
Abstract
Excessive consumption of alcoholic beverages is 
a serious cause of liver disease worldwide. The 
metabolism of ethanol generates reactive oxygen 
species, which play a significant role in the deterio
ration of alcoholic liver disease (ALD). Antioxidant 
phytochemicals, such as polyphenols, regulate the 
expression of ALDassociated proteins and peptides, 
namely, catalase, superoxide dismutase, glutathione, 
glutathione peroxidase, and glutathione reductase. 
These plant antioxidants have electrophilic activity 
and may induce antioxidant enzymes via  the Kelch
like ECHassociated protein 1NFE2related factor2 
pathway and antioxidant responsive elements. 
Furthermore, these antioxidants are reported to 
alleviate cell injury caused by oxidants or inflammatory 
cytokines. These phenomena are likely induced via  
the regulation of mitogenactivating protein kinase 
(MAPK) pathways by plant antioxidants, similar to 
preconditioning in ischemiareperfusion models. 
Although the relationship between plant antioxidants 
and ALD has not been adequately investigated, plant 
antioxidants may be preventive for ALD because of 
their electrophilic and regulatory activities in the MAPK 
pathway. 
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Core tip: The metabolic process of ethanol generates 
reactive oxygen species, which play a significant role 
in the deterioration of alcoholic liver disease (ALD). 
Antioxidant phytochemicals, such as polyphenols, 
upregulate the expression of antioxidant enzymes and 
peptides via  the Kelchlike ECHassociated protein 
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1NFE2related factor2 pathway, which leads to 
antioxidant responsive elements in animal models. 
Furthermore, these antioxidants alleviate cell injury 
caused by oxidants or inflammatory cytokines via  
impairment of hyperactivation of mitogenactivating 
protein kinase pathways, similar to preconditioning in 
ischemiareperfusion models. Although the relationship 
between plant antioxidants and ALD has not been 
adequately investigated, plant antioxidants may be 
preventive for ALD. 
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INTRODUCTION
Humans are surrounded by many chemicals, inclu
ding nutrients, phytochemicals, food additives, 
pharmaceuticals, and drugs. Although the intestine 
and liver absorb and metabolize many types of 
chemicals[1] for utilization or detoxification[2], some 
become more toxic once metabolized[3]. Ethanol, 
which is a component of alcoholic beverages, is one 
of the most common and abundant chemicals in 
daily life. Consuming ethanol can be relaxing and 
provides other benefits, but excessive drinking can be 
harmful physically and mentally and may decrease 
quality of life. Moderate consumption of alcohol has 
been shown to reduce the risks of cardiovascular 
disease[4] and nonalcohol fatty liver disease[5]. With 
moderate intake, most ethanol is oxidized by alcohol 
dehydrogenase and catabolized to acetaldehyde, which 
is subsequently catabolized to acetate via aldehyde 
dehydrogenase in the mitochondria. However, with 
binge drinking, ethanol is predominately metabolized 
to acetaldehyde via cytochrome P450, family 2, 
subfamily E, polypeptide 1 (CYP2E1), which comprises 
a microsomal ethanoloxidizing system[6] that is 
involved in the generation of reactive oxygen species 
(ROS)[79]. Despite much evidence demonstrating a role 
for CYP2E1 in alcoholic liver disease (ALD), several of 
our studies have demonstrated that consumption of 
ethanol-containing diets significantly increased hepatic 
CYP2E1 levels without significantly affecting plasma 
alanine aminotransferase (ALT) activity (unpublished 
data). These findings support the existence of a potent 
endogenous antioxidant system that can prevent 
potential damage via the excessive expression of 
CYP2E1[10].

Binge drinking may cause liver injury, as demon-
strated by increased blood levels of ALT, aspartate 
aminotransferase (AST), and/or lactate dehydrogenase 
(LDH)[1114] and lipid accumulation in the liveralcoholic 

fatty liver[12,13,15,16]. Hepatic functions are gradually lost 
with the progression of ALD[11], which is one of the 
most critical causes of cirrhosis[11,17]. Three mechanisms 
have been proposed to cause alcoholic liver injury: 
(1) acetaldehyde toxicity[18]; (2) metabolic generation 
of ROS or exposure to oxidative stress[10,1921]; and 
(3) provocation of an immune response that causes 
oxidative stress in hepatocytes[13,2224]. ALD patients 
appear to exhibit oxidative stress[11]; thus, increasing 
defense activities against this stress is important in the 
prevention of ALD. 

In mammals, ROS is scavenged by antioxidant 
enzymes, such as superoxide dismutase (SOD) and 
catalase, and antioxidant substances, such as vitamins 
and glutathione (GSH) in collaboration with glutathione 
peroxidase (GPx) and glutathione reductase (GR)[25]. 
In previous studies, the induction and/or restoration 
of these substances and enzymes, which are reduced 
by ethanol administration, appeared to ameliorate 
ALD[12,13,23,26]. Some vitamins exhibit antioxidant ac
tivity and are reduced in the ALD model[2729]. They are 
also deficient in ALD patients, although if present in 
sufficient quantities, may contribute to the prevention 
of oxidative stress[30]. Vitamin E is not only a lipophilic 
antioxidant but also may improve lipid metabolism via 
interaction with lipid accumulationrelated proteins, 
namely patatin-like phospholipase domain containing 
3 (PNPLA3) and microsomal triglyceride transfer 
protein[31]. However, several clinical studies have 
identified only partial effects of vitamin E in ALD[32,33]. 
Therefore, the induction of antioxidant enzymes may 
be more effective than vitamin supplementation in the 
prevention of ALD. 

A trend in gastronomic culture is the exclusion of 
low molecular weight phytochemicals during plant 
breeding or processing because of their toxicity, taste, 
or deteriorating color. However, phytochemicals have 
recently received attention for their physiological 
activities in mammals. Many types of phytochemicals 
abundant in fruit and vegetables are known to have 
antioxidant activity. Although research efforts have 
focused on phenolic compounds due to their direct 
scavenging activity of ROS[34,35], their direct activity 
towards endogenous ROS appears limited in mammals 
because of their relatively low concentrations in the 
bloodstream[2,36,37]. However, many types of polyphenols, 
nonphenolic phytochemicals, and antioxidantrich 
plant fractions have recently been reported to elicit 
an antioxidant defense system against liver damage 
induced by ethanol[34,35,38,39], other chemicals[4043], 
or abnormal metabolism[21,44] to reduce oxidative 
stress and cell death[34,42,43,45] and to improve lipid 
metabolism[12,16,44,46] in various organs. In addition, some 
phytochemicals change both phase Ⅰ and phase Ⅱ 
enzymes of drug metabolism, including CYP2E1[7,13,16,47]. 
Recent reports indicated that some polyphenols can 
improve epithelial cell junctions[4851], indicating a role 
for the hepatic immune response. These findings 
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suggest that phytochemicals could potentially have 
a comprehensive preventive effect on ALD. However, 
the physiological activities of phytochemicals in the 
prevention of ALD have not been well recognized. 

In this review, we discuss the physiological ac
tivities of phytochemicals and the mechanisms for 
cell injury, the regulation of antioxidant and pro-
oxidant enzyme expression, and concomitant intestinal 
permeability. Herein, “antioxidants” are defined as the 
phytochemicals that elicit or enhance the antioxidant 
defense system, regardless of their radical scavenging 
activity. Because information regarding the effects 
of antioxidants in ALD patients or animal models is 
insufficient for discussion, various oxidative stress 
models in animals and cells are included. In particular, 
the mechanisms of nonalcoholic fatty liver disease 
(NAFLD) may comprise, in part, the mechanisms of 
ALD because these two diseases likely share many 
common pathways[31]. 

MECHANISMS OF LIVER INJURY FROM 
ALCOHOL CONSUMPTION 
As a cause of oxidative stress, ROS are generated 
by prooxidant enzymes, such as CYP2E1 in hepa
tocytes[7,52,53] and NADPH oxidase (NOX) in Kupffer 
cells (liverdwelling macrophages)[25]. In addition, 
populations of intestinal bacteria that comprise the 
intestinal environment have been suggested to be 
involved in ALD via stimulation of the immune sys
tem. For example, lipopolysaccharides (LPS) derived 
from intestinal bacteria[15,24,54] activate NOXs and 
produce inflammatory cytokines[5558] in macrophages. 
Acetaldehyde increases the permeability of LPS between 
intestinal epithelial cells[15,59,60], which is also involved in 
the deterioration of ALD. Dietary polyunsaturated fatty 

acids are also thought to enhance oxidative stress[15,29] 
and are a source of prostaglandins[61]. In a previous 
study, ethanol administration increased the plasma 
prostaglandin E2 level[62], and some prostaglandins are 
thought to cause inflammation in NAFLD[61,63]. These 
data suggest that prostaglandins enhance deterioration 
of ALD; however, the influence of antioxidants on 
prostaglandins will not be detailed here.

As shown in Figure 1, oxidative stress stimulates 
intracellular events via the mitogenactivating 
protein kinase (MAPK)[64] pathway, as initiated by 
the activation of protein kinase C (PKC)[30,65,66] or the 
degradation of protein phosphatases (PPs)[67]. These 
signals activate the Kelch-like ECH-associated protein 1 
(Keap1)NFE2related factor2 (Nrf2) pathway, which 
leads to antioxidant responsive element (ARE)[45,6870]. 
However, MAPK hyperactivation also leads to cell 
death via activation of the Bax/Bcl2 pathway[71,72]. In 
addition, antioxidant enzymes have been reported to 
be induced via several intracellular pathways, such as 
the Keap1Nrf2ARE pathway[45,69,70,73] and the Sirt1 
(sirtuin-1)-FoxO3 (forkhead winged-helix box class 
O3 transcription factor)PGC1a (PPARγ coactivator
1a) pathway[45,68]. The regulation of Sirt1 and Nrf2 
levels has also been reported[45], which implies cross
talk between both pathways, whereas the activation of 
Sirt1 and resveratrol, an activator of Sirt1, have been 
reported to inhibit the DNAbinding activity of Nrf2 via 
deacetylation in vitro[74]. Taken together, substances 
that deactivate or normalize MAPKs and/or activate 
ARE or Sirt1[45,75] are potential candidates for the 
prevention of ALD, but the mechanisms are unknown.

Antioxidant enzymes and peptides
In mammals, SOD generates hydrogen peroxide, 
which is catabolized to a hydroxyl radical by catalase 
and detoxified by GSH in collaboration with GPx[25]. 
The oxidized glutathione form is recruited to GSH 
by GR with NAD(P)H[76]. Heme oxygenase1 (HO1) 
contributes to the antioxidant system because of the 
production of bilirubin as a redox substance. 

It has been suggested that the hepatic catalase level 
is negatively associated with the severity of alcoholic 
liver injury[10] and that SODs scavenge hydroxyl 
peroxides generated in the cytosol and mitochondria, 
thereby terminating autoxidation. Thus, catalase and 
SODs are essential for the antioxidant system. There 
are three isozymes of SOD in the cytosol, mitochondria, 
and extracellular matrix: CuZn-SOD, Mn-SOD, and 
extracellular SOD. SOD levels have been shown to be 
regulated by MAPK activity[77]. GSH is not an enzyme 
but a redox tripeptide that acts as a proton donor. GSH 
levels, GPx content, and/or GR content were reduced 
in rats fed ethanol diets and, in some cases, ALD 
animals[16,23,62] or under other oxidative conditions[3,78]. 
The FoxO transcriptional factor is involved in GPx and 
Sirt1 protein expression[79]. These findings indicate that 
in addition to catalase and SOD, GSH is essential for 
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Figure 1  Oxidative stress-stimulating signaling pathways. The oval with the 
gray indicates the start point; gray boxes indicate consequences; other boxes 
indicate key substances. ARE: Antioxidant responsive element; FoxO3: Forkhead 
winged-helix box class O3 transcription factor; HO-1: Heme oxygenase-1; Keap1: 
Kelch-like ECH-associated protein 1; LR: Laminin receptor; MAPK: Mitogen-
activating protein kinase; Nrf2: NF-E2-related factor-2; PGC-1α: Peroxisome 
proliferator-activated responsive element γ coactivator-1α; PKC: Protein kinase C; 
PP: Protein phosphatase; ROS: Reactive oxygen species; Sirt1: Sirtuin 1; SOD: 
Superoxide dismutase; Trx: Thioredoxin.
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reported to widen this gap[15,59]. Therefore, improving 
intercellular junctions or reducing LPS-producing 
bacteria may have a partial preventive effect on 
ALD[15].

PLANT ANTIOXIDANTS
Classification of plant antioxidants
Figure 2 shows the structures of representative anti
oxidants abundant in fruit and vegetables. Polyphenol 
is a generic name for compounds that have a mono or 
polycyclic structure with hydroxyl residues. Flavonoids, 
including anthocyanins, catechins, and flavonols, form 
one of the largest groups of polyphenols. Anthocyanins 
have a red, purple, or blue color in grapes[42], berries[34], 
seed coats[89], and root crops[37,77]. Catechins include 
epicatechin, epigallocatechin, and epigallocatechin galate 
(EGCG) and are sometimes referred to as “tannins”
[35]. Proanthocyanidins are polymers of catechins (but 
not anthocyanin despite the similarity in names); they 
are categorized as catechins and are widely abundant 
in crops, particularly tea[27,90], apples[91], and grapes[92]. 
Quercetin, kaempferol, and isorhamnetin belong to the 
flavonol group and are ubiquitous in plants. Narirutin 
and hesperidin belong to the flavanone group and are 
abundant in the albedo of citrus peel[14,23]. Resveratrol is 
categorized as a stilbenoid, a phytoalexin, and is present 
in wine[93] and grapes[42]; it has recently received 
substantial attention for its physiological functions. 
Chlorogenic acid is a caffeic acid derivative and one of 
the most widely consumed polyphenols because of its 
abundance in coffee and other plants. Alkaloids, such as 
berberine[46], are also included in the polyphenol group. 
Curcumin, a curcuminoid present in turmeric, has a 
yellow color and also belongs to polyphenols. 

Lignans, a terpenoid whose metabolites exert 
estrogenic activity in the lumen, as well as isoflavones 
and coumestans possess antioxidant activity. Sulfide 
and thiocyanate compounds are present in garlic[12,82], 
onions[47], and Brassicaceae plants[16] and are reported 
to be chemopreventive. 

PROVOCATION OF THE ANTIOXIDANT 
SYSTEM BY PLANT ANTIOXIDANTS AND 
PLANT EXTRACTS
Flavonoids
In animal models, quercetin ameliorated lipid meta
bolism and ethanolinduced liver damage by inducing 
antioxidant enzymes, increasing GSH levels, and 
reducing CYP2E1 activity[20,39]. Quercetin also inhibited 
the activity and expression of CYP2E1 in human 
hepatocytes[20,94], which was consistent with in vivo 
findings. In nonalcoholic steatohepatitis animals, 
quercetin ingestion increased hepatic catalase, 
SOD, GPx, and GR activities and the GSH level[21] 
and reduced hepatic lipid accumulation and CYP2E1 

reducing hepatic oxidative stress.
Under oxidative conditions, HO1 appears to be 

rapidly induced via the Keap1Nrf2 pathway[45,69,80,81]. 
This enzyme may also be involved in the immune 
response[55]. Furthermore, in ALD model animals, 
HO1 levels have been reported to be reduced[13,16,82]. 
Adiponectin has received recent attention because of 
its antiinflammatory functions via Sirt1 activation, 
HO1 induction, and NOX suppression in Kupffer 
cells[55]. However, the blood concentration of this 
adipokine was higher in ALD patients compared with 
controls[83] or equal to the controls in ALD animals[84], 
which suggests that adiponectin may be less effective 
against ALD than antioxidants.

Thioredoxin (Trx) is a ubiquitous scavenger of 
oxidative species. Endogenous Trx is reported to be 
reduced by ethanol ingestion; however, the levels 
can be restored by supplementation with exogenous 
Trx, which has been demonstrated to ameliorate the 
symptoms of ALD[84]. Because Trx is a peptide, it must 
be digested in the digestive system, indicating that it is 
difficult for exogenous Trx to directly scavenge hepatic 
ROS. 

Pro-oxidant enzymes
In microsomes, CYP2E1 is a phase Ⅰ enzyme of drug 
metabolism that adds a hydroxyl residue to chemicals 
to increase hydrophilia and may generate ROS[79]. 
Chronic ingestion of ethanol and other small chemicals 
increase hepatic CYP2E1. CYP2E1 induction has also 
been demonstrated in animals with NAFLD[52,85] and 
hepatic insufficiency. Insulin signaling may suppress 
CYP2E1 expression[53] via the Akt pathway but not 
the MAPK pathway[86], with subsequent expression of 
certain microRNAs[87]. 

Macrophage-like cells, including Kupffer cells, 
express NOXs and generate ROS with the consumption 
of NAD(P)H[24] to eliminate xenobiotics[25]. Many 
isoforms of NOXs have been identified, and NOX-2 is 
uniquely expressed in phagocytes. NOX expression 
was regulated via the Keap1Nrf2 pathway in a 
mouse glialneural cocultured system[88] in which 
NOX2 predominantly caused oxidative stress. In 
ALD animals, NOX2 in Kupffer cells was activated by 
LPS[55]. In addition, Kupffer cells produce inflammatory 
cytokines[13,24,55], such as tumor necrosis factor alpha 
(TNFα) and interleukin-6. Thus, the reduction of NOXs 
and inflammatory cytokines are important for ALD.

Given the gutliver axis in ALD, intestinal conditions 
play a considerable role in ALD severity, particularly 
conditions mediated by LPS[15,60]. In the large intestine 
in humans (or the cecum in animals), an enormous 
number of intestinal bacteria live and ferment 
undigested food matter, flaked epithelial cells, and 
digestive fluid[25]; some of these species generate LPS, 
which provokes the host’s immune system[15]. Small 
amounts of LPS can pass through gaps in the epithelial 
cells into the intestine. Ethanol or its metabolites are 
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expression[21,85]. A computer simulation predicted the 
involvement of quercetin in PGC1a and PNPLA3[31]. 
Furthermore, hyperoside (quercetin3Ogalactoside) 
has been reported to increase cell viability and HO1 
activity via MAPKs and ARE[95] in L02 cells.

Pigments from grapes[42], colored potatoes[77], and 
black soybean seed coats[89] that contain abundant 
anthocyanin have been reported to induce antioxidant 
enzymes via the alteration of MAPK activities in cells 
in other oxidative conditions. An anthocyanin fraction 
from bilberries appears effective in improving lipid 
metabolism via the AMP-activated protein kinase 

pathway[96]; however, its involvement in ALD has not 
been assessed. Alcoholfree red wine increased the 
blood antioxidant capacity in a human study[97], which 
suggests a preventive function of the polyphenol 
fraction in red wine against ALD. However, other 
studies have demonstrated that alcoholfree red 
wine worked with ochratoxin A to increase the 
intercellular permeability in Caco2/TC7 cells[98], and 
alcoholcontaining red wine increased hepatic and 
renal CYP2E1 expression in rats, whereas ethanol 
did not[99]. Malvidin, an anthocyanin in red wine, has 
been reported to attenuate MAPK activity, which was 
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Figure 2  Structures of representative plant antioxidants and their classification.
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promoted by LPS[64], and to enhance PP activity in RAW 
264.7 macrophage cells. An anthocyaninrich extract 
from colored potato increased MnSOD expression via 
extracellular signal regulated kinase (ERK) activation 
in HepG2 cells[77]. It has also been reported that an 
ethanolinduced acute gastric lesion was prevented by 
the ingestion of strawberry extract rich in anthocyanin 
prior to ethanol treatment via the induction of gastric 
antioxidant enzymes[34].

In animal studies, catechin and tanninrich extracts 
from pecan nut shells improved ALD symptoms by 
restoring antioxidant enzymes[35,38]. A tea extract rich 
in catechins reduced CYP2E1 expression and hepatic 
lesion via paracetamol injection[92], and a diet that 
contained EGCG improved hepatic injury; although 
there was no reduction in hepatic CYP2E1 levels[100]. 
In a clinical study, EGCGrich green tea and its extract 
also increased the blood GSH level[90]. The ingestion 
of green tea extract also restored antioxidant activity 
in the brain that had been decreased by ethanol and 
aging[28]. Furthermore, catechins have been reported 
to suppress the expression of NOX and inflammatory 
cytokines in macrophages[56], dendrocytes[57], and 
human cerebral microvascular endothelial cells 
(hCMEC)[101] as well as restore antioxidant enzymes 
in human neuroblastoma cells[102]. Catechins have 
both antioxidant and prooxidant activities. They have 
recently been reported to stimulate the 63 kDa laminin 
receptor[56,57,101,103], which ROS may initiate[104], and 
consequently to calm overactivation of the immune 
system via the inactivation of the Toll-like receptor 
(TLR) 2 and 4 pathways. TLR 4, in particular, plays a 
central role in Kupffer cell stimulation with LPS and the 
induction of ALD deterioration[57]. Dietary catechins 
may thus contribute to the impairment of ROS 
generation via LPS and the prevention of ALD.

Citrus flavonoids, narirutin, and glycosylated 
citrus flavonoids also improved ALD and reduced 
inflammatory cytokine levels[14,23].

Other phenolic antioxidants and non-phenolic 
antioxidants
Resveratrol (Figure 2) restores or induces antioxidant 
enzymes in ALD model rats[93], lung fibroblasts[105], 
and rats with spontaneous hypertension[75] and 
diabetes[44,73] via the activation of sirtuins in some 
cases. In vitro, resveratrol stimulated HO1 induction 
via the MAPKNrf2 pathway in PC12 cells[81]. Thus, 
red wine consumption is likely to be superior to 
other alcoholic beverages in the prevention of ALD. 
Resveratrol concentrations in wine may be insufficient 
to prevent ALD; however, it may be responsible for the 
“French paradox”[106]. Resveratrol has been reported 
to activate monocytes and produce inflammatory 
cytokines in vitro, which indicates that provoking the 
immune system with resveratrol may not prevent 
the deterioration of ALD[107]. Thus, excessive red wine 
consumption should not be recommended. Polydatin, 

a resveratrol glycoside, stimulates Sirt1 and Nrf2 and 
induces antioxidant enzymes in glomerular cells[45].

Chlorogenic acid (Figure 2) and caffeic acid restored 
the hepatic activity of SOD and GPx and hepatic injuries 
promoted by methamphetamine injection for 7 d[43].

Honokiol, identified in Magnolia officinalis[19], im
proved ALD, restored the hepatic GSH content and 
SOD activity, and reduced inflammatory cytokine 
levels in an ALD animal model[19].

Hispidin, a fungal polyphenol with PKCinhibitory 
activity, increased HO1 and catalase activities in H9c2 
cardiomyoblast cells[65]. 

Berberine is a benzyl isoquinoline alkaloid in the 
Coptis genus that has been reported to reduce ALD 
symptoms, increase levels of GSH and PGC1a, and 
normalize CYP2E1 expression in the livers of animals 
fed an alcoholcontaining diet[46].

The sulfurcontaining compounds (Figure 2) diallyl 
disulfide and garlic oil have been reported to improve 
alcoholic hepatic injury[12] by increasing HO1 levels 
via the Nrf2 pathway and increasing the GSH level 
in vivo[82] and in vitro[94]. A similar preventive effect 
has also been identified in diallyl sulfide treatment in 
astrocytes[30]. Sulforaphane has been reported to act 
as an inducer of HO1[16], which suggests that these 
compounds may be useful in the treatment of ALD. 
In addition to restoring HO1 levels, sulforaphane 
improved hepatic lipid accumulation in ALD animals[16]. 
The consumption of onion powder, which is rich in 
sulfide compounds and flavonols, has also been 
reported to reduce hepatic CYP2E1 levels in normal 
rats[47].

Oleanolic acid, a triterpenoid, restored antioxi
dant enzymes and increased nucleic Nrf2 levels 
and improved ALD[13]. Sesamin (Figure 2) is a well
characterized terpenoid in sesame seeds that may 
contribute to the reduction of fatty liver by promoting 
βoxidation of fatty acids and inducing hepatic aldehyde 
dehydrogenase[108,109]. Maslinic acid, a triterpenoid rich 
in basil, brown mustard, and other plants, has been 
reported to protect hepatic injury via acute ethanol 
toxicity[62]. These data suggest that some types of 
terpenoids may improve the symptoms of ALD.

Curcumin (Figure 2), but not resveratrol, has 
been reported to restore hepatic antioxidant enzymes 
reduced by aflatoxin in rats[110]. Curcumin also in
creased antioxidant enzymes as well as Nrf2 and HO1 
levels in quails under heat stress[111]. 

Mangiferin, identified in mango[112], is a xanthine 
derivative that has been reported to restore pulmonic 
and hepatic antioxidant enzyme levels reduced by 
benzo(a)pyrene in mice[3].

Plant extracts that contain significant amounts of 
antioxidants also prevent oxidative damage in various 
other organs. An extract from black tea[27] improved 
ALD symptoms in rats. The extracts from apples[91], 
Amorphophallus commutatus[40], cinnamon[113], and 
hibiscus[22,41] partially normalized hepatic oxidative 
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stress induced by chemical toxins.

Improvement of fatty acid accumulation
Alcoholic fatty liver is a predictive symptom of ALD, 
and hepatic inflammation is also present in non-alcohol 
steatohepatitic animals[21,41,52]. Moreover, a computer 
simulation predicted many common pathways between 
alcoholic fatty liver and NAFLD that were associated with 
inflammation, lipid metabolism, and some immunity[31]. 
These data suggest that a reduction in lipids in the liver 
may lead to an improvement in liver injuries[16,19,100]. 
In addition to the induction of antioxidant enzymes, 
some plant antioxidants have recently been reported 
to improve lipid metabolism and reduce hepatic lipid 
accumulation[19,39,46], which may also contribute to the 
amelioration of ALD.

Improvement of intestinal permeability by plant 
antioxidants and plant extracts
Antioxidants, such as quercetin, resveratrol, EGCG, 
and naringenin, prevent the downregulation of junc-
tion proteins, namely, Zo-1 and/or Occludins, and 
consequently enhance intercellular barrier functions 
in vitro[49] and in vivo[50]. In contrast, EGCG has been 
reported to disturb the barrier function of hepatic 
epithelial cells[114] because of ROSinduced ERK 
activation. In addition to intestinal cell models, cocoa 
polyphenol extract improved barrier functions disturbed 
by a high glucose condition in retinal pigment epithelium 
cells[51]. Cocoa polyphenol extract and resveratrol also 
attenuated the permeability of renal cell junctions 
in vitro[48,115], and EGCG increased the adhesion of 
hCMEC[101]. The tightness of cellular junctions regulated 
by antioxidants may be involved in the severity of ALD 
and should be elucidated.

Mechanisms for ALD prevention via plant antioxidants
Cellular oxidative stress is caused by many factors, such 
as exposure to humoral factors[22,75], enzymatic generation 
of ROS[79,24], metabolites of chemicals[41,91,102,116], or 
the mitochondrial respiratory chain[39]. Two major 
mechanisms may be proposed for hepatic injury pre-
vention via oxidation: (1) the impairment of oxidative 
signaling that leads to cell death; and (2) the activation of 
the Keap1Nrf2 pathway, which results in the induction of 
antioxidant enzymes.

As a leading mechanism, “preconditioning” in 
ischemiareperfusion models has been proposed to 
alleviate tissue damage. In ischemiareperfusion models, 
excessive ROS are present following reperfusion, 
whereas slight ischemicreperfusion pretreatment to 
tissues or cells alters MAPK activities and interferes with 
cellular damage[117119]. It has been reported that ROS 
stimulate PKC, MAPKs, and subsequent events that 
lead to cell death[89] or induce an antioxidant system 
(Figure 1). MAPKs appear to activate both PPs[66,120] and 
Nrf2[69]. Once activated, PPs may deactivate not only 
MAPKs but also other phosphorylated proteins related 

to the MAPK signaling pathways[66], which may lead 
to a comprehensive impairment of MAPK signaling. 
Despite their antioxidant activity, polyphenols also have 
a slight prooxidant activity[72,121]. This impact may 
increase MAPK and PP activity[103] or PP stability[120] prior 
to crucial oxidative stress by ROS. At minimum, PPs 
activated by antioxidants may partially inhibit MAPK 
pathway activation. Following pretreatment with plant 
antioxidants, the hyperactivation of MAPKs by injuring 
stimuli appears to decrease[22,41,48,64]. These findings 
may support the preconditioning hypothesis[1]. Taken 
together, ROS and/or MAPK are key regulators of both 
cell injury and antioxidant enzyme induction. 

In addition, this mechanism can explain the effects 
of antioxidants on the barrier functions of epithelial cells. 
Junction proteins and the intercellular barrier function 
are disturbed by oxidative stress[48,114]. Antioxidants 
have been reported to exhibit minimal activity to 
generate ROS[114,121] and subsequently activate MAPKs, 
which disturbs barrier function in vitro[114]. However, 
antioxidant pretreatment may diminish excessive 
oxidative stress, as previously discussed, which leads to 
the protection of barrier function[49,50].

It has been suggested that ROS (and electrophilic 
reagents) directly activate the Keap1Nrf2 pathway. 
Keap1 is a sensor of intracellular oxidative stress and 
couples with Nrf2[122]. Once Keap1 is oxidized, Nrf2 
is released, moves to the nuclei, and activates ARE. 
Regarding the relationship between chemical structures 
and antioxidant activities, it has been suggested that 
electrophilic compounds, such as flavonoids, curcumin, 
and thiocyanaterelated compounds, stimulate the 
Keap1Nrf2 pathway[122]. Satoh et al[123] proposed the 
importance of ortho or parapositions of hydroxyl 
residues in the benzene structure, which result in 
hydroquinone and catechol, respectively (Figure 2), 
because of their electrophilic residue. Some flavonoid 
compounds have a catechol structure (Figure 2), which 
indicates an interaction between flavonoids and Keap1. 
These results may support the hypothesis proposed by 
Satoh et al[123].

This hypothesis suggests that antioxidants directly 
activate Keap1. However, some antioxidants appear to 
induce antioxidant enzymes via MAPK activation despite 
the upper proteins of Keap1 (Figure 1), as demonstrated 
with specific inhibitors of MAPKs that diminished the 
induction[77] or activation of Nrf2[81]. Antioxidants may 
contribute to the induction of antioxidant enzymes via 
MAPK pathways rather than through direct activation of 
Keap1. Moreover, resveratrol has a resorcinol structure 
rather than a catechol structure. Resorcinol has less 
electrophilic activity than catechol[123]; however, it 
appears to stimulate Nrf2[122]. This mechanism must 
also be elucidated.

In in vivo studies, the ingestion of antioxidants 
induces (or tends to induce) antioxidant enzymes in the 
lung[3], thymus[124], brain[28,125], and kidney[45], despite 
very low concentrations in the bloodstream[2,36,37]. 
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These reports imply that there is an intermediate 
signal by polyphenols, such as nerve and/or humoral 
pathways, rather than direct stimulation of cells or 
organs; they may also be explained by remote ischemic 
preconditioning[117]. This preconditioning suggests that 
some types of stimuli can regulate MAPK activities in 
remote organs.

PERSPECTIVE
Even ubiquitous plant antioxidants, such as antho
cyanins and flavonols, appear to have many phy
siological activities, indicating that botanical substances 
can provoke the antioxidant system. Apart from 
oxidative stress via lipid accumulation, lipids also 
appear to be a central cause of ALD. For example, 
prostaglandins, which are initiated by phospholipase 
(PL) A2 and activated by cyclooxygenases[61], are 
involved in inflammatory events, and PNPLA3 has 
been suggested to have PLA2 activity and to regulate 
hepatic lipid accumulation[63]. Therefore, the regulation 
of prostaglandins and/or expression of their related 
proteins may be critical for the improvement of ALD.

Fruits and vegetables are great sources of anti
oxidants as well as dietary fibers (DFs)[126], which were 
once considered to be unwanted materials or non
nutrients. It is now well established that the ingestion 
of DFs improves lipid metabolism and reduces hepatic 
lipids[127,128]. Some types of DFs, particularly water
soluble fibers, promote the excretion of lipids into feces 
and the synthesis of shortchain fatty acids (SCFA) in 

the intestine[126,129], which are proposed as prebiotics. 
Oral ingestion of butyrate, a type of SCFA produced 
from DF, promotes junction protein expression and an 
increase in intestinal barrier function[130]. These findings 
also suggest the potential of DFs in the prevention of 
ALD. Thus, intact fruits and vegetables, including both 
antioxidants and DF, are worthy of consideration for 
ALD prevention.

Mammals often intrinsically treat plant chemicals 
as xenobiotics and have developed metabolic systems 
against phytochemicals[1]. The human body evolved 
with environmental factors, including phytochemicals 
and DFs. The data reviewed here imply the necessity 
for the unwanted materials to elicit an accomplished 
defense system, a barrier function in the intestine and 
a chemical metabolizing system in the intestine, and 
liver against xenobiotic substances.

However, most of these data are derived from 
animal and cell studies. In these studies, antioxidants 
may, in some cases, be overdosed[75], which makes 
it difficult to justify their effectiveness in humans, 
particularly ALD patients who may have impaired 
liver functions[11]. As previously reported, vitamin E 
supplementation only partially improved ALD[32,33] 
despite its effectiveness in cell studies. Thus, it is 
important for future studies to accumulate clinical data 
regarding the relationships among ALD, antioxidants, 
and antioxidant enzymes. 

In conclusion, plants have a potential role in the 
prevention of ALD (Figure 3). Although most individuals 
are aware that abstinence from alcohol is the most 
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Figure 3  Potential multiple effects of crop components on alcoholic liver disease. LPS: Lipopolysaccharide; ROS: Reactive oxygen species.
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effective way to prevent ALD, it is recognized that 
this is not easy. Therefore, it is important to improve 
our defense system against ALD. Many types of plant 
antioxidants with electrophilic activity may activate 
antioxidant enzymes or peptides under oxidative 
conditions and alleviate ALD, which may occur via a 
mechanism that is somewhat similar to preconditioning 
in ischemiareperfusion models[117119]. The antioxidants 
reviewed here are common in vegetables and fruits, 
which can be easily consumed. Moreover, plants contain 
abundant amounts of DF and vitamins. Vitamins are 
wasted by binge drinking[27,28], and DFs can improve 
lipid metabolism and intestinal conditions[127,128] in 
mammals. Therefore, nonprocessed food materials 
may have considerable intrinsic potential. Clearly, 
ALD patients should be administered appropriate 
medications to facilitate recovery from crucial damage. 
However, fresh vegetables and fruits may be more 
effective than processed foods in comprehensively 
preventing hepatic damage induced by alcohol. 
Antioxidants commonly taste bitter, and DFs appear to 
exhibit a bad texture; thus, they have been eliminated 
from foods over centuries. However, humans have 
evolved alongside phytochemicals and DFs to overcome 
these issues. Thus, an approach that elicits the intrinsic 
potential of the human body to prevent ALD and other 
lifestylerelated disorders should be reconsidered.
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