


RESEARCH Open Access

Emergence of multi-acaricide resistant
Rhipicephalus ticks and its implication on
chemical tick control in Uganda
Patrick Vudriko1,2,3, James Okwee-Acai1, Dickson Stuart Tayebwa2, Joseph Byaruhanga2, Steven Kakooza2,
Edward Wampande1,2, Robert Omara1, Jeanne Bukeka Muhindo1,4, Robert Tweyongyere1,2, David Okello Owiny1,5,
Takeshi Hatta6,7, Naotoshi Tsuji6,7, Rika Umemiya-Shirafuji3, Xuenan Xuan3, Masaharu Kanameda2,8,
Kozo Fujisaki6 and Hiroshi Suzuki3*

Abstract

Background: Acaricide failure has been on the rise in the western and central cattle corridor of Uganda. In this
study, we identified the tick species associated with acaricide failure and determined their susceptibility to various
acaricide molecules used for tick control in Uganda.

Methods: In this cross sectional study, tick samples were collected and identified to species level from 54
purposively selected farms (from 17 districts) that mostly had a history of acaricide failure. Larval packet test was
used to screen 31 tick populations from 30 farms for susceptibility at discriminating dose (DD) and 2 × DD of five
panels of commercial acaricide molecules belonging to the following classes; amidine, synthetic pyrethroid (SP),
organophosphate (OP) and OP-SP co-formulations (COF). Resistance was assessed based on World Health
Organization criteria for screening insecticide resistance.

Results: Of the 1357 ticks identified, Rhipicephalus (Rhipicephalus) appendiculatus and Rhipicephalus (Boophilus)
decoloratus were the major (95.6 %) tick species in farms sampled. Resistance against SP was detected in 90.0 %
(27/30) of the tick populations tested. Worryingly, 60.0 % (18/30) and 63.0 % (19/30) of the above ticks were super
resistant (0 % mortality) against 2 × DD cypermethrin and deltamethrin, respectively. Resistance was also detected
against COF (43.3 %), OP chlorfenvinphos (13.3 %) and amitraz (12.9 %). In two years, 74.1 % (20/27) of the farms
had used two to three acaricide molecules, and 55.6 % (15/27) rotated the molecules wrongly. Multi-acaricide
resistance (at least 2 molecules) was detected in 55.2 % (16/29) of the resistant Rhipicephalus ticks and significantly
associated with R. decoloratus (p = 0.0133), use of both SP and COF in the last 2 years (p < 0.001) and Kiruhura district
(p = 0.0339). Despite emergence of amitraz resistance in the greater Bushenyi area, it was the most efficacious molecule
against SP and COF resistant ticks.

Conclusion: This study is the first to report emergence of super SP resistant and multi-acaricide resistant Rhipicephalus
ticks in Uganda. Amitraz was the best acaricide against SP and COF resistant ticks. However, in the absence of technical
interventions, farmer-led solutions aimed at troubleshooting for efficacy of multitude of acaricides at their disposal are
expected to potentially cause negative collateral effects on future chemical tick control options, animal welfare and
public health.
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Background
Ticks are one of the leading vectors of diseases of economic
importance to the livestock industry in Africa [1–3]. Tick-
borne diseases (TBD) mainly theileriosis/East Coast fever
(ECF), babesiosis and anaplasmosis present serious con-
straints to productivity of especially exotic cattle and their
crosses. In Uganda, over 30 % of calf crop is lost to TBD
[4]. The above diseases also account for nearly 90 % of total
disease control costs and over 60 % of total farm inputs [5].
To address tick challenge, commercial cattle farmers rely
extensively on acaricides for chemical control of ticks. This
has created a huge demand and market for acaricides in
Uganda. The liberalization of the veterinary drug industry
in the country has made acaricides even more accessible to
farmers [6]. Because of limited control, cases of irrational
use of acaricides by farmers have been widely reported
[6–8]. Wrong dilution, application methods and in-
creased acaricide pressure are amongst factors that ac-
celerate development of acaricide resistance [9, 10].
Acaricide resistance was first reported in Uganda in
1970 against organochlorine toxaphene by Rhipicepha-
lus (Boophilus) decoloratus and Rhipicephalus evertsi
[11]. The lack of tick acaricide resistance monitoring
system since early 1990’s to date implies that the per-
formance of various molecules on the Ugandan market
are unknown. However, the increased cases of farmers’
complaints on acaricide failure, especially in western
and central cattle corridors, raises serious suspicion of
possible emergence of acaricide resistant ticks in the
country. In the rest of the world, tick resistance to vari-
ous classes of acaricides has been extensively reported
[10]. Most of the studies reported acaricide resistance
against one class of molecules. However, cases of multiple
acaricide resistance by Rhipicephalus (Boophilus) micro-
plus have been reported in Mexico [12]. Several methods
have been proposed for detection of acaricide resistance.
Larval packet test (LPT), larval tarsal test (LTT) and adult
immersion test (AIT) are among the common tests used
[13–16]. However, the limitations associated with the
above tests such as high labour and time requirements
have resulted in the introduction of genomic based ap-
proaches [16–19]. Nevertheless, the high costs of genomic
approaches leaves LPT as the most used tool for routine
acaricide resistance screening. This is further consolidated
by the greater agreement between LPT and genomic tools
[16, 20]. The current study established the common spe-
cies of ticks associated with acaricide failure, acaricide use
practices and determined the acaricide resistance profile
of the ticks using LPT.

Methods
Study area
The primary study area for this research were cattle farms
in western and central Uganda that were experiencing

acaricide failure between December 2013 and January
2015. Western and central Uganda have the highest popu-
lation of exotic cattle (especially dairy breeds) and their
crosses [21]. Due to the susceptibility of the improved
breeds, farmers have to rely on extensive use of acaricides
for tick control and prevention of TBD. A total of 14 dis-
tricts from central and western Uganda were included in
this study. They were identified during an earlier investi-
gation of complaints of acaricide failure by the National
Drug Authority of Uganda and our research team. Thus,
the farms from central (16 farms) and western (34 farms)
Uganda were purposively sampled based on history of
acaricide failure reported to the respective district veterin-
ary office and animal health workers. However, 4 add-
itional samples were obtained from 1 district in the north
(Gulu) and 2 districts in the eastern (Serere and Mbale)
parts of Uganda. The sample from Gulu was collected
from cattle in the abattoir to establish possible spread of
resistant ticks through cattle trade. The tick samples from
Mbale were collected electively for purposes of finding a
reference susceptible tick. Overall ticks were collected
from 54 study sites designated as farms in this study
(Additional file 1: Figure S1).

Tick collection
Ticks were collected from 6 to 20 randomly sampled
cattle per farm although dogs were also included for tick
collection in farms that had dogs. Ticks were collected
from goats and sheep on one farm in Kampala. Cattle,
goats and sheep were restrained and inspected for ticks
in the various predilection sites. Dogs on the other hand
were restrained by the owner before tick samples were
picked. Both engorged and semi-engorged ticks from
each farm were carefully picked and put in perforated
labelled sample bottles and transported to the Central
Diagnostic laboratory (CDL) at the College of Veterinary
Medicine, Animal Resources and Biosecurity (COVAB),
Makerere University for taxonomic identification, hatch-
ing and acaricide efficacy assays.

Taxonomic identification of tick samples
Ticks were identified to species level based on mor-
phological features described by Walker et al. [22].
For each farm, identified ticks were categorized based
on their species to determine the dominant species
associated with acaricide failure at farm and district
levels. The engorged female ticks were immediately
transferred into individual tubes and incubated at
27 ± 1 °C and 80 % relative humidity for oviposition.
After hatching, the larvae were kept in the incubator
until they were 18 days old and used for acaricide ef-
ficacy assays.
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Acaricides used for tick resistance assay
Commercial acaricide formulations that represented all
the classes of acaricide on Ugandan market were pur-
chased from the local importers and used for LPT. They
were coded as; A4 (12.5 % amitraz, Kenya), SP3 (10 %,
α-cypermethrin, Kenya), SP10 (5 %, deltamethrin,
Tunisia), OP (100 %, chlorfenvinphos, Italy), COF1
(co-formulation, 30 % chlorfenvinphos and 3 % α-
cypermethrin, Italy). The commercial (brand) names
of the acaricides used were coded for anonymity to
avoid any misinterpretation as promotion or demo-
tion of such products based on their efficacy result.

Tick bioassays for acaricide efficacy
A total of 31 tick populations from 30 farms were tested
for acaricide susceptibility. For logistical reasons, we
adopted the method proposed for insecticide resistance
testing by World Health Organization (WHO) [23]. The
manufacturers recommended concentration was consid-
ered as the diagnostic/discriminating dose (DD) for all
the chemicals. However, one additional dose level, which
was twice the above dose (2 × DD) was also applied. The
diluent used for all the acaricides was trichloroethylene
and olive oil mixed in a ratio of 2:1 [24]. For amitraz,
the method by Miller et al. [25] was used. Briefly,
0.25 mg/ml (DD) and 0.5 mg/ml (2 × DD) commercial
amitraz were prepared using the diluent. For cypermethrin
and deltamethrin, 0.05 mg/ml (DD) and 0.1 mg/ml (2 ×
DD) respectively were prepared. For OP-chlorfenvinphos
0.5 mg/ml (DD) and 1 mg/ml (2 × DD) were prepared for
the bioassays. The concentration of the coformulation
prepared were 0.3:0.03 mg/ml (DD) and 0.6:0.06 mg/ml
(2 × DD).

The choice of substrate used for impregnation of the che-
micals was based on Food and Agriculture Organization
(FAO) [24] recommendation. Filter paper (Whatman No.1,
Whatman, Madstone, United Kingdom) was used as a sub-
strate for cypermethrin, deltamethrin, chlorfenvinphos and
co-formulated acaricide. Nylon fabric was used for amitraz.
The substrates were labelled with pencil and impregnated
with 0.7 ml of the corresponding acaricide solution pre-
pared. Trichloroethylene was evaporated in a fume hood
for 2 hours. Each impregnated filter paper or nylon fabric
was folded into a packet and loaded with, on average, 60
larvae from the same farm and same species. The packets
were then secured with alligator clips and incubated at 29 ±
1 °C and 80 % relative humidity for 24 hours. Each experi-
ment was carried out in duplicate. In all the assays, contam-
ination was avoided by starting every experiment with the
negative control followed by the lower concentration and
changing gloves between different acaricide molecules. In
the absence of laboratory reference susceptible Rhipicepha-
lus ticks in the country, Haemaphysalis leachi and
Amblyoma variegatum larvae that were 100 % susceptible

to all the acaricides were taken as reference ticks for pheno-
typic acaricide resistance assay. The reliability of this ap-
proach was later verified using 6 populations of susceptible
R. appendiculatus and R. decoloratus reference ticks col-
lected from low acaricide pressure farms in Adjumani
district-north western Uganda (Unpublished data).

After 24 hours, the packets were removed in the order
in which they were loaded in the incubator. Three inde-
pendent enumerators who were previously trained on
identifying dead and live ticks using a magnifying lens
and stereo-microscope counted the number of ticks that
died and those that were alive for each set of experi-
ments. Mortalities were expressed as percentage of the
total number of larvae exposed to the acaricide. There
were no mortalities recorded in the control groups that
were exposed to only the diluent.

Data on acaricide application practices
A semi-structured interview with farmers and/or farm
workers was carried out from 52 of the 54 farms since
data could not be retrieved from the two farms. The data
captured included breeds of cattle reared, sequence of
acaricide brands used in the last two years, method of
acaricide application, dilution of acaricide(s) used, appli-
cation interval at the time of the study and mixing of
two or more acaricide formulations at one time. The
data on sequence and brands of acaricides were used to
determine the correctness of rotation from one molecule
to another. Rotation was considered wrong if a farmer
changed acaricide brand within the same molecule and
changing from COF to SP following acaricide failure.
However, a change from synthetic pyrethroid (SP)
to co-formulation (COF) and organophosphate (OP)
molecule following acaricide failure to SP was also con-
sidered a wrong rotation due to the possible cross-
resistance between SP and OP [10, 26, 27]. The farm
data on acaricide usage was also used to establish the
brand preference for the different acaricide molecules
on the market. The registration status of various brands
of acaricides stated by the farmers was either established
from National Drug Authority or verified using the
National Drug Authority’s Veterinary Register (http://
www.nda.or.ug/docs/Vet_List.pdf ).

Data analysis
The mortality data for the 31 tick populations tested
were recorded in MS excel and mean mortality and
standard error determined. The WHO [23] percentage
mortality cut-off values for susceptibility and resistance
against insecticides determined using DD were used to
categorize the mortality data. Ticks that showed at least
80 % mortality were considered susceptible while those
that showed less than 80 % mortality against a given
chemical were considered resistant. The above data
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together with the qualitative data on acaricide use was
analysed using SPSS version 21 (IBM SPSS Statistics for
Windows, Version 21.0. Armonk, NY: IBM Corp.). Pear-
son chi square analysis was done with MedCalc for Win-
dows, version 12.5 (MedCalc Software, Ostend, Belgium)
to determine the factors associated with multiple acari-
cide resistance at 95 % confidence and p value ≤0.05 was
considered statistically significant.

Ethical considerations
The study was approved by the institutional review
board (No. VAB/REC/15/104) of the College of Veterinary
Medicine, Animal Resources and Biosecurity, Makerere
University. To ensure biosecurity of ticks, all experiments
were carried out under strict in-house procedure for
avoiding escape of larvae. All materials used were either
autoclaved or soaked in hot water at 99 °C. Larvae that
were kept for further molecular studies were preserved in
70 % ethanol. The commercial (brand) names of all the
acaricides were coded to ensure confidentiality.

Results
Farm characteristics and tick species identified
Of the 54 cattle farms from which ticks were collected,
83.3 % (45/54) kept crosses of exotic cattle and 9/54 had
only local cattle as the main livestock enterprise. Up to
90.4 % (47/52) of the farms used hand spray for acaricide

application while only 3.8 % (2/52) used plunge dip and
another 1.9 % (1/52) used spray race. Complaint of
acaricide failure was reported in 94.4 % (51/54) of the
farms that were all located in central and western
Uganda. A total of 1357 ticks were identified from the
54 study farms. Rhipicephalus ticks accounted for 95.6 %
(1297/1357) of the tick populations although A.variega-
tum and H. leachi constituted 3.5 % (48/1357) and 0.9 %
(12/1357), respectively. Amongst the Rhipicephalus,
55.1 % (715/1297) were the one host ticks R. decoloratus
compared to 44.9 % (582/1297) three host tick Rhipice-
phalus appendiculatus. On the other hand, 70.8 % (34/
48) of the A. variegatum ticks were from eastern Uganda
(Table 1). Only one out of the 12 H. leachi was collected
on cattle, the rest were from dogs. No Rhipicephalus tick
was found on dogs. For the 51 farms that had com-
plaints of acaricide failure, 98.0 % (1257/1283) of the
ticks belonged to the genus Rhipicephalus. Rhipicephalus
(Boophilus) decolortus were 55.7 % (714/1257) and
42.3 % (543/1257) were R. appendiculatus. A. variega-
tum formed only 1.1 % (14/1257) of the ticks from the
51 farms.

Acaricide molecules and brand preferences by farmers
The veterinary drug register showed that a total of 25
commercial brands of acaricides had been marketed in
Uganda. Synthetic pyrethroids (SP1-SP15) constituted

Table 1 Species of ticks identified from the various study areas

Number and frequency (%) per district

R. appendiculatus R. decoloratus A. variegatum H. leachi

Region District No.farms No. % No. % No. % No. % Total

Central Kampala 1 17 100.0 0 0.0 0 0.0 0 0.0 17

Kiboga 1 6 60.0 4 40.0 0 0.0 0 0.0 10

Kyankwanzi 1 1 9.1 4 36.4 2 18.2 4 36.4 11

Mpigi 1 30 100.0 0 0.0 0 0.0 0 0.0 30

Mubende 1 0 0.0 35 100.0 0 0.0 0 0.0 35

Nakasongola 1 15 48.4 9 29.0 7 22.6 0 0.0 31

Sembabule 7 79 73.1 29 26.9 0 0.0 0 0.0 108

Wakiso 3 31 52.5 28 47.5 0 0.0 0 0.0 59

Mbale 2 1 2.9 1 2.9 33 94.3 0 0.0 35

East Serere 1 0 0.0 13 92.9 1 7.1 0 0.0 14

North Gulu 1 38 97.4 0 0.0 1 2.6 0 0.0 39

West Bushenyi 4 3 0.9 347 99.1 0 0.0 0 0.0 350

Kiruhura 12 28 17.8 121 77.1 0 0.0 8 5.1 157

Mbarara 6 96 61.5 56 35.9 4 2.6 0 0.0 156

Mitoma 3 20 29.4 48 70.6 0 0.0 0 0.0 68

Rukungiri 8 217 95.6 10 4.4 0 0.0 0 0.0 227

Sheema 1 0 0.0 10 100.0 0 0.0 0 0.0 10

Total 17 54 582 42.9 715 52.7 48 3.5 12 0.9 1357
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60.0 % (15/25) of the total commercial brands marketed,
followed by amitraz (A1-A7 brands) 28.0 % (7/25), co-
formulation (COF1-COF2) 8.0 % (2/25) and only one
brand of mono-formulated organophosphate was regis-
tered. However, 68.0 % (17/25) of the commercial brands
of acaricide registered were found to have been used in
the study farms. Overall, amitraz accounted for 36.9 %
(48/130) of the total acaricide formulations used for tick
control followed by COF 30.0 % (39/130), SP 27.7 % (36/
130) and mono-formulated OP 5.4 % (7/130) being the
least used class of acaricide. Within the same molecule,
clear brand preferences were recorded. For example two

brands of amitraz (A3 and A4), four brands of SP (SP1,
SP2, SP3 and SP13) and 1 brand of COF (COF1) were
preferred by 75.0 % (36/48), 69.4 % (25/36) and 71.8 %
(28/39) of the farmers, respectively. The majority of the
farmers (81.3 %, n = 48) used at least two classes of
acaricides within the last 2 years. Acaricide registration
pattern showed that the rapid influx of different acari-
cide brands began in 1997 and its climax was attained in
2007. Between 1997 and 1998, all the three classes of
acaricides (amidine, SP and OP) were on the Ugandan
market suggesting that they have been in use for over
16 years in Uganda (Table 2).

Table 2 Acaricide molecules registered in Uganda and report of their use by the farmers

Brand
names,
total
number
and %
freq.

Generic name Dilution
(acaricide
(ml: water
(liters))

Concentration
(%)

Freq. of
use by
farmers
in study
area

%
within
class

Overall
%

Year
licensed
by NDA

Classification

Amidine A1 Amitraz 2:1 12.5 1 2.1 0.8 2000

A2 Amitraz 2:1 12.5 8 16.7 6.2 2001

A3 Amitraz 2:1 12.5 25 52.1 19.2 1998

A4 Amitraz 2:1 12.5 11 22.9 8.5 1997

A5 Amitraz 2:1 12.5 3 6.3 2.3 1997

A6 Amitraz 2:1 12.5 0 0.0 0.0 1998

A7 Amitraz 2:1 12.5 0 0.0 0.0 2007

Sub-total 7 (28.0) 48 100.0 36.9

Synthetic Pyrethroid SP1 α-Cypermethrin 1:1 5.0 8 22.2 6.2 2002

SP2 α-Cypermethrin 1:1 5.0 5 13.9 3.8 1998

SP3 α-Cypermethrin 1:2 10.0 7 19.4 5.4 2009

SP4 α-Cypermethrin 1:1 7.0 3 8.3 2.3 2011

SP5 Cypermethrin 1:1 10.0 1 2.8 0.8 1998

SP6 Cypermethrin 1:1 10.0 0 0.0 0.0 1998

SP7 Cypermethrin 1:1 15.0 0 0.0 0.0 2007

SP8 Cypermethrin 1:1 10.0 0 0.0 0.0 2005

SP9a Deltamethrin 1:1 5.0 2 5.6 1.5 -

SP10 Deltamethrin 1:1 5.0 4 11.1 3.1 2007

SP11 Deltamethrin 1:1 5.0 0 0.0 0.0 -

SP12b Flumethrin - - 0 0.0 0.0 1997

SP13 Flumethrin 1:1 2.0 5 13.9 3.8 1997

SP14 Flumethrin 1:1 2.0 0 0.0 0.0 2010

SP15 Cyhalothrin 1:1 5.0 1 2.8 0.8 2013

Sub-total 15 (60.0) 36 100.0 27.7

Organophosphate OP (1(4)) Chlorfenvinphos 1:2 100 7 100.0 5.4 1997

Co-formulation COF1 Chlorfenvinphos + α-cypermethrin 1:2 30:3 28 71.8 21.5 2004

COF2 Chlorpyriphos + Cypermethrin 1:2 50:5 11 28.2 8.5 2013

Sub-total 2 (8.0) 39 100.0 30.0

Total 25 (100) 130 100
aderegistered, bpour-on, (-) No information’
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Strength variation of SP acaricides sold on the Ugandan
market
As shown in Table 2, all (100 %) of the amitraz brands
available on the market had a concentration of 12.5 %
(wt/vol.). However, 13/15 of the brands of synthetic py-
rethroids licensed as emulsified concentrates had con-
centrations ranging from 2 to 15 %. The 38.5 % (5/13) of
synthetic pyrethroid brands were 5 % (wt/vol.) followed
by 10 % wt.vol (4/13), 2 % wt/vol. (2/13), 7 % wt/vol
(1/13) and 15 % wt/vol (1/15). Moreover, aside from one
molecule, the rest were prescribed in a dilution ratio of
acaricide to water of 1 ml: 1liter, giving a wide concen-
tration range for chemical tick control in Uganda. Simi-
larly, the two co-formulations on the market had a wide
concentration range despite the same dilution ratio of
acaricide to water of 1:2 (Table 2).

Susceptibility of tick larvae against the various molecules
used
The percentage mortality of larvae against the different
acaricides used in the bioassay at DD and 2 × DD is
shown in Table 3. Based on the WHO criteria, 93.5 %
(29/31) of the tick populations tested had resistance to
at least one class of acaricide molecule. Acaricide resist-
ance was detected in Rhipicephalus ticks only.

Resistance to synthetic pyrethroids
At DD, 90.0 % (27/30) of the ticks tested were resistant
to both cypermethrin and deltamethrin. Doubling the
concentration (2 × DD) of both chemicals did not cause
any significant increase in mortality of the above ticks
since 86.7 % (26/30) remained resistant (Fig. 1). More-
over at 2 × DD, 60.0 % (18/30) and 63.3 % (19/30) were
super resistant (0 % mortality) against cypermethrin and
deltamethrin, respectively. Of major concern was the
fact that the R. appendiculatus collected from cattle in
Gulu abattoir (northern region) was among the super re-
sistant ticks (Table 3). Information gathered from the abat-
toir indicated that cattle from which the R. appendiculatus
ticks were collected had originated from central Uganda.
On the other hand, both A.variegatum from Gulu and H.
leachi from Kiruhura districts were 100 % susceptible at
DD for cypermethrin and deltamethrin.

Resistance to organophosphate
Mono-formulated OP (chlorfenvinphos) at DD was
efficacious in 86.7 % (26/30) of tick populations
screened. However, 13.3 % (4/30) of the one host
tick R. decoloratus were resistant to DD of chlorfen-
vinphos (Fig. 1). The four tick populations that were
resistant were collected from Wakiso, Mbarara and
Kiruhura districts.

Resistance to co-formulation
At DD of co-formulation, resistance was detected in
43.3 % (13/30) of the tick populations tested. Interest-
ingly, even at 2 × DD, the co-formulated acaricide could
not provide the level of effectiveness that was shown by
mono-formulated chlorfenvinphos at DD since 23 % (7/
30) tick populations tested remained resistant (Fig. 1).
Of the 13 Rhipicephalus tick populations that were
resistant to co-formulation, 76.9 % (10/13) were R.
decoloratus.

Resistance to amitraz
At the DD only 12.9 % (4/31) of the tick populations
tested had amitraz resistant Rhipicephalus ticks with
mortalities ranging from 15.4 to 68.1 %. However, in-
creasing the dose of amitraz to 2 × DD did not result
into commensurate level of mortality. Three of the ami-
traz resistant tick populations were R. decoloratus from
the greater Bushenyi area (Bushenyi and Mitoma district).
One amitraz resistant R. appendiculatus tick population
was from a farm in Rukungiri district (Table 3). In the
current study, amitraz resistance was only recorded in the
western part of Uganda.

Multi-acaricide resistance by Rhipicephalus ticks
The presence of single or multiple acaricide resistance in
the study area is shown in Fig. 2. Resistance to single
and multi-acaricide molecules was detected in 48.2 %
(13/29) and 55.2 % (16/29) of tick populations from
farms with acaricide resistance, respectively. Of the
multi-acaricide resistant Rhipicephalus ticks, 75 % (12/
16) were R. decoloratus and the rest were R. appendicu-
latus. Further statistical analysis revealed significant stat-
istical difference (p <0.05) in the occurrence of multi-
acaricide resistance between the two species of ticks. All
the farms that used either SP and co-formulation or SP,
OP and COF within the last 2 years had 100 % (14/14)
multi-acaricide resistant ticks. There was significant
association between use of both SP and COF with resist-
ance to two classes (p < 0.001). Kiruhura district had
100 % (4/4) multi-acaricide resistant tick populations,
followed by Mbarara (75 %; 3/4) in the western Uganda.
Ticks from the two farms in Wakiso district (central
Uganda) were also multi-acaricide resistant. Farms that
rotated acaricides wrongly had the highest cases of both
single and multi-acaricide resistance.

Farm practices aimed at mitigating acaricide failure
To overcome acaricide failure, various coping strategies
have been adopted by farmers although they were con-
sidered to potentially worsen the existing tick challenge.
Buying different brand(s) of acaricide with little or no re-
gard to similarity in active molecules with previous
brand(s) used on the same farm was encountered. In
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Table 3 Percentage mortality of larvae against various classes of acaricides determined with LPT
District Farm/Pop. ID Tick species % Mortality (Mean ± SEM)

Amitraz (mg/ml) Cypermethrin (mg/ml) Deltamethrin (mg/ml) Chlorfenvinphos (mg/ml) Chlorfenvinphos/cypermethrin (COF) (mg/ml)

0.25 0.5 0.05 0.1 0.05 0.1 0.5 1.0 0.3/0.03 0.6/0.06

Kampala C1 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Wakiso C2 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 14.7 ± 0.4 100 ± 0.0

C3 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 67.5 ± 0.5 94.5 ± 0.5 21.0 ± 5.0 39.0 ± 3.0

Mubende C4 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 70.4 ± 0.7 93.7 ± 0.8

Mpigi C5 R. app. 100 ± 0.0 100 ± 0.0 11.0 ± 0.0 11.5 ± 0.5 0 12.5 ± 2.5 82.5 ± 5.5 100 ± 0.0 79.0 ± 1 87.5 ± 2.5

Kiboga C6 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 98.85 ± 1.2 100 ± 0.0

Gulu N1 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

N2 A. vari. 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Mbarara W1 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W2 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 50.6 ± 2.7 92.5 ± 0.6 0 19.6 ± 0.4

W3 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 71.0 ± 0.0 92.0 ± 0.5

W4 R. app. 100 ± 0.0 100 ± 0.0 6.8 ± 1.1 36.6 ± 7 0 46.5 ± 11.5 100 ± 0.0 100 ± 0.0 93.95 ± 0.9 100 ± 0.0

Kiruhura W5 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 68.7 ± 3.8 76.50 ± 9.8 25.05 ± 0.6 57.1 ± 11.3

W6 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 19.7 ± 10.3 74.45 ± 3.9 91.2 ± 4.0 62.7 ± 5.7 93.3 ± 2.9

W7 H. leach. 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W8 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 66.5 ± 2.2 76.3 ± 0.7

W9 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 56.0 ± 1 65 ± 2.5

Bushenyi W10 B. decol. 68.1 ± 1.9 74.5 ± 1.5 0 10.8 ± 1.5 0 16.3 ± 2.5 92 ± 0.5 96.7 ± 0.9 96.2 ± 1.6 98.8 ± 0

W11 B. decol. 100 ± 0 100 ± 0.0 0 0 0 0 80.2 ± 0.15 100 ± 0.0 49.3 ± 2.7 60.0 ± 1.6

Mitoma W12 B. decol. 100 ± 0 100 ± 0 5.0 ± 0.0 13.5 ± 1.5 8.0 ± 3.0 15.5 ± .5 100 ± 0 100 ± 0 53.5 ± 0.5 100 ± 0

W13 B. decol. 41.5 ± 0.5 62.5 ± 1.5 65.5 ± 1.5 72.0 ± 2.0 73.5 ± 1.5 91.5 ± 2.5 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W14 B. decol. 45.0 ± 1.0 NT NT NT NT NT NT NT NT NT

Sheema W15 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 56.7 ± 0.9 62.7 ± 2.4

Rukungiri W16 B. decol. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 95.8 ± 0.3 100 ± 0.0

W17 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W18 R. app. 15.4 ± 0.1 16.7 ± 1.3 97.7 ± 0.5 100 ± 0.0 98.3 ± 0.1 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W19 R. app. 100 ± 0.0 100 ± 0.0 10.7 ± 0.4 23.2 ± 1.9 12.0 ± 1.3 27.9 ± 0.7 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Sembabule W20 B. decol. 100 ± 0.0 100 ± 0.0 15.0 ± 1.0 26.0 ± 3.0 15.5 ± 0.5 24.0 ± 2.0 100 ± 0.0 100 ± 0.0 88.5 ± 0.5 95.0 ± 0.0

W21 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

W22 R. app. 100 ± 0.0 100 ± 0.0 0 0 0 0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Serere E1 B. decol. 100 ± 0.0 100 ± 0.0 79.2 ± 4.7 91.7 ± 1.1 78.7 ± 6.1 95.0 ± 1.9 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

R. app. (Rhipicephalus appendiculatus); B. decol. (Rhipicephalus (Boophilus) decoloratus); A. vari. (Amblyoma variegatum); H.leach (Haemaphysalis leachi);COF, coformulation; NT not tested due to few larvae, Pop Tick
population; N1 and N2 are two tick population collected from abattoir (designated as “one farm” for purpose of this study)
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two years, 74.1 % (20/27) of the farms whose tick acari-
cide resistance status was determined used two to three
acaricide molecules, and 55.6 % (15/27) rotated the mol-
ecules wrongly. Rotation within the same molecule
through purchase of different brands was recorded in
40.7 % (11/27) of the farms. In addition, 25.9 % (7/27) of
the farmers increased the concentration of acaricide at
least twice over the recommended strength. Some
14.8 % (4/27) of the farmers shortened acaricide applica-
tion interval to twice a week (every three days). This
translates into approximately 10 exposures every month
and 120 exposures annually. Mixing of two different
acaricide formulations was encountered in 7 % (2/27) of
farms and one of the farms mixed co-formulation and
amitraz, thus exposing ticks to all the three molecules at
once. In a farm that mixed two acaricides and sprayed
twice every week, damage to the skin of cattle due to
frequent spraying with higher acaricide strength was en-
countered. As a result, the ticks were easily picked with
the damaged skin (Additional file 2: Figure S2).

Discussion
This is the first report that has comprehensively investi-
gated tick acaricide resistance since the introduction of
synthetic pyrethroid, co-formulations and amitraz in
Uganda. Rhipicephalus ticks are widespread in the coun-
try [4], posing a serious threat especially to exotic cattle.
Thus TBD especially ECF is ranked by farmers as the
most important constraint to cattle production in
Uganda [28, 29]. Acaricides are therefore perceived as
the most efficient way of controlling ticks and prevent-
ing the above diseases. However, with over 25 brands of
all the major classes of acaricides circulating on the mar-
ket (Table 2), farmers are “spoiled for choice”. SP and
amitraz accounted for 88 % of the total acaricide brands
marketed although amitraz was the most preferred by

farmers during the study. This finding is consistent with
what was previously reported in north eastern Uganda
[30]. Of concern was the variation in strength of the
different SP whose dilutions are similar, thus giving
different concentrations. It may be possible that amongst
cypermethrin, variation in strength may reflect the pro-
prietary difference in composition of cis and trans isomers.
However, there is need for regulatory harmonization of
strength of SP formulations with similar active ingredi-
ents, notwithstanding inappropriate application practices
by farmers. A noticeable example of inappropriate acari-
cide use was wrong rotation of acaricides between mole-
cules and rotation of acaricides within the same molecule
under different brand names. It was also widely believed
by farmers that acaricide failure could only be caused by
“fake” chemicals. This clearly indicates that farmers lacked
knowledge on possibility of ticks becoming resistant to
chemicals due irrational acaricide use.

In this study, 93.5 % (29/31) of the larval population
tested had resistance to at least one class of acaricide
molecule; all of them belonging to the genus Rhipicephalus.
In Uganda, acaricide resistance was first diagnosed in
Rhipicephalus ticks against organochlorine, toxaphen in
1970s [11]. This occurred mainly due to increased acari-
cide pressure considering a compulsory tick control com-
mittee enforced weekly dipping of cattle across the
country. However, subsequent zoning of acaricides and
restricting circulation to the district veterinary office were
reported as efficient strategies in delaying acaricide resist-
ance. Nevertheless, political strife in early 1970s [6, 31]
and further liberalization of the veterinary drug sector
[30] ended both zoning and control in supply of acaricides
leading to widespread inappropriate acaricide use. Of
major concern now is the high level of resistance to SP
(90 %) and emergence of super resistant R. appendiculatus
and R. decoloratus ticks in at least 60 % of the tick

Fig. 1 Tick resistance status against various classes of acaricides. Thirty-one tick populations from 31 farms were tested for determining amitraz
resistance. Tick resistance to SP, OP and COF were determined using 30 tick populations from 30 farms
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populations investigated in this study (Table 3). Since their
introduction, SP have enjoyed unique preference due to
their dual effect against both ticks and flies [30]. However,
its irrational use for over 16 years especially by farmers
who use the spray method, could have selected for stable
resistance. Studies carried out in related tick-R. microplus
have attributed such level of resistance to multiple muta-
tions in SP target site, voltage sensitive sodium channel
domains II and III [18, 32–34] . A similar level of resist-
ance was first observed in insects and attributed to knock
down resistance (kdr) in the sodium channel [35–39]. It
should be noted that the prevalence of SP resistance by
Rhipicephalus ticks (96.4 %) reported in this study is
amongst the highest compared to those previously known
in South America [40–42], India [43] and the rest of Af-
rica [44–47]. Possible evidence of cross-resistance be-
tween SP and OP was also observed in 30 % of the tick
populations from farms that used co-formulated acari-
cides. Previous studies in cattle tick showed that ticks that
were resistant to SP and OP had elevated esterase activity
[26, 48]. The apparent lack of synergism between SP and
OP observed in this study possibly emanates from the fact
that the most dominant co-formulation used in Uganda
(COF1) is prescribed at 1.7 times lower concentration
than their corresponding mono-formulations. While the
pharmacological basis for such formula is justifiable under
ideal conditions, its efficacy is bound to be low in a situ-
ation where resistance has emerged against one of the
chemicals. This eventually could act as a recipe for emer-
gence of resistance against what otherwise would be the
effective molecule (OP) in the co-formulation due to sub-
optimal exposure dose. This possibly explains the low effi-
cacy recorded against OP in farms with SP resistant ticks
that were also previously exposed to co-formulated acari-
cides. The mono-formulated OP chlorfenvinphos showed
promising efficacy, partly because it is not widely used.
The low farm use may be attributed to factors such as
shorter application interval recommended for its use
and low margin of safety compared to other classes
of acaricides. However, emergence of resistance against

co-formulation containing OP is an early indication that
resistance to this group of acaricides is progressively build-
ing amidst fear of possible cross-resistance with SP.

Amitraz resistance was the least detected (12.9 %) in
the current study thus corroborating with the findings
on in its use at farm level. This finding is consistent with
previous studies [49, 50]. Although amitraz formulations
have been the dominantly mentioned acaricides (36.9 %),
their routine use has remained low due to their narrow
spectrum of benefit compared to SP, as far as fly repel-
lence is concerned. This explains why some farmers ir-
rationally mixed amitraz and SP formulations. On the
other hand, the increase in amitraz use may be an indi-
cator that farmers were getting better tick control results
with amitraz following negative experience while using
SP and COF. However, the resistance observed against
amitraz in 12.9 % of the tick populations may be medi-
ated by mutation in the amitraz target, octopamine
receptor [51–53]. Nevertheless, the high level of multi-
acaricide resistance (55.2 %) and emergence of isolated
amitraz resistance ticks further emphasizes the need for
accelerated intervention to combat their spread across
the country. The super SP resistant R. appendiculatus
collected in Gulu abattoir from cattle bought from cen-
tral Uganda should be an example of how such ticks can
be easily spread through cattle trade and/or movement.
Therefore, creation of farm awareness, vigilance amongst
veterinarians and cattle traders, and promoting use of
amidines in farming communities with ticks that are re-
sistant to SP and coformulation could potentially lead to
containment of resistant tick populations. However, the
use of amitraz should factor into account the balance
between need for tick and tsetse fly control, especially in
areas that are known to be tsetse infested as previously
reported [30]. In the absence of technical intervention,
coping strategies employed by farmers experiencing
acaricide failure are likely to worsen the existing chal-
lenge. This includes exponential rise in irrational admix-
ing of various acaricide formulations into cocktail and
short application intervals that will cause collateral

(See figure on previous page.)
Fig. 2 Factors associated with occurrence of multi-acaricide resistance. a Tick species associated with multiple acaricide resistance. Comparison of
proportion of ticks with single and multiple resistance within each species showed that R. decoloratus were significantly associated with multiple
acaricide resistance (p = 0.0133; 95 % CI = 11.3 % to 75.1 %, χ2 = 6.125). Comparison of multiple acaricide resistance between the two tick species
showed that R. decoloratus was significantly associated with multiple resistance (p = 0.0461, 95%CI = 2.9 % to 72.1 %, χ2 = 4.020) compared to R.
appendiculatus. However, R. appendiculatus was significantly associated with single resistance when compared to population of R. decoloratus
resistant to single acaricide molecule (p = 0.0461, 95%CI = 2.9 % to 72.1 %, χ2 = 3.978). b Acaricide molecule resisted by ticks in the farms. Comparison
of proportion of farms that used only one molecule (SP) to those that used two to three molecules showed that multiple resistance was associated
with use of at least two classes of acaricides; SP, COF (p < 0.0001, 95 % CI = 61.1 % to 100 %, χ2 = 19.167); AM, SP (p = 0.0111, 95 % CI = 11.1 % to
100 %, χ2 = 6.453); SP,OP,COF (p = 0.0111, 95 % CI = 11.1 % to 100 %, χ2 = 6.453). c Source (district) of origin of the ticks. Ticks from Kiruhura district
were significantly multi-acaricide resistant when compared to those from Rukungiri district (p = 0.0339, 95 % CI = 14.8 %–100 %). However, there
was no statistical difference in the occurrence of multiple acaricide resistance between the central and western region of Uganda. * = (p < 0.05);
*** = (p < 0.001)
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damage to cattle (Additional file 2: Figure S2), food
safety and public health. Although alternative technolo-
gies such as vaccination of cattle with Muguga cocktail
ECF vaccine is being promoted and said to be effective
against ECF [54], the emergence of acaricide resistant R.
decoloratus undermines such efforts. Without control-
ling the above ticks, babesiosis and anaplasmosis will
certainly cause economic losses despite immunization
against ECF. Therefore, there is need for various actors
in the animal industry to jointly identify strategies for
mitigation of acaricide resistance in Uganda. This, how-
ever, requires close collaboration between the various
stakeholders in the acaricide supply chain and research
animal health institutions in the country [55].

Conclusion
This research is the first in Uganda to report emergence
of super SP resistant and multi-acaricide resistant R.
appendiculatus and R. decoloratus ticks. Our results fur-
ther highlight the importance of routine monitoring of
tick acaricide resistance for early detection and interven-
tion especially in countries where veterinary drugs/acari-
cides are liberalized. In absence of technical interventions,
farmer-led solutions aimed at troubleshooting for efficacy
of the multitude of acaricides at their disposal are ex-
pected to potentially cause negative collateral effect on fu-
ture chemical tick control options, animal welfare and
public health. While understanding the molecular basis of
such resistance and countrywide epidemiological studies
are necessary, a multi-faceted approach directed towards
containment and eradication of acaricide resistant ticks is
urgently needed in Uganda.

Additional files

Additional file 1: Figure S1. Map of Uganda showing the various
districts from which tick samples were collected. A, Map of Africa showing
Uganda. B, Map of Uganda showing the areas from which ticks were
collected (depicted by ticks). (PPTX 656 kb)

Additional file 2: Figure S2. R. decoloratus picked from cattle with
acaricide induced skin damage. A, Hair bundle (h) that detached from
the skin of cattle as the tick (t) was picked; B, Damaged cattle skin (s) that
was easily detached with the tick (t); C, The piece of damaged skin (s)
firmly attached to the mouth part thus altering the gross morphological
appearance of the cephalus region of tick (t); farmer considered these
“new” species of ticks. (PPTX 406 kb)
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