochemistry: Blood cell counts were performed with an 122automatic cell counter (Celltac a, Nihon Kohden, Tokyo, Japan). Serum samples for 123biochemical analysis were examined with a clinical chemistry automated analyzer 124(Toshiba Medical Systems Co., Tochigi, Japan) to measure the concentrations total 125126protein (TP), aspartate transaminase (AST), alkaline phosphatase (ALP), γ -glutamyl 127transpeptidase (γ -GTP), creatinine (CRE), and blood urea nitrogen (BUN) with specific 128detection reagents (Denka Seiken, Tokyo, Japan). 129Histopathology, immunohistopathology, immunofluorescence, and electron 130 **microscopy:** Organs were fixed in 4% (w/v) buffered paraformaldehyde, embedded in

paraffin, sectioned to 4 μ m, and then stained with hematoxylin and eosin (HE) and phosphotungstic acid hematoxylin (PTAH). The immunohistochemical staining assays were performed with specific antibodies directed against intercellular adhesion

134	molecule 1 (ICAM1; Sino Biological Inc., Beijing, China; diluted 1:500), von
135	Willebrand factor (vWF; Dako, Copenhagen, Denmark; diluted 1:1000), CD41 (Abcam,
136	Cambridge, MA, USA; diluted 1:500) and P. yoelii merozoite surface protein-1
137	(PyMSP-1/19 rabbit antiserum; Malaria Research and Reference Reagent Resource
138	Center; diluted 1:3000) as the primary antibodies. The sections were exposed to each
139	primary antibody at 4 °C overnight, and then incubated with the secondary antibody
140	conjugated to horseradish-peroxidase-labeled polymer (EnVision+ kit, Dako) for 40 min
141	at 37 °C. The signals were detected with diaminobenzidine (ImmPACT DAB®, Vector
142	Laboratories Inc., Burlingame, CA, USA), followed by counterstaining with Mayer's
143	hematoxylin. For immunofluorescence assay targeting CD41, vWF and P. yoelii, fresh
144	frozen tissues were sectioned to 5 μm and fixed with cold acetone. Sections were
145	exposed to each primary antibody at 4 °C overnight and then incubated with
146	Alexa-568-labeled/488-labeled goat anti-rabbit IgG antibody for 40 min at 37 °C. For
147	the ultrastructural studies with electron microscopy, kidneys fixed in 4% buffered
148	paraformaldehyde were immersed in 2.66% glutaraldehyde, postfixed in 1% osmium
149	tetroxide, embedded in resin, and processed routinely for semithin and ultrathin
150	sectioning. The sections were observed with a transmission electron microscope
151	(HT7700, Hitachi, Tokyo, Japan).

152	Statistical analysis: Statistical analysis was performed using GraphPad Prism 5
153	software (GraphPad Software Inc., La Jolla, CA, USA). The statistical significance of
154	differences in the parasitemia between each group of mice was analyzed by two-way
155	analysis of variance (ANOVA). Results are presented as the mean ± SEM. The
156	significance of the differences was evaluated by a one-way ANOVA followed by
157	Tukey's multiple comparisons procedure. Student's t test was used to compare the
158	differences between two independent groups. The significance of the differences in
159	survival was analyzed with a Kaplan-Meier nonparametric model and the curves were
160	compared using the log-rank test. Results were considered statistically significant when
161	<i>P</i> < 0.05.

162

Results

164	Depletion of phagocytes in acute-phase of P. yoelii 17XNL infection causes severe
165	pathogenesis in C57BL/6 mice. To examine the contribution of phagocytic cells,
166	including macrophages to the resistance to P. yoelii 17XNL infection, mice were treated
167	with CLL at different times during the course of infection and were monitored for their
168	parasitemia and survival. The infection of mice with P. yoelii 17XNL led to patent
169	parasitemia by day 2 p.i., which increased slowly, peaked by days 11-14 p.i., and
170	resolved within the fourth week of infection in mice treated with PL or not treated (Fig.
171	1A). Mice that received a single injection of CLL 2 days before infection (-2 p.i.)
172	displayed a reduction in parasitemia compared with mice treated with PL, but no
173	mortality (Fig. 1A, B). In contrast, mice that received a single injection of CLL on
174	either day 6 or day 14 p.i. showed sharp reductions in parasitemia with coincident
175	70-73% mortality (Fig. 1C-F). Mice that received a single injection of CLL or PL on
176	day 30 p.i. did not show any increase of their parasitemia with no mortality (data not
177	shown). To further gain an insight into the cellular changes in the spleen of infected
178	mice at the acute stage after treating with CLL, splenocytes of these mice were assayed
179	by flow cytometry for cell population of macrophages, dendritic cells (DC), natural
180	killer cells (NK), natural killer T cells (NKT) and T cells (CD4 $^+$ and CD8 $^+$). The

181	percentages of $CD11b^{+}F4/80^{+}$, $CD11c^{+}$, $CD3^{+}CD8^{+}$ cells were reduced in both
182	non-infected and infected mice after treatment with CLL (Fig. S1A and B). In addition,
183	<i>P. yoelii</i> -infected mice showed significant reduction in percentages of $Gr.1^+$ and
184	CD3 ⁻ NK.1 ⁺ , and elevation in the percentage of CD3 ⁺ CD4 ⁺ cells after treatment with
185	CLL compared with those in PL-injected mice (Fig. S1B). Together, the depletion of
186	phagocytes by using CLL resulted in an alternation of cellular population of spleen in <i>P</i> .
187	yoelii-infected mice. These results demonstrated the absolute need for phagocytes
188	including macrophages to control acute infection of P. yoelii in mice. To identify the
189	mechanism underlying the pathogenesis after phagocyte depletion in the acute-phase of
190	infection (day 6 p.i.), hematological and biochemical analyses of their blood were
191	performed. Ongoing infection caused a gradual decline in the numbers of peripheral
192	RBCs and platelets and in hematocrit (HCT) values in PL-injected mice (Table. S2).
193	Strikingly, phagocyte-depleted mice displayed significantly greater numbers of RBCs
194	and platelets and higher HCT values on day 8 p.i. compared with those of mice injected
195	with PL (Table S2). These results demonstrated that the depletion of phagocyte
196	minimized the progression of anemia and thrombocytopenia caused by P. yoelii
197	infection. Moreover, blood levels of ALP, γ -GTP, AST, BUN, and CRE were
198	significantly elevated in the infected mice on day 7 p.i. after treatment with CLL (Fig.

2A). Consistently, urine test revealed increased levels of TP and CRE, but not BUN, in
the phagocyte-depleted mice compared with the PL-treated mice on day 7 p.i. (Fig. S2).
Thus, the depletion of phagocytes resulted in severe pathogenesis of a nonlethal *P*. *yoelii* infection, typified by significant elevation of biochemical markers for liver and
kidney dysfunction in the blood and urine.

Lethal infection is associated with severe pathological lesions in the liver and 204kidney. To gain better insight into the pathogenesis of the infection after the depletion 205of phagocytes including macrophages in mice, histopathological examinations of their 206 vital organs were made. The organs were sampled from mice one day after the 207administration of CLL on day 7 p.i., when the mice started to die. Although no marked 208209 specific pathological changes were observed in the brains, hearts, lungs, or spleens of 210the infected mice, phagocyte-depleted mice showed severe lesions in their livers and 211kidneys (Fig. 2B–E). It is noteworthy that the histopathological lesions observed in the CLL-injected mice on day 7 p.i. included focal hepatic necrosis (Fig. 2B), tubular 212213necrosis, blood stasis, thrombi, and mild fibrin deposition in the glomeruli and arterioles 214of the kidney (Fig. 2C–E). Concurrent hepatic and renal lesions were observed in 53.3% 215(8/15) of the infected phagocyte-depleted mice. Because histopathological observations 216of hepatic and renal tissues were not seen in uninfected mice treated with CLL (Fig. S3),

217	the observed phenotypes were due to the parasite infection but not to the effect of CLL
218	treatment. To assess the correlation between the pathological lesions and the parasite
219	burden in the organs, we examined the parasite burdens and their localization in various
220	tissues with qRT-PCR and immunofluorescence test, respectively. Consistent with our
221	histopathological observations, the expression of Py18S gene was significantly higher in
222	the livers and kidneys of the phagocyte-depleted mice than in those of the PL-treated
223	mice (Fig. 3A, B). An immunofluorescence study using antiserum to PyMSP-1
224	demonstrated that pRBCs had accumulated in the blood vessels of the liver and the
225	glomerular capillaries of the kidney (Fig. 3C, D). To obtain direct evidence that the
226	accumulation of pRBCs in the blood vessels of the glomeruli in moribund mice led to
227	pathological lesions, the renal tissues were examined with transmission electron
228	microscopy. Notably, the glomerular capillaries appeared to be dilated and filled with
229	RBCs, pRBCs, and degenerate pRBCs (dpRBCs) (Fig. 3E). The pRBCs and dpRBCs
230	were directly attached to activated or degenerate endothelium (Fig. 3F). Furthermore,
231	platelets were found between the pRBCs and endothelium (Fig. 3G). From these data,
232	we inferred that the depletion of phagocytes resulted in an increase in pRBCs attached
233	to the endothelia of capillaries, disrupting the microvascular blood flow and causing
234	pathological lesions in the liver and kidney.

235	Increased parasite burden in the liver and kidney alters vascular endothelial
236	function. The expression of adhesion molecules by vascular endothelial cells was
237	examined with qRT-PCR to assess their correlation with the parasite burden and
238	clinical complications. Strikingly, the expression of several endothelial biomarkers,
239	including ICAM1, vascular cell adhesion molecule 1 (VCAM1), platelet endothelial cell
240	adhesion molecule (PECAM), P-selectin, E-selectin, and Von Willebrand factor (vWF),
241	was significantly upregulated in the hepatic and renal tissues of the phagocyte-depleted
242	infected mice sampled on day 7 p.i. (Fig. 4A, B and Fig. S4). In contest, uninfected
243	mice treated with CLL showed no upregulation of the targeted genes (Fig. 4A, B and
244	Fig. S4), indicating that treatment with CLL didn't activate the endothelial cells. The
245	expression of ICAM1 and vWF, known to be predictors of severe malarial infection,
246	were then examined with immunohistochemistry. Consistent with the qRT-PCR results,
247	the staining patterns for ICAM1 and vWF in the vessels were markedly more intense in
248	livers and kidneys of the phagocyte-depleted infected mice than in those of the
249	PL-treated mice, which showed fewer and less intensely stained vessels (Fig. 4C, D).
250	Because vWF-expressing platelets mediate the adhesion of pRBCs to the endothelium
251	and the adhesion and aggregation of platelets at sites of vascular injury, leading to
252	thrombosis, we immunofluorescently stained the platelets with both anti-CD41 antibody

and anti-vWF antibody. Importantly, the renal sections from the phagocyte-depleted 253infected mice, but not those from the PL-treated mice, displayed stronger expression of 254both molecules at overlapping locations, indicating the accumulation of activated 255platelets in the capillaries (Fig. 4E). Consistent with this, the phagocyte-depleted 256257infected mice showed significantly upregulated expression of platelet factor 4 (PF4), a marker of platelet activation, in the renal tissues (Fig. 4F). Thus, the activation of the 258endothelium was coincident with an increase in the adhesion/accumulation of both 259pRBCs and the population of activated platelets in the renal vessels. 260

Coagulation and inflammatory responses are elevated in phagocyte-depleted 261infected mice. Given the importance of activated platelets in initiating the coagulation 262263cascade and inflammatory response, several biomarker molecules were examined in the 264tissues and blood of the mice. Importantly, the expression of the genes encoding TF (the 265initiator of the extrinsic coagulation cascade), fibronectin (Fn), and vascular endothelial 266growth factor (VEGF), markers of fibrosis, was upregulated in the renal tissues of the 267phagocyte-depleted mice compared with that in the PL-treated mice on day 7 p.i. with P. 268voelii (Fig. 5A). Consistently, blood levels of coagulation factors, including Ptn, Fbg, and DD, were significantly increased in the phagocyte-depleted mice on day 7 p.i. (Fig. 2692705B). We next examined the blood levels of IL-1 β , IFN- γ , TNF- α , and IL-10, which are

271	known to play essential roles in the pathogenesis of malaria infection, as well as their
272	expressions in spleen tissues. Notably, the phagocyte-depleted mice exhibited
273	significantly increased levels of serum IL-1 β , IFN- γ , and TNF- α (Fig. 5C), but not
274	IL-10 (data not shown) on day 7 p.i., compared with those in PL-treated mice. Similarly,
275	the expression of the genes encoding IFN- γ and TNF- α , but not IL-10, was upregulated
276	in the spleens of the phagocyte-depleted mice on day 7 p.i. (Fig. S5). The gene
277	expression of TGF- β was not detected in all samples of spleens (data not shown).
278	Collectively, these results demonstrated a correlation between glomerular fibrin
279	deposition, the activation of the coagulation and inflammatory responses in
280	phagocyte-depleted infected mice. Together, the depletion of phagocytes by using CLL
281	had resulted in an alternation of cellular population of spleen in <i>P. yoelii</i> -infected mice.
282	Aspirin therapy attenuates the severity of P. yoelii infection in phagocyte-depleted
283	mice. To clarify the mechanism of pathogenesis observed in our study, aspirin, an
284	antiplatelet drug, was used to reduce the serious vascular events attributable to severe
285	infection. Interestingly, the treatment of phagocyte-depleted mice with aspirin caused a
286	slight increase in their peripheral blood parasitemia, coincident with their improved
287	survival (Fig. 6A, B). In parallel, the parasite burden in the kidney, but not that in the
288	liver, was significantly reduced in the phagocyte-depleted mice treated with aspirin

289	compared with the phagocyte-depleted mice treated with PBS (Fig. 6C, D). Renal
290	lesions, including tubular necrosis and thrombi in the glomeruli, were also observed in
291	the infected phagocyte-depleted mice treated with either aspirin or PBS (Fig. S6).
292	However, the frequency of these lesions in the renal tissues was lower in the
293	aspirin-treated mice (30%, 3/10) than in the PBS-treated mice (60%, 6/10) after
294	infection with P. yoelii. Hepatic necrosis was also observed in the infected
295	phagocyte-depleted mice that were injected with aspirin (20%) or PBS (30%).
296	Consistent with the pathological observations, the serum levels of biochemical markers
297	of liver and kidney dysfunction were significantly elevated in the macrophage-depleted
298	mice compared with those in the PL-treated mice on day 7 p.i. However, the levels of
299	ALP, γ GTP, AST, and BUN but not CRE were significantly lower in
300	phagocyte-depleted mice treated with aspirin than those treated with PBS (Fig. 6E).
301	Next, we examined the coagulation and inflammatory responses, the activation and
302	integrity of the endothelial cells, and the platelet activation in the renal tissues of the
303	infected mice after treatment with aspirin. The phagocyte-depleted infected mice
304	displayed significantly higher blood levels of Ptn, Fbg, DD, IFN- γ , TNF- α , and IL-1 β
305	(Fig. 7) and greater expression of the genes for the activation of endothelial cells and
306	platelets than did the PL-treated mice on day 7 p.i. (Fig. S7). Importantly, the elevation

307	of these markers tended to be reduced in the infected phagocyte-depleted mice after
308	aspirin treatment while there was no statistically significant difference (Fig. 7 and Fig.
309	S7). These results showed that improved survival correlated strongly with a reduction in
310	the parasite burden in the renal tissues and was partially associated with the
311	coagulation/inflammatory responses and the activation of endothelial cells and platelets.

313 **DISCUSSION**

We have investigated the contribution of phagocytic cells including 314macrophages to the protection against nonlethal infection of P. voelii in mice. The 315depletion of phagocytes in the acute-phase of P. yoelii infection, but not in the early- or 316317resolved-phase, impaired the resistance of C57BL/6 mice to the infection. The elevated parasite burden in the liver and kidney of phagocyte-depleted mice was accompanied by 318 several pathophysiological features, including microvascular obstruction, increased 319 coagulation factors, and proinflammatory cytokines, and the activation of the 320 endothelium. An earlier study has shown that depletion of macrophages using two 321 injections of CLL in the early-phase of infection (days -2 and 3 post-infection) resulted 322in an increased parasitemia of P. yoelii 17XNL-infected mice and rapid mortality as a 323 324day earlier than control mice infected with lethal P. yoelii 17XL [13]. The differences in these findings are most likely due to time of drug administration, number of injections 325and dose of challenge infection. Likewise, Stevenson and colleagues has noted that 326 depletion of macrophages on day 6 post-infection with P. chabaudi AS was more 327 328 effective than depletion of macrophage in the early-phase of infection (day -1 329 post-infection) [14]. Here, single administration of CLL to P. yoelii-infected mice at 330 days 6 or 14 but not at days -2 or 30 post-infection showed severe pathogenesis in mice

typified by hepatic and renal failure. The severe pathogenesis after depletion of phagocytes at the acute-phase of infection is most probably due to the high parasitemia and abundant pRBCs with mature stage parasites that may sequestrate in the microvascular and cause sudden disruption in the blood flow of organs [4].

335Treatment with single injection of CLL in acute-phase of P. yoelii infection resulted in a reduction in splenic population of macrophage, DC, granulocytes, NK and 336 CD8⁺ T cells, and an increase in CD4⁺ T cells. Likewise, naïve mice treated with CLL 337 had reduced the splenic population of macrophage, DC and CD8⁺ T cells. This 338 treatment is known to mainly affect macrophage and DC in the marginal zone of spleen 339 as well as Kupffer cells in the liver [10]. Indeed, clodronate is specifically delivered into 340 phagocytic cells using liposomes as vehicles. Within these cells, phospholipid bilayers 341342of liposome are disrupted by lysosomal phospholipases and clodronate can be 343intracellularly released and causes irreversibly damaged and death of cells by initiating apoptosis [10]. Therefore, we believe that the impairment of the pRBCs clearance and 344345their particles in spleen by resident splenic phagocytic cells including macrophages 346 abrogated the resistance to non-lethal malarial infection. Nonetheless, the decrease in 347splenic granulocytes and NK cells in infected mice is probably due to the loss of 348 macrophage and DCs that act as antigen presenting cells regulating the immune

349	response to the infection. The increase of $CD4^+$ T cells population might be caused by
350	the elevation of parasites burden and their antigens after depletion of phagocytic cells.
351	The CD4 ⁺ T cells are known to be a key player in the protective immunity and the
352	pathogenesis of blood stage malaria infection. Moreover, CD4 ⁺ CD25 ⁺ Foxp3 ⁺ regulatory
353	T cells are activated and expanded in response to malarial infection in mice and humans
354	to control proinflammatory immune responses upon <i>Plasmodium</i> infection [15, 16].
355	However, the contradictory findings in murine malaria suggested diverse roles of
356	regulatory T cells (protective or pathological) during infection [15, 16]. Therefore,
357	further study is needed to address the correlation between the regulatory T cells and the
358	severe pathogenesis in phagocyte-depleted mice.

Furthermore, phagocyte-depleted mice exhibited higher levels of IFN- γ , TNF- α , 359and IL-1 β , which are known to play important role in the protection and the 360pathogenesis of malaria [17]. Therefore, the depletion of phagocytes not only impairs 361the clearance of pRBCs but also alters the consequent immune responses to the 362infection. Enhanced sequestration of parasitized RBC may then trigger inflammation 363 and cause concomitant enhancement of pro-inflammatory cytokine levels. Elevated 364 365plasma IFN- γ , TNF- α and IL-1 β cytokines in severe malaria are associated with 366 systemic complications and pathologic abnormalities in several organs. A clinical study

noted that renal failure in severe malaria is positively correlated with elevated blood concentrations of TNF- α [18]. In support of this concept, TNF- α/β - or IFN- γ -deficient mice are completely resistant to experimental cerebral malaria [19, 20]. Therefore, further study is required to investigate the contribution of cytokines elevation to the increased pathogenesis of malaria.

Phagocyte-depleted mice suffered acute renal failure, characterized by tubular 372373necrosis, glomerular thrombosis, mild fibrin deposition, and proteinuria, with elevated levels of creatinine in the blood. The pathological lesions observed in moribund mice 374may be due to the increased attachment of pRBCs in the glomerular capillaries that 375triggers regional intravascular coagulation, blood hyperviscosity, and blood stasis. 376 377 These results are consistent with concept that the outcome of severe malarial infection depends on the degree of sequestration and accumulation of pRBCs in the 378 microvasculature of vital organs [21, 22]. The absence of electron-dense deposits in the 379380 basement membranes of the glomerular capillaries and monocyte infiltration into the glomerular capillaries indicates that the underlying mechanism of acute renal failure in 381 382our mouse model is not immune-complex-mediated glomerulonephritis. In an analogous fashion, acute renal failure has frequently been reported to be a serious complication of 383384P. falciparum and P. vivax malaria in nonimmune adults and children in Africa and

385	Southeast Asia [23, 24]. Renal ischemia arising from the sequestration of pRBCs in the
386	glomerular and tubulointerstitial capillaries is believed to be the major key
387	pathophysiology related to acute renal failure in humans and experimental animals [25,
388	26]. Moreover, patients suffering from acute renal failure arising from malarial infection
389	may display oliguria, proteinuria, hyperbilirubinemia, and high levels of plasma
390	creatinine [27, 28]. Renal biopsies of patients show acute tubular necrosis,
391	tubulointerstitial nephritis, and glomerular changes with mesangial proliferation, with or
392	without immune complex deposition. Glomerular hypercellularity, typified by the
393	sequestration of pRBCs with or without the accumulation of monocytes in the
394	glomerular capillaries, is a common pathological feature in these patients [29, 30].
395	Fibrin deposition in the glomeruli has also been observed postmortem in some malarial
396	patients [29]. Together, the high degree of pathophysiological similarity between our
397	findings and those for human malaria patients suffering from renal failure highlights the
398	importance of our model for investigating novel strategies for therapeutic interventions.
399	Fibrin and thrombi in the glomerular capillaries are the most common
400	pathological feature of many renal diseases characterized by the interruption of blood
401	flow, irreversible ischemia, and necrosis. The mechanism of fibrin deposition in the
402	small arteries and glomerular capillaries has been shown to depend on the interaction

403	between endothelial cells and the macrophages or platelets that initiate thrombosis and
404	fibrosis [29, 30]. However, phagocyte-depleted mice exhibited an increase in the
405	number of activated platelets, which is most probably due to the elevation in parasites
406	burden and cytokines production as well as the endothelial damage in liver and kidney.
407	Generally, the direct interaction/communication between activated platelets and the
408	inflamed endothelium mounts a coagulation response via the amplification of thrombin
409	from TF, leading to fibrin deposition in the glomerular capillaries and arterioles [6, 30].
410	In our study, therefore, the aggregation of pRBCs, dpRBCs, and activated platelets in
411	the inflamed microvasculature of the renal tissues coincided with increased coagulation
412	and inflammatory responses in the CLL-treated mice may explain the observation of
413	thrombi and fibrin deposition in the capillaries. Consistent with this notion, platelet
414	adhesion and aggregation are known to play important roles in cerebral malaria by
415	facilitating the cytoadhesion of <i>P. falciparum</i> pRBCs to the activated endothelium [31].
416	Platelets respond rapidly to pRBCs, forming aggregations of pRBCs and platelets via
417	vWF, which then attach firmly to the inflamed endothelia by their surface adhesion
418	molecules [32, 33]. The upregulated expression of adhesive ligands of platelets
419	stabilizes plug formation and recruits other cells, resulting in microvascular obstruction
420	with or without fibrin deposition [6, 31]. Concurrently, malarial patients display

thrombocytopenia, resulting from the sequestration/aggregation of activated platelets to the vascular endothelium and the removal of platelet-bound pRBCs from the blood by phagocytosis [5]. Together, these findings suggest that the inadequate removal of aggregated platelets and pRBCs by phagocytes results in microvascular obstruction in the vital organs, such as the kidney, thus causing severe malaria.

Because platelets are crucial in initiating the coagulation cascade, we presumed 426 427that the blockage of platelet activation by aspirin may reduce the coagulation-inflammation responses. Our results demonstrated that treatment with 428aspirin attenuated the severity of *P. yoelii* infection in phagocyte-depleted mice, which 429was evidenced by their improved survival. The phagocyte-depleted mice treated with 430 aspirin displayed a reduced parasite burden in the kidney, with fewer renal lesions than 431the phagocyte-depleted mice treated with PBS. A possible interpretation of the 432improved survival of the phagocyte-depleted mice after treatment with aspirin is that 433fewer pRBCs were sequestered to the glomerular capillaries because platelet 434aggregation, the binding of pRBCs and platelets to the endothelium were disrupted by 435436aspirin. However, these results emphasize that phagocytic cells including macrophages are the central determinants of the infection outcome, probably by mediating the 437438clearance of pRBCs and aggregated platelets.

In conclusion, our data imply that severe malarial infection in patients and experimental animals may be attributable to the inappropriate function of phagocytic cells including macrophages in the removal of pRBCs, leading to their excessive sequestration and impairment of the microvascular blood flow.

444 Acknowledgments

445	We thank Dr. Motomi Torii (Department of Molecular Parasitology, Ehime University
446	School of Medicine, Japan) for providing <i>P. yoelii</i> 17XNL. We thank Youko Matsushita,
447	Megumi Noda, and Yoshie Imura (National Research Center for Protozoan Diseases,
448	Obihiro University of Agriculture and Veterinary Medicine) for their excellent technical
449	assistance. We sincerely thank Dr. Satoru Kawai (Center for Tropical Medicine and
450	Parasitology, Dokkyo Medical University) for his helpful advice and discussion of the
451	electron microscopy study. This research was supported by the Japan Society for the
452	Promotion of Science (JSPS) through the Funding Program for Next-Generation
453	World-Leading Researchers (NEXT Program), initiated by the Council for Science and
454	Technology Policy (2011/LS003).

456 **REFERENCES**

- Miller LH, Baruch DI, Marsh K, Doumbo OK. 2002. The pathogenic basis of
 malaria. Nature 415: 673-679.
- 459 2. Miller LH, Ackerman HC, Su XZ, Wellems TE. 2013. Malaria biology and
 460 disease pathogenesis: insights for new treatments. Nat Med 19:156-167.
- 461 3. Schofield L, Grau GE. 2005. Immunological processes in malaria pathogenesis.
- 462 Nat Rev Immunol **5**:722-735.
- 463 4. Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA,
- 464 Rahman MR, Hasan M, Bin Yunus E, Ghose A, Ruangveerayut R,
- 465 Limmathurotsakul D, Mathura K, White NJ, Day NP. 2008. Direct in vivo
- assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect
- 467 Dis **197**:79-84.
- 468 5. Faille D, El-Assaad F, Alessi MC, Fusai T, Combes V, Grau GE. 2009.
- 469 Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial
- 470 understanding. Thromb Haemost **102**:1093-1102.
- 471 6. Francischetti IM, Seydel KB, Monteiro RQ. 2008. Blood coagulation,
- 472 inflammation, and malaria. Microcirculation **15**:81-107.

473	7.	Vogetseder A, Ospelt C, Reindl M, Schober M, Schmutzhard E. 2004. Time
474		course of coagulation parameters, cytokines and adhesion molecules in <i>Plasmodium</i>
475		falciparum malaria. Trop Med Int Health 9:767-773.
476	8.	Engwerda CR1, Beattie L, Amante FH. 2005. The importance of the spleen in
477		malaria. Trends Parasitol 21:75-80.
478	9.	Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, Turner
479		GD, Mercereau-Puijalon O. 2011. The pathogenesis of Plasmodium falciparum
480		malaria in humans: insights from splenic physiology. Blood 117:381-392.
481	10.	Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SH, Seiler P. 2003.
482		Macrophages of the splenic marginal zone are essential for trapping of blood-borne
483		particulate antigen but dispensable for induction of specific T cell responses. J
484		Immunol 171 :1148-1155.
485	11.	van Rooijen N, Hendrikx E. 2010. Liposomes for specific depletion of
486		macrophages from organs and tissues. Methods Mol Biol 605:189-203.
487	12.	McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth
488		GK, Corbin JE, Alexander WS, Foote SJ. 2009. Platelets kill intraerythrocytic
489		malarial parasites and mediate survival to infection. Science 323:797-800.

490 13. Couper KN, Blount DG, Hafalla JC, van Rooijen N, de Souza JB, Riley EM.

- 2007. Macrophage-mediated but gamma interferon-independent innate immune
 responses control the primary wave of *Plasmodium yoelii* parasitemia. Infect
 Immun **75**:5806–5818.
- 494 14. Stevenson MM, Ghadirian E, Phillips NC, Rae D, Podoba JE. 1989. Role of
- 495 mononuclear phagocytes in elimination of *Plasmodium chabaudi* AS infection.
- 496 Parasite Immunol **11**:529-544.
- 497 15. Scholzen A, Minigo G, Plebanski M. 2010. Heroes or villains? T regulatory cells
 498 in malaria infection. Trends Parasitol 26:16-25.
- 499 16. Hansen DS, Schofield L. 2010. Natural regulatory T cells in malaria: host or
 500 parasite allies? PLoS Pathog. 29:e1000771.
- 501 17. Angulo I, Fresno M. 2002. Cytokines in the pathogenesis of and protection against
- malaria. Clin Diagn Lab Immunol **9**:1145-1152.
- 503 18. Day NP, Hien TT, Schollaardt T, Loc PP, Chuong LV, Chau TT, Mai NT, Phu
- 504 NH, Sinh DX, White NJ, Ho M. 1999. The prognostic and pathophysiologic role
- 505 of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis
- **180**:1288-1297.

508	B. 1997.	Resistance	to	cerebral	malaria	in	tumor	necrosis
509	factor-alpha	/beta-deficient	mice is	associated	with a	reducti	on of in	tercellular
510	adhesion mo	olecule-1 up-reg	gulation	and T help	per type	1 respo	onse. Am	J Pathol.
511	150 :257-266	Ó.						

- 512 20. Rudin W, Favre N, Bordmann G, Ryffel B. 1997. Interferon-gamma is essential
 513 for the development of cerebral malaria. Eur J Immunol 27:810-815.
- 514 21. Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigário AM. 2010.
- 515 Accumulation of *Plasmodium berghei*-infected red blood cells in the brain is 516 crucial for the development of cerebral malaria in mice. Infect Immun 517 **78**:4033-4039.
- 518 22. Haque A, Best SE, Amante FH, Ammerdorffer A, de Labastida F, Pereira T,
- 519 Ramm GA, Engwerda CR. 2011. High parasite burdens cause liver damage in
- 520 mice following *Plasmodium berghei* ANKA infection independently of CD8(+) T
- 521 cell-mediated immune pathology. Infect Immun **79**:1882-1888.
- 522 23. Naqvi R, Ahmad E, Akhtar F, Naqvi A, Rizvi A. 2003. Outcome in severe acute
- 523 renal failure associated with malaria. Nephrol. Dial. Transplant **18**:1820-1823.

- 524 24. Elsheikha HM, Sheashaa HA. 2007. Epidemiology, pathophysiology,
 525 management and outcome of renal dysfunction associated with plasmodia infection.
 526 Parasitol Res 101:1183-1190.
- 527 25. Houba V. 1979. Immunologic aspects of renal lesions associated with malaria.
 528 Kidney Int 16:3–8.
- 529 26. Ehrich JH, Eke FU. 2007. Malaria-induced renal damage: facts and myths. Pediatr
 530 Nephrol 22:626-637.
- 531 27. Sowunmi A. 1996. Renal function in acute *falciparum* malaria. Arch Dis Child
 532 74:293-298.
- 533 28. Nguansangiam S, Day NP, Hien TT, Mai NT, Chaisri U, Riganti M, Dondorp
- 534 AM, Lee SJ, Phu NH, Turner GD, White NJ, Ferguson DJ, Pongponratn E.
- 535 2007. A quantitative ultrastructural study of renal pathology in fatal *Plasmodium*
- *falciparum* malaria. Trop Med Int Health **12**:1037-1050.
- 537 29. Boonpucknavig V, Sitprija V. 1979. Renal disease in acute *Plasmodium*538 *falciparum* infection in man. Kidney Int 16:44-52.
- 539 30. Hertig A, Rondeau E. 2004. Role of the coagulation/fibrinolysis system in
- 540 fibrin-associated glomerular injury. J Am Soc Nephrol **15**:844-853.

541 31. Cox D, McConkey S. 2010. The role of platelets in the pathogenesis of cerebral
542 malaria. Cell Mol Life Sci 67:557-568.

543	32.	Larkin D	, de	Laat B	, Jenkins	PV,	Bunn J,	Craig	AG	, Terraube	V ,	Preston	RJ,
-----	-----	----------	------	--------	-----------	-----	---------	-------	----	------------	------------	---------	-----

- 544 Donkor C, Grau GE, van Mourik JA, O'Donnell JS. 2009. Severe Plasmodium
- 545 falciparum malaria is associated with circulating ultra-large von Willebrand
- 546 multimers and ADAMTS13 inhibition. PLoS Pathog 5:e1000349.
- 547 doi:10.1371/journal.ppat.1000349.
- 548 33. Francischetti IM, Seydel KB, Monteiro RQ, Whitten RO, Erexson CR,
- 549 Noronha AL, Ostera GR, Kamiza SB, Molyneux ME, Ward JM, Taylor TE.

550 2007. *Plasmodium falciparum*-infected erythrocytes induce tissue factor expression

- in endothelial cells and support the assembly of multimolecular coagulation
- 552 complexes. J Thromb Haemost **5**:155-165.
- 553

555 Figure legends

Fig. 1. Parasitemia and survival of P. yoelii-infected mice. Mice were injected with 556clodronate liposomes (CLL) or PBS liposomes (PL) on day -2 p.i. (A, B), day 6 p.i. (C, 557D), or day 14 p.i. (E, F) and then monitored for 30 days for parasitemia (A, C, E) and 558survival (B, D, F). Infected mice with no treatment (NT). The results represent the 559average parasitemia and survival of mice (n =10 for A, B, E, F; n = 15 for C, D; n = 5 560for NT mice). Data are combined from two or three independent experiments. * 561Indicates the significant difference in the parasitemia of CLL-treated mice as compared 562563with control mice as analyzed by two-way ANOVA. Arrowheads indicate the time for administration of CLL or PL. 564Fig. 2. Hepatic and renal failure in P. yoelii-infected mice. Biochemical analysis of 565serum markers of liver and kidney function (A). Samples were collected on day 7 p.i. 566from P. yoelii-infected mice treated with either PBS liposomes (PL) or clodronate 567liposomes (CLL) on day 6 p.i. Uninfected mice were treated with PBS liposomes (CPL) 568569or clodronate liposomes (CCLL) and sampled one day after treatment. The results represent the average value (\pm SEM) for each experimental group (uninfected, n = 5; 570

- 571 infected, n = 15). * Indicates the significant difference between the groups as analyzed
- 572 by one-way ANOVA analysis of variance, followed by Tukey's multiple-comparison

573	test. U/L, unit/L; ALP, alkaline phosphatase; γ-GTP, γ-glutamyl transpeptidase; AST,
574	aspartate transaminase; BUN, blood urea nitrogen; CRE, creatinine. Histopathological
575	observations of hepatic and renal tissues of P. yoelii-infected mice (B-E). Tissues were
576	sampled for histopathological studies on day 7 p.i. after treatment with clodronate
577	liposomes (CLL) or PBS liposomes (PL) on day 6 p.i. Hepatic sections (B) and renal
578	sections (C-E). Infected macrophage-depleted mice (CLL) showed focal hepatic
579	necrosis (B), tubular necrosis (C), blood stasis (D), and fibrin deposition in the
580	glomeruli (E). HE staining (B-D), PTAH staining (E). Arrowheads indicate lesions.
581	Scale bars are indicated.
582	Fig. 3. Parasite burden in the livers and kidneys of <i>P. yoelii</i> -infected mice. Tissues

were sampled on day 7 p.i. after mice were treated with either clodronate liposomes 583(CLL) or PBS liposomes (PL) on day 6 p.i. Analysis of the relative expression of P. 584yoelii 18S rRNA by qRT-PCR in hepatic (A) and renal (B) tissues. Results represent 585the $2^{-\Delta\Delta Ct}$ average of relative expression (± SEM) of the parasite gene in mice (n = 15) 586relative to that in PL-treated mice. Data are combined from three independent 587experiments. * Indicates the significant difference between the groups as analyzed by 588Student's t test. Specific immunofluorescent staining of the parasite using antiserum 589directed against PyMSP-1 in the liver (C) and kidney (D). Ultrastructural examination 590

of renal sections from phagocyte-depleted infected mice (E-G). Electron micrograph of 591a glomerular capillary lumen filled with RBCs, parasitized RBCs (pRBCs), and 592degenerate pRBCs (dpRBCs) (E), apparently attached to the degenerate endothelium (F). 593Platelets were found between pRBCs and the endothelium (G). EC, endothelial cells; 594595BM, basement membrane; PLT, platelets. Scale bars are indicated. Fig. 4. mRNA expression and immunohistochemical analyses of endothelial 596markers in hepatic and renal tissues. Gene expression of endothelial-cell adhesion 597 molecules in hepatic (A) and renal tissues (B). Samples from P. voelii-infected mice 598treated with either PBS liposomes (PL) or clodronate liposomes (CLL) on day 6 p.i. 599were collected on day 7 p.i. Uninfected mice were treated with PBS liposomes (CPL) or 600 clodronate liposomes (CCLL) and sampled one day after treatment. The results 601

represent the $2^{-\Delta\Delta Ct}$ average of relative expression (± SEM) of each targeted gene in the mice (uninfected, n = 5; infected, n = 15) relative to that of the corresponding gene in uninfected mice treated with PBS liposomes (CPL). * Indicates the significant difference between the groups as analyzed by one-way ANOVA analysis of variance. Immunohistochemical observations (C-E). Sections of liver (C) and kidney (D) were stained with specific antibody directed against ICAM1 or vWF. Specific

608 immunofluorescent staining for activated endothelial cells/platelets and platelets in renal

tissues using antibodies directed against vWF and CD41 (E). Scale bars are indicated. 609 Expression of PF4, an platelet activation marker in renal tissues (F). The results 610 represent the $2^{-\Delta\Delta Ct}$ average of relative expression (± SEM) of each targeted gene in the 611 mice (uninfected, n = 5; infected, n = 15) relative to that of the corresponding gene in 612uninfected mice treated with PBS liposomes (CPL). * Indicates the significant 613 difference between the groups as analyzed by one-way ANOVA analysis of variance, 614followed by Tukey's multiple-comparison test. 615Fig. 5. Expression and serum levels of coagulation factors and serum inflammatory 616 cytokine in P. yoeli-infected mice. Expression of coagulation and damage markers in 617 renal tissues (A). The results represent the $2^{-\Delta\Delta Ct}$ average of relative expression (± SEM) 618 of each targeted gene in the mice (uninfected, n = 5; infected, n = 15) relative to that of 619 620 the corresponding gene in uninfected mice treated with PBS liposomes (CPL). Serological detection of coagulation factors (B) and inflammatory cytokines (C). P. 621*voelii*-infected mice treated with either PBS liposomes (PL) or clodronate liposomes 622 (CLL) on day 6 p.i. were collected on day 7 p.i. Uninfected mice were treated with PBS 623 624 liposomes (CPL) or clodronate liposomes (CCLL) and sampled one day after treatment. 625* Indicates the significant difference between the groups as analyzed by one-way 626 ANOVA analysis of variance, followed by Tukey's multiple-comparison test.

627	Fig. 6. Effects of aspirin treatment on the outcomes of infection with P. yoelii.
628	Parasitemia (A) and survival (B) of mice in the 30 days after infection. The results
629	represent the average parasitemia \pm SEM of the mice (n = 10). Parasite burden in
630	hepatic (C) and renal (D) tissues as examined qRT-PCR. Relative gene expression of P.
631	yoelii 18S rRNA in the livers (C) and kidneys (D) of infected mice sampled on day 7 p.i.
632	The results represent the 2 ^{-$\Delta\Delta Ct$} average of relative expression (± SEM) of the infected
633	mice $(n = 10)$ relative to that in PBS liposomes-treated and PBS-injected mice
634	(PL(PBS)). Biochemical analysis of serum markers of liver and kidney function in
635	infected mice (E). Mice were either injected with clodronate liposomes (CLL) or PBS
636	liposomes (PL) on day 6 p.i. and were also treated with either aspirin or PBS from day 5
637	to day 8 p.i. * Indicates the significant difference between the groups as analyzed by
638	one-way ANOVA analysis of variance, followed by Tukey's multiple-comparison test.
639	Fig. 7. Effects of aspirin treatment on serum levels of coagulation factors and
640	inflammatory cytokines. Mice were either injected with clodronate liposomes (CLL)
641	or PBS liposomes (PL) on day 6 p.i. and were also treated with either aspirin (gray
642	column) or PBS (black column) on days 5 and 6 p.i., and sampled for analyses on day 7
643	p.i. The results represent the average values (\pm SEM) of the mice (n = 10). * Indicates
644	the significant difference between the groups as analyzed by one-way ANOVA analysis

645 of variance, followed by Tukey's multiple-comparison test.

A

CLL

PL 100 µm 50 µm 50 µm 100 µm 50 µm 50 µm

20 µm

20 µm

E

G

