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Abstract: We propose an unconventional formulation of lattice field theories which is

quite general, although originally motivated by the quest of exact lattice supersymmetry.

Two long standing problems have a solution in this context: 1) Each degree of freedom on

the lattice corresponds to 2d degrees of freedom in the continuum, but all these doublers

have (in the case of fermions) the same chirality and can be either identified, thus removing

the degeneracy, or, in some theories with extended supersymmetry, identified with different

members of the same supermultiplet. 2) The derivative operator, defined on the lattice as a

suitable periodic function of the lattice momentum, is an addittive and conserved quantity,

thus assuring that the Leibniz rule is satisfied. This implies that the product of two fields

on the lattice is replaced by a non-local “star product” which is however in general non-

associative. Associativity of the “star product” poses strong restrictions on the form of

the lattice derivative operator (which becomes the inverse Gudermannian function of the

lattice momentum) and has the consequence that the degrees of freedom of the lattice

theory and of the continuum theory are in one-to-one correspondence, so that the two

theories are eventually equivalent. We can show that the non-local star product of the fields

effectively turns into a local one in the continuum limit. Regularization of the ultraviolet

divergences on the lattice is not associated to the lattice spacing, which does not act as a

regulator, but may be obtained by a one parameter deformation of the lattice derivative,

thus preserving the lattice structure even in the limit of infinite momentum cutoff. However

this regularization breaks gauge invariance and a gauge invariant regularization within the

lattice formulation is still lacking.
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1 Introduction

We have been asking ourselves the question: “If we stick to keeping exact supersymmetry

(SUSY) on the lattice, what kind of lattice formulation is required ?” We have reached the

following conclusion: “We need a non-local lattice field theory formulation which does not

have the lattice chiral fermion problem.” This formulation must be very general in character

and it must be applicable to non-SUSY lattice theories, so we end up with eventually

proposing an alternative lattice field theory formulation which does not have the chiral

fermion problem. There is a general belief that a non-local field theory is meaningless and

thus this possibility is never considered seriously. However here we propose a lattice field
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theory which is non local on the lattice but is well defined, and it maintains exactly the

symmetries of the corresponding continuum theory.

Since the fundamental lattice chiral fermion problem [1–3] was posed it took a many

years struggle to find the complete solution for lattice QCD [4–7]. Avoiding the difficulty

of the No-Go theorem of lattice chiral fermion, a modified lattice version of chiral transfor-

mation which is compatible with Ginsparg-Wilson relation [8] was proposed as a solution.

The overlap fermion operator satisfying Ginsparg-Wilson relation was found and shown to

be local [9, 10].

In the lattice chiral fermion formulation the Ginsparg-Wilson relation played a crucial

role in providing a criteria of how much breaking of the lattice chiral transformation is

allowed for the chiral symmetry breaking formulation in the renormalization group flow

of ultraviolet regime. It turned out that the breaking effects from the continuum chiral

symmetry can be confined in local irrelevant terms.

A long time has gone past since the problem of lattice supersymmetry(SUSY) were

posed [11] for the first time and we still have not reached a complete solution. We may

wonder: “Why is the solution for lattice SUSY so difficult ?” We consider that there are

several reasons for this difference.

There are two fundamental difficulties for a realization of exact SUSY on the lattice:

A) : Breakdown of Leibniz rule for the difference operator.

B) : Chiral fermion species doubler problem.

A). In the SUSY algebra a bilinear product of supercharges is equal to a differential

operator which should be replaced by a local difference operator on the lattice. The differ-

ence operator breaks the distributive law with respect to the product, namely the Leibniz

rule, while supercharges satisfy the same rule, thus leading to a breakdown of the SUSY

algebra [11–14].

It was shown that there is no lattice derivative operator which is locally defined and

satisfies the Leibniz rule exactly [15]. A Ginsparg-Wilson type analyses of blocking trans-

formation for lattice SUSY gave a similar result [16]: the only solution which is consistent

with lattice SUSY version of Ginsparg-Wilson relation is the SLAC derivative [17] which is

non-local. These results suggest that the breaking effects of SUSY algebra with the local

difference operator are considered to be non-local in nature. These breaking effects, how-

ever, may appear only in the part of SUSY algebra that include the derivative operator,

not in the nilpotent part of an extended SUSY algebra. This consideration suggests that

we need to accept non-local formulation of lattice SUSY if we stick to find a exact lattice

SUSY formulation for all super charges of extended SUSY. We think that this would be a

most prohibited barrier which one may not dare to go over. In this paper we first establish

to formulate a non-local lattice field theory which is equivalent to a corresponding local

continuum theory. The formulation was inspired by the lattice SUSY formulation [18, 19].

As far as the nilpotent part of extended SUSY algebra is concerned exact lattice

SUSY formulations have been successfully constructed by various methods: 1) Nicolai map-

ping [20, 21], 2) Orbifold construction [22–25], 3) Q-exact topological field theory [26–29].
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It was shown that Nicolai mapping is closely related to the Q-exact formulation of topo-

logical field theory [25]. The nilpotent part of super algebra can thus be realized exactly

on the lattice within a local lattice field theory.

There was a challenge to realize exact lattice SUSY for all supercharges by modifying

the Leibniz rule of super charges in such a way to be compatible with the breaking terms of

the lattice difference operator [30–32]. Although an ordering ambiguity of this formulation

(link approach) was pointed out in [33, 34], it was recognized later that the introduction of

noncommutativity solves this problem [18]. Algebraic consistency of this formulation with

noncommutativity was confirmed in the framework of Hopf Algebra [35]. This link approach

with a particular choice of parameter coincides with the orbifold construction of lattice

super Yang-Mills. The relation between these two formulations was made clear in [36–39].

It has been explicitly shown in the link approach that Q-exact lattice SUSY formulation

is essentially the lattice version of continuum twisted super Yang-Mills formulation via

Dirac-Kähler twisting procedure [40–42]. Although the lattice SUSY formulation of the

link approach was based on the local formulation, noncommutativity is needed for the

Hopf algebraic consistency.

There may still be a room to modify the local difference operator in such a way that

surface terms can be canceled out for lattice total derivatives to preserve an action sym-

metry [43]. In this sense modified SUSY can be realized in some model for the nilpotent

part of extended SUSY algebra.

In any of these local lattice field theory formulations only the nilpotent part of extended

SUSY algebra is exactly kept. We claim that a non-local lattice field theory formulation is

unavoidable to formulate an exact lattice SUSY for all supercharges.

B). In general the lattice chiral fermion problem is considered to be a different issue from

lattice SUSY problem. One may naively expect that the lattice chiral fermion solution of

lattice QCD can be used for lattice SUSY formulation of chiral fermions [44–46]. From exact

lattice SUSY point of view we consider that it is not so simple and the exact lattice SUSY

may not be realized since the fermion propagator does not have simple relation with the

boson propagator in contrast with the continuum case. In fact bosonic Wilson terms were

needed to match the Wilson term of the fermionic sector and get a correct quantum level

Ward-Takahashi identity for lattice SUSY Wess-Zumino model [47, 48]. These examples

show that the modification of the fermion propagator requires the modification of the

corresponding boson propagator to fulfill a quantum level consistency of lattice SUSY.

In this paper we take a totally different point of view from the common approach on

the lattice chiral fermion problem. The lattice regularization of chiral fermions unavoidably

generates species doublers, but in our non local lattice formulation, that follows from the

request of keeping the Leibniz rule, they have the same chirality and are matched by a

similar doubling phenomenon in the bosonic sector. So the doublers can be either identified,

thus removing the degeneracy and providing a consistent truncation procedure for doublers

for non-SUSY lattice formulation, or, in the case of some extended supersymmetric theories,

they can be interpreted as different members of a supermultiplet. Closely related to the

existence of the species doublers is the half lattice structure introduced in this paper. This
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has a geometrical correspondence with lattice SUSY algebra where a half lattice translation

generates a SUSY transformation [18, 19]. In fact also the link approach of the lattice super

Yang-Mills was based on this geometric and algebraic correspondence [30–32].

In this paper we formulate lattice field theory in the momentum representation since

the lattice Leibniz rule and the species doubler d.o.f. can be more easily described in

momentum space. This is not new as there have been already some examples of formulation

of lattice theories in momentum representation [49]. Within our formulation we find a

particular choice of blocking transformation of the Ginsparg-Wilson type which surprisingly

corresponds to a blocking transformation from continuum to lattice. In this way we obtain

a lattice formulation which is equivalent to the corresponding continuum theory and thus

all the symmetries are kept on the lattice including lattice SUSY. However the formulation

is non-local in the coordinate space and not yet regularized even though it is a lattice

formulation, in fact the lattice spacing does not act here as a regulator. Regularization can

however be obtained by modifying the lattice derivative, and the lattice structure of the

theory can be preserved even in the limit of infinite momentum cutoff. However in gauge

theories this regularization breaks gauge invariance and a gauge invariant regularization

within the lattice formulation is still lacking.

This paper is organized as follows: in section 2 we review, from a slightly unconven-

tional point of view, how the chiral fermion problem and the violation of the Leibniz rule

arises in the standard approach. In section 3 we explain the basic ideas of this paper,

namely how the Leibniz rule may be restored and the doubling problem avoided by replac-

ing the usual local product on the lattice with a non local product, the star product, that

originates from requiring the conservation of the derivative operator on the lattice. In sec-

tion 4 we study the properties of the star product in particular with respect to the issues of

associativity and locality. We prove that an associative star product can be defined with a

suitable choice of the derivative operator on the lattice, and that in that case an invertible

map exists between the degrees of freedom in the continuum and the ones on the lattice.

In section 5 we show how a lattice action can be obtained from the one of the continuum

theory by a blocking transformation induced by the aforementioned map. In this action,

which is classically equivalent to the continuum action, the lattice spacing does not act as

a regulator and a renormalization procedure for the ultraviolet divergences is needed as

in the continuum theory. This is discussed in section 6 for two simple examples: the non

interacting supersymmetric Wess-Zumino model in four dimensions and the Φ4 theory in

four dimensions. It is shown that in the latter case a renormalization scheme can be defined

that preserves the lattice structure. Some conclusions and discussions are given in section 7.

2 Conventional lattice: violation of the Leibniz rule and the doublers

problem

The approach to lattice theories that we develop in the present paper was motivated by

the attempt to construct a lattice theory in which supersymmetry is exactly realized. In

ordinary lattice theories there are two major obstacles to exact supersymmetry. The first

is that on a lattice the derivative operator is replaced by a finite difference operator (or
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some other ultra-local operator) which does not satisfy the Leibniz rule. Since supersym-

metry transformations contain derivatives, the violation of the Leibniz rule poses a serious

problem to an exact formulation of supersymmetry on the lattice. The second obstacle

is the so called doubling of fermions on the lattice. This is essentially the chiral fermion

problem: a chiral fermion cannot be put on a d dimensional cubic lattice without intro-

ducing 2d − 1 copies of it (the doublers). Of the resulting 2d states, half have the same

chirality of the original fermion, and half the opposite one. This proliferation of fermions

in a supersymmetric theory would upset the balance between bosons and fermions making

exact supersymmetry on the lattice impossible.

In this section we shall review how these problems arise in the conventional lattice

formulation, and look at them from a slightly different point of view with the aim of

understanding how and under what conditions they could be overcome. We shall mostly

make use of the momentum representation where the root of the above problems can be

better understood.

Consider a set of fields ϕA(x) defined on a regular lattice1 with lattice spacing l,

namely:2

x : xµ = nµl, (2.1)

with nµ integer numbers. The discrete Fourier transform of ϕA(x) produces the momentum

representation ϕ̃A(p) of the fields. In the momentum representation the lattice structure

appears as a periodicity in momentum space, namely all lattice fields are invariant under

pµ → pµ +
2π

l
kµ µ = (1, 2, · · · , d), (2.2)

with kµ arbitrary integer. Similarly all physical operators, such as for instance the deriva-

tive operator, must be described by functions with the same periodicity (2.2). This means

that a d-dimensional regular lattice with lattice spacing l is described by a momentum

space which is a d-dimensional torus with period 2π
l in each dimension. Each momentum

component on the lattice is then an angular variable, and momenta that differ by multiples

of 2π
l are indistiguishable. Instead in continuum theories each component of the momen-

tum is an arbitrary real number ranging from −∞ to +∞ and momentum space is the

non-compact Rd variety.

The momentum space corresponding to a regular lattice and the one corresponding

to a continuum space-time are then topologically different varieties, which means that

there is no smooth one-to-one map between the two. A map however, albeit not a one-

to-one smooth correspondence, should be established as the continuum theory should be

recovered from the lattice theory as the lattice spacing goes to zero. We discuss below how

the topological obstruction to a one-to-one smooth correspondence between lattice and

continuum momentum space is at the root of both of the chiral fermion problem and of the

impossibility of finding on the lattice a derivative operator that satisfies the Leibniz rule.

1Here and in the following we shall use small greek letters like ϕ to denote fields on a lattice and capital

letters like Φ to denote fields in the continuum.
2The use of the letter l to denote the lattice spacing in place of the standard notation a is not accidental

and will be explained shortly.
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In the continuum theory momentum conservation follows from the invariance of the

theory under translations. The natural lattice counterpart of translational invariance is the

invariance under the descrete group of displacements that map the lattice into itself, namely

the displacements which are integer multiples of l in each direction. It is natural then to

assume that the invariance of the lattice theory under such displacements reproduces the

ordinary translational invariance in the limit l → 0. There is however an obstruction to

such naive correspondence: the derivative operator is replaced on the lattice by a finite

difference operator, and if we require the latter to be hermitian it has to be left-right

symmetric and necessarily involves a finite difference over two lattice spacings, namely in

a one dimensional example:

∆sϕ(x) =
1

2l
(ϕ(x+ l)− ϕ(x− l)) . (2.3)

If we take ∆s as the lattice correspondent of the derivative operator, namely of the gen-

erator of infinitesimal translations, then the smallest displacement that corresponds to a

translation in the continuum limit has not spacing l but 2l.

We are led then to introduce two distinct concepts: the lattice spacing l, that denotes

the spacing between two neighboring sites of the lattice, and the “effective lattice spacing”,

for which we shall use the standard notation a, that denotes the smallest displacement

on the lattice that corresponds to an infinitesimal translation in the continuum limit. In

general we have:

a = nl, (2.4)

with n integer. With the symmetric choice (2.3) of the lattice derivative operator we have

n = 2, while the value n = 1 occurs if the derivative operator on the lattice is defined as

a finite difference over one lattice spacing. This however leads to an ambiguity, since with

a finite difference over one lattice spacing it is possible to define two hermitian conjugate

operators, the right and left difference operators, which we shall denote by ∆± and are

given by:
∂Φ(x)

∂x
→ ∆±ϕ(x) = ±1

l
(ϕ(x± l)− ϕ(x)) . (2.5)

Although ∆± are not hermitian (unlike their correspondent operator i∂ in the

continuum) we can construct a hermitian quadratic operator ∆+µ∆−µ which becomes

∂µ∂
µ in the continuum limit and can be used to construct a lattice lagrangian of a free

boson. So, as far as free bosons are concerned, ∆± (with n = 1) is a possible choice for the

derivative operator on the lattice.

Instead, the fermionic inverse propagator is linear in the derivatives, and the only

linear hermitian combination of ∆± is ∆s = 1
2(∆+ + ∆−). So for any theory containing

fermions the symmetric difference operator ∆s has to be used as derivative operator on the

lattice.3 Hence n = 2 is required in (2.4), and this leads to the so called fermion doubling

phenomenon as it will be discussed shortly.

3More general choices for the derivative operator on the lattice will be introduced further in the pa-

per as an essential ingredient of the present formulation, but in all of them hermiticity will enforce the

condition n=2.
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The correspondence between translations in the continuum and displacements of mul-

tiples of a = nl on the lattice determines the map between the momentum pµ on the lattice

and the momentum p̂µ in the continuum. In fact while translational invariance implies

momentum conservation in the continuum, on the lattice the invariance under displace-

ments of a in each direction also implies the conservation of the momentum on the lattice

but only modulo 2π
a , because of the discrete nature of the translational symmetry. On the

other hand the momentum pµ on the lattice and the momentum p̂µ in the continuum are

both conserved quantities associated to the invariance respectively under descrete and con-

tinuum translations and should then be identified modulo 2π
a . This provides the following

relation between pµ and p̂µ:

p̂µ − pµ =
2π

a
kµ − π

l
< pµ <

π

l
, (2.6)

with kµ arbitrary integers. In eq. (2.6) the lattice momentum pµ, being an angular variable

according to (2.2), is restricted to take values in the fundamental region (the Brillouin

zone) of size 2π
l . Eq. (2.6) defines a map between the momentum space P̂ of the continuum

theory and the momentum space P on the lattice defined by (2.2). In d dimensions P is a

d-dimensional torus, whereas P̂ is a non-compact Rd variety, so the map defined by (2.6)

is not a one-to-one correspondence. It is clear in fact from (2.6) that a point of P, which is

defined by the set of coordinates pµ with −π
l < pµ <

π
l , has an infinite number of images

in P̂ which are labeled by the integers kµ. This means that, given a configuration on the

lattice with momentum pµ within the Brillouin zone, the corresponding configuration in the

continuum is in general the superposition of configurations with arbitrarily high momenta

corresponding to the possible choices of kµ in (2.6).

On the other hand, if we consider a point of P̂ with coordinates p̂µ the number of its

images in P depends on the size of the effective lattice spacing a and is in fact equal to

the integer n in eq. (2.4). This is because the manifold P is defined by the periodicity

condition (2.2) with period 2π
l , whereas 2π

a is involved in (2.6).

In fact, given a configuration in the continuum with momentum p̂µ, if a = l, namely

if n = 1, there is only one value of the lattice momentum pµ within the Brillouin zone for

which (2.6) is satisfied with a suitable choice of kµ. On the other hand if a = 2l, namely

if n = 2, given an arbitrary momentum p̂µ in the continuum, for each value of µ there

are two different values of pµ, separated by π
l and both in the interval −π

l < pµ <
π
l for

which (2.6) is satisfied.

Since this is true independently for all values of µ, in d dimensions a point in P̂ has

in this case 2d distinct images in P. As an example let us consider the case p̂µ = 0, which

corresponds to a translational invariant configuration, namely to a constant field in coor-

dinate space. For a = l p̂µ = 0 is mapped according to (2.6) onto the lattice configuration

pµ = 0, which corresponds in coordinate space to a constant field on the lattice.

According to the previous discussion, for a = 2l, namely for n = 2, the vanishing

momentum configuration in the continuum p̂µ = 0 is mapped through (2.6) onto 2d distinct

momentum configurations on the lattice which we shall denote as p
(A)
µ where the labels A

– 7 –
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run over the 2d subsets of the possible values of the space-time index µ:

A ⊆ {1, 2, . . . , d}. (2.7)

From (2.6) we find:

p̂µ = 0 =⇒ p(A)
µ =

{
0 if µ 6∈ A
±π
l if µ ∈ A

, (2.8)

where of course the sign in ±π
l is irrelevant due to the 2π

l periodicity. In coordinate

representation zero momentum corresponds to a translationally invariant constant field

configuration. The field configurations in coordinate space that correspond to a state of

momentum p
(A)
µ can be easily obtained from (2.6) by taking the Fourier transform of a

field ϕ̃(A)(pµ) given in momentum space by:

ϕ̃(A)(pµ) = c(A)
∏
µ

∑
kµ

δ

(
pµ − p(A)

µ +
2π

l
kµ

)
, (2.9)

where c(A) are arbitrary constants. The Fourier transform of (2.9) gives:

ϕ(A)(xµ) = c(A) (−1)
∑
µ∈A nµ . (2.10)

Here the integers nµ are labeling the lattice sites according to (2.1). All the field con-

figurations of eq. (2.10) are invariant under xµ → xµ + mµa with mµ arbitrary integers,

namely:

ϕ(A)(xµ +mµa) = ϕ(A)(xµ). (2.11)

This stems from the fact that a shift on the lattice of an integer multiple of a corresponds,

for a = 2l to a shift of an even number of lattice spacing that leaves the signs at the r.h.s.

of (2.10) invariant.

Since a is the smallest shift on the lattice that corresponds to a translation in the con-

tinuum, all the 2d field configurations correspond to a translationally invariant (constant)

field configurations in the continuum. This is obviously in agreement with (2.8) and implies

that in d dimensions there are 2d distinct configurations on the lattice that correspond to

the constant field configuration of the continuum.

Fluctuations around a translational invariant configuration correspond to a degree of

freedom, so the existence of 2d distinct translationally invariant configurations on the lattice

also implies that a single field on the lattice describes 2d distinct degrees of freedom in the

continuum in the case n = 2. This is the origin of the doubling of fermions on the lattice,

since in the case of fermions the n = 2 choice is unavoidable. Bosons on the lattice on the

other hand can be consistently described by choosing n = 1. However a different choice

of n for boson and fermions would inevitably break supersymmetry and the choice n = 2

for bosons as well as for fermions seems unavoidable in supersymmetric theories. This is a

crucial point in our approach, and it will be discussed in the following sections.

Before further discussing the doubling of fermions on the lattice, we need to introduce

another key ingredient in defining a theory on the lattice: namely the derivative (or finite

difference) operator.
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Let Φ(x) be a field in coordinate representation of a d-dimensional continuum space,

and Φ̃(p̂) its Fourier transformed representation in momentum space. Acting on Φ(x) with

the derivative operator ∂µ amounts in momentum space to multiplying the field by the

momentum itself p̂µ:

i∂µΦ(x) =⇒ p̂µΦ̃(p̂). (2.12)

Notice that the derivative operator is local in momentum representation, namely it is

a multiplicative function of p̂µ, and we shall work under the assumption that the same

property is valid also on the lattice. So if we denote by ∆µ the derivative operator on

the lattice, ϕ(x) and ϕ̃(p) a field on the lattice respectively in coordinate and momentum

representation, then eq. (2.12) is replaced on the lattice by:

∆µϕ(x) =⇒ ∆(pµ)ϕ̃(p), (2.13)

where x = nl and ϕ̃(p) = ϕ̃(p + 2π
l ). We want the derivative of a lattice field to be still

a lattice field, so the quantity at the r.h.s. of (2.13) must still be periodic in all the pµ
variables with period 2π

l . The derivative operator must then be periodic itself, and ∆(pµ)

must satisfy the condition:

∆(pµ) = ∆

(
pµ +

2π

l

)
. (2.14)

As a consequence of (2.14) the quantity ∆(pµ), which represents in momentum space the

lattice derivative, cannot coincide with the momentum pµ, unlike the continuum case,

because the choice ∆(pµ) = pµ would be in contradiction with (2.14).

The derivative operator in the continuum satisfies the Leibniz rule. This is a con-

sequence of the fact that in momentum representation the derivative is the momentum

itself (2.12) and that the momentum is a conserved and additive quantity. Additivity of

momentum is on the other hand related to locality. In fact in local field theories the product

of two fields is defined by the standard local product of two functions

Φ12(x) ≡ Φ1 · Φ2(x) = Φ1(x)Φ2(x), (2.15)

which becomes in momentum representation a convolution stating that the momentum of

the composite field is the sum of the momenta of the component fields:4

Φ̃12(p̂) =

∫ +∞

−∞
dp̂1 dp̂2 Φ̃1(p̂1) Φ̃2(p̂2)δ (p̂− p̂1 − p̂2) . (2.16)

The Leibniz rule

∂xΦ12(x) = (∂xΦ1(x)) Φ2(x) + Φ1(x) (∂xΦ2(x)) , (2.17)

becomes in momentum representation

p̂Φ̃12(p̂) =

∫ +∞

−∞
dp̂1 dp̂2 Φ̃1(p̂1) Φ̃2(p̂2) (p̂1 + p̂2) δ (p̂− p̂1 − p̂2) , (2.18)

which is automatically fulfilled by the delta function of momentum conservation.

4In the present discussion we restrict for notational simplicity to a one dimensional case, extension to

higher dimensions is trivial.
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If strict locality is assumed also on the lattice, namely if we assume that the product

of two fields is a local product

ϕ12(x) = ϕ1 · ϕ2(x) = ϕ1(x)ϕ2(x) x = nl, (2.19)

we also find, as in the continuum, that the momentum is additive, but only modulo 2π
l :

ϕ̃12(p) =

∫ +π
l

−π
l

dp1 dp2 ϕ̃1(p1) ϕ̃2(p2)
+∞∑

k=−∞
δ

(
p− p1 − p2 + k

2π

l

)
, (2.20)

with k integer and all fields periodic with period 2π
l . We can now prove the following state-

ment: If the product on the lattice is defined as the local product of eq. (2.19) it is impossible

to find a derivative operator (2.13), satisfying the periodicity conditions (2.14), that obeys

the Leibniz rule with respect to the given product. This result is not new (see [16, 50]), but

we discuss it again in detail here, as it is the starting point of our approach. Let us assume

that a derivative operator ∆µ (∆ in one dimension) exists that satisfies the Leibniz rule.

Then the Leibniz rule would read:

∆ϕ12(x) = ∆ϕ1(x) ϕ2(x) + ϕ1(x) ∆ϕ2(x). (2.21)

In momentum representation, using (2.13), the Leibniz rule (2.21) becomes:

∆(p) ϕ̃12(p) =

∫ +π
l

−π
l

dp1 dp2 ϕ̃1(p1) ϕ̃2(p2) (∆(p1) + ∆(p2))
+∞∑

k=−∞
δ

(
p−p1−p2+k

2π

l

)
.

(2.22)

Equation (2.22) should be satisfied for arbitrary ϕ̃i(pi). So by replacing ϕ̃12(p) in (2.22)

with the r.h.s. of (2.20) and taking into account the periodicity of ∆(p) one finds that (2.22)

is satisfied iff:

∆(p1 + p2)−∆(p1)−∆(p2) = 0, (2.23)

which implies that the derivative ∆′(p) is a constant. So the only solution of (2.23) is

∆(p) = p which however is not periodic, contrary to the original assumption. In conclusion,

it is impossible to define a derivative operator on the lattice that satisfies the Leibniz rule

if the product of fields is the local product defined in (2.19), that is if the momentum on

the lattice is additive and conserved modulo 2π
l . As we shall see in the following sections

the Leibniz rule can be recovered only if the locality of the product and the translational

invariance on the lattice are abandoned, at least at the lattice scale. Notice however that

with p1 and p2 in the fundamental interval −π
l < p < π

l (2.23) is satisfied for |p1 + p2| < π
l

if ∆(p) is the “saw tooth” function defined in the fundamental interval by:

∆(p) = p − π

l
< p <

π

l
, (2.24)

and extended by periodicity outside it. Eq. (2.24) defines the SLAC derivative [17]. Al-

though the SLAC derivative does not satisfy the Leibniz rule, it is the best possible solution

in the sense that it fulfills eq. (2.23) for the largest possible interval in momentum space,

an interval whose extension goes to infinity as the lattice spacing goes to zero.
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We shall now discuss in some more detail the origin of the fermion doubling problem

on the lattice. We already mentioned earlier in this section that the natural choice for the

derivative operator ∆ on the lattice, namely the finite difference over one lattice spacing,

leads to an ambiguity, since it is possible to define a right or a left difference operator ∆±
given in eq. (2.5).

A symmetric finite difference on the other hand can be defined as ∆s = 1
2 (∆+ + ∆−),

but involves a difference over two lattice spacings (see eq. (2.3)).

In momentum space ∆+ and ∆− are multiplicative operators represented by complex

conjugate functions of the momentum:

∆±ϕ(x)→ ∆±(p)ϕ̃(p), (2.25)

where

∆±(p) = ∓i
(
e±ilp − 1

)
, (2.26)

whereas ∆s is just the real part of ∆±:

∆s(pµ) =
1

l
sin lpµ. (2.27)

In order to preserve the hermiticity of the action the inverse propagator of a free boson

and of a free fermion should be real functions of the momenta in momentum space. In

the bosonic case the inverse propagator of the continuum theory is a quadratic form in the

momentum, and can be written on the lattice as a real function by a combined use of ∆+

and ∆−:

p̂µp̂
µ →

∑
µ

∆+(pµ)∆−(pµ) =
2

l2

∑
µ

(1− cos(lpµ)) . (2.28)

However a different form of the bosonic inverse propagator is also possible that only involves

∆s(p) and coincides with (2.28) in the limit of small lpµ. This can be obtained by simply

replacing p̂µ with the symmetric finite difference operator ∆s(p):

p̂µp̂
µ →

∑
µ

∆s(pµ)∆s(pµ) =
1

l2

∑
µ

sin2 lpµ. (2.29)

Instead, in the case of the fermion propagator, which is linear in the momentum, hermiticity

on the lattice requires that the inverse propagator is written in terms of the symmetric

difference operator, namely:

γµp̂µ → γµ∆s(pµ) =
1

l
γµ sin(lpµ). (2.30)

In standard lattice theory the form (2.28) has been used for bosons and, unavoidably,

the form (2.30) for fermions. This avoids the appearing of extra states in the boson sector

since the inverse propagator in (2.28) vanishes only for pµ = 0 in the Brillouin zone. The

fermion inverse propagator (2.30) on the contrary vanishes for any set of pµ that satisfies

the conditions:

∆s(pµ) =
1

l
sin(lpµ) = 0 µ = 1, 2, · · · , d. (2.31)
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The solutions of (2.31) are the 2d points in momentum space labeled by the index A, and

whose coordinates in momentum space p
(A)
µ are given in (2.8). All these 2d momentum con-

figurations correspond to a zero momentum configuration in the continuum, and small fluc-

tuations around them are then interpreted as distinct degrees of freedom in the continuum.

This is the essence of the fermion doubling phenomenon.

The boson inverse propagator (2.29) is obtained from the continuum case by applying

the same prescription used for the fermion one, namely by replacing p̂µ with ∆s(pµ). As a

result it vanishes not just at pµ = 0 but at each of 2d field configurations pµ = p
(A)
µ , leading

to a doublers phenomenon also for the boson. This may be regarded as a disadvantage, but

it is indeed necessary in supersymmetric theories if supersymmetry has to be kept exactly

on the lattice [47, 48].

This argument does not depend on the particular form chosen for the derivative op-

erator ∆(p) on the lattice as long as ∆(p) is a smooth real function of p satisfying the

periodicity condition (2.14). In fact if ∆(p) has a simple zero at pµ = 0 (we assume that

∆(pµ) ' pµ for small momenta, namely lpµ � 1) and it is smooth and periodic it has

necessarily another zero in the Brillouin zone. This additional zero is always located at

pµ = ±π
l if besides being periodic ∆(p) is an odd function of p:

∆(−p) = −∆(p). (2.32)

The condition (2.32) is a reality condition, in the sense that it comes from the requirement

that the derivative of a real field in the coordinate representation is still real. The double

zero of ∆(p) at p = 0 and p = ±π
l implies that the correspondence between the momentum

on the lattice and the momentum in the continuum theory is given by eq. (2.6) with l = a
2 ,

where a is the smallest translation of the lattice that corresponds to a translation in the

continuum.

It is well known that out of the 2d states arising from a lattice fermion half have

positive and half negative chirality. This is discussed in all texbooks, and we review it here

for comparison with the new approach introduced in the next section. Consider the Dirac

operator in the continuum:

D(p̂) = γµp̂µ. (2.33)

On the lattice, choosing for simplicity the symmetric finite difference operator as derivative

operator, the Dirac operator becomes, according to (2.30)

Dl(p) = γµ∆s(pµ) = γµ
1

l
sin(lpµ). (2.34)

By using now the relation (2.6) with a = 2l we replace lpµ in (2.34) with lp̂µ − πkµ and

consider the Dirac operator on the lattice in the continuum limit l → 0 by expanding in

powers of lp̂µ and keeping only the first term in the expansion:

Dl(p) = γµ(−1)kµ p̂µ +O(l2p̂3
µ). (2.35)

In the Brillouin zone the integers kµ can only take the values 0 and +1 corresponding

respectively to the expansions around pµ = 0 and pµ = π
l , the signature (−1)kµ arising
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from the fact that the slope of ∆s(p) at p = π
l has opposite sign of the one at p = 0.

The 2d possible choices of the d integers kµ correspond then to the different copies of the

fermion. The chirality of each copy can be derived by observing that with a redefinition of

the gamma matrices by means of a unitary transformation eq. (2.35) can be written as:

Dl(p) = γ
′µp̂µ +O(l2p̂3

µ), (2.36)

with

γ
′µ = (−1)kµγµ. (2.37)

This also implies

γ
′5 = (−1)

∑
µ kµγ5, (2.38)

namely a positive or negative chirality according to the sign of (−1)
∑
µ kµ .

The map between the non-compact momentum space of the continuum and the com-

pact momentum space of the lattice given in (2.6) plays a fundamental role in defining

the lattice theory. As we have seen the fermion doubling problem and the violation of the

Leibniz rule are intimately connected to this map, and its modification is at the root of

the different approach that we shall develop in the following sections.

We close this section with the proof that the correspondence (2.6) is obtained if the

lattice fields are constructed starting from the fields of the continuum theory by means

of a blocking transformation5 that preserves the invariance of the lattice under discrete

translations of a lattice spacing l.6 We consider for simplicity a one dimensional example

and define the blocking transformation as:

ϕA(n) =

∫
dxf(nl − x)ΦA(x), (2.39)

where the fields ϕA and ΦA denote respectively the lattice and the continuum fields and

the function f(y) is arbitrary but in general peaked at y = 0 so that the lattice fields ϕA(n)

are determined by the continuum fields ΦA(x) with x close to nl. Translational invariance

under discrete displacements by l of the lattice is ensured by the translational invariance

of the continuum theory and by the x − ln dependence in the function f . The blocking

transformation (2.39) corresponds to our intuitive notion of what a lattice theory should be:

each point of the lattice is representative of the surrounding area of the continuum theory

and the blocking procedure does not depend on the lattice point (translational invariance).

From the perspective of the momentum space however the blocking transformation (2.39)

is much less intuitive. In fact, by taking the Fourier transform of both sides and denoting

the transformed fields with an upper tilde we obtain:

ϕ̃A(p) =
∑
k

f̃

(
p+

2π

l
k

)
Φ̃A

(
p+

2π

l
k

)
. (2.40)

The correspondence (2.6) acquires now a more precise meaning: the lattice field ϕ̃A(p) is

the sum, weighed with the function f̃ , of all the continuum fields ΦA(p̂) with p̂ = p+ 2π
l k.

5We use here this term in a more general sense than usual, namely also for transformations from con-

tinuum to lattice.
6In this example we restrict ourselves to the case a = l in eq. (2.6).
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So for instance, even for very small values of p, ϕ̃A(p) receives contributions from continuum

fields with arbitrarily large values of the momentum p̂. This seems rather unnatural, and

it can be avoided by restricting f̃(q̂) to be significantly different from zero only within a

region of q̂ with size of order 1
l . In coordinate representation this corresponds to a function

f(y) significantly different from zero in a region of order l around y = 0 in agreement

with the original intuitive notion of the blocking transformation. A well known example is

obtained by choosing in eq. (2.40):

f̃(p) = 0 for |p| ≥ π

l
, (2.41)

where the equality is introduced to insure periodicity in p of the lattice field: ϕ̃A(−π
l ) =

ϕ̃A(πl ). With this choice the blocking transformation (2.40) becomes:

ϕ̃A

(
p+

2π

l
k

)
= f̃(p)Φ̃A(p) − π

l
≤ p ≤ π

l
. (2.42)

In (2.42) the r.h.s. does not depend on the integer k, so the periodicity of the lattice

field with period 2π
l is guaranteed. The value of ϕ̃A(p) does not depend on the values

taken by the continuum fields Φ̂A(p̂) for |p̂| ≥ π
l , so that the lattice theory is effectively

equivalent to introducing a momentum cutoff. Eq. (2.42) is a particular form of the blocking

transformation in momentum space, with the property that the lattice fields ϕ̃A(p) with

p in the fundamental zone |p| ≤ π
l are proportional through the weight function f̃ to the

continuum fields of corresponding momentum in the continuum. A generalization of this

transformation is at the root of our approach and will be discussed in the following sections.

If we replace in (2.42) ΦA with ∂ΦA, namely Φ̃A(p̂) with p̂Φ̃A(p̂), then the lattice fields

ϕ̃A(p) should be multiplied by the lattice derivative operator ∆(p), which can in this way

be determined. In fact we have:

∆

(
p+

2π

l
k

)
ϕ̃A

(
p+

2π

l
k

)
= f̃(p) p Φ̃A(p) − π

l
≤ p ≤ π

l
, (2.43)

leading to the well known SLAC derivative:

∆

(
p+

2π

l
k

)
= p − π

l
≤ p ≤ π

l
, (2.44)

where the same result was given in [16, 50].

As discussed earlier in this section the problem of the fermion doubling is also related

to the periodicity in pµ of the derivative operator on the lattice and to the fact that any

continuous and periodic function with a simple zero at pµ = 0 has to vanish in some other

point in the fundamental interval (Brillouin zone) giving rise to another state of opposite

chirality. The only way to avoid the doubling in this context is to give up the continuity of

the derivative operator as a function of the momentum. An example is the SLAC derivative

given above which only vanishes at p = 0 in the Brillouin zone, so that the doublers problem

does not arise. However, as shown in eq. (2.44), the SLAC derivative has a discontinuity

at p = ±π
l and as a consequence of that it is long range in coordinate space, leading to the

well known problems in getting the correct continuum limit when used in gauge theories [3].
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3 The new lattice

3.1 Restoring the Leibniz rule and avoiding the doubling problem

Locality and translational invariance are standard assumptions in conventional lattice reg-

ularization. However, as seen in the previous section, they lead to the impossibility of

defining a derivative operator on the lattice that satisfies the Leibniz rule. This originates

from the fact that in order to be well defined on the lattice the derivative operator should be

a periodic function of the momentum (2.14), whereas locality and translational invariance

imply that the additive and conserved quantity on the lattice is the momentum itself which

however is defined only modulo 2π
a and so is not suitable as a finite difference operator.

In the present paper we shall take an entirely different point of view which was first

taken by Dondi and Nicolai in their poineering paper on lattice supersymmetry [11]. We

shall assume that the additive and conserved quantity on the lattice is not the momentum

pµ but the operator ∆(pµ), periodic with period 2π
l in pµ, which plays on the lattice the role

of the derivative operator. This means replacing the local product on the lattice, given in

momentum representation by the convolution (2.20), with a new product, which we shall

denote as star product, given by a convolution where ∆(p) is conserved, namely in one

dimension:

ϕ̃1 ? ϕ2(p12) =
1

2π

∫ π
l

−π
l

dp1dp2V (p12; p1, p2)ϕ̃1(p1)ϕ̃2(p2)δ (∆(p12)−∆(p1)−∆(p2)) ,

(3.1)

where V (p12; p1, p2) defines the measure of integration, which will be assumed to be sym-

metric in the last two arguments

V (p12; p1, p2) = V (p12; p2, p1), (3.2)

thus defining a commutative product. Further properties of the measure will be discussed

later. The derivative operator ∆(p) satisfies now the Leibniz rule by construction. In fact

it is immediate to check that thanks to the delta function in (3.1) the relation

∆(p12)ϕ̃1 ? ϕ2(p12) = ∆(p1)ϕ̃1(p1) ? ϕ̃2(p2) + ϕ̃1(p1) ?∆(p2)ϕ̃2(p2), (3.3)

is identically satisfied.

In coordinate representation the star product (3.1) is non-local. This will be examined

more in detail further in the paper. Moreover, since the momentum pµ on the lattice is not

anymore additive nor conserved (except approximately for momenta much smaller that 1
l ),

the lattice itself is not translationally invariant. Translational invariance however is not

lost but it is represented by infinitesimal transformations of the fields generated by ∆(pµ),

namely:

δεϕ̃A(p) = εµ∆(pµ)ϕ̃A(p), (3.4)

or by the corresponding finite transformations

ϕ̃A(p)→ eε
µ∆(pµ)ϕ̃A(p), (3.5)

where in (3.5) εµ are arbitrary finite parameters.
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In fact, due to the conservation of ∆(pµ) and the validity of the Leibniz rule an action

entirely constructed with the star product is automatically invariant under (3.4) and (3.5).

Notice that the symmetry (3.5) is a continuous symmetry and not a discrete one, as it

would be if it were associated to lattice displacements.

The correspondence between pµ and p̂µ, given in the conventional lattice by eq. (2.6),

must be modified in the present approach. In fact, since p̂µ is an additive and conserved

quantity in the continuum theory it must correspond to the additive and conserved quantity

on the lattice, namely it must correspond to the derivative operator ∆(pµ). Eq. (2.6) is

then replaced now by

p̂µ ≡ ∆(pµ). (3.6)

The derivative operator ∆(pµ) must satisfy a number of conditions. As already dis-

cussed in the previous section it must be a periodic function with period 2π
l (eq. (2.14))

and it must be an odd function of p (2.32). Moreover, since p̂µ is real, it has to be a real

function.7 We shall also assume that, for lp � 1, ∆(p) reduces to p, more precisely we

shall assume that l∆(p) is a function of lp with a simple zero at lp = 0:

l∆(p) = lp+O
(
(lp)3

)
. (3.7)

Besides vanishing at p = 0 the function ∆(p), being both odd and periodic, has another

zero in the Brillouin zone at p = ±π
l . We shall assume in the following that these are the

only two zeros of ∆(p).

The simplest function that satisfies all these constraints is the symmetric finite differ-

ence operator ∆s(p) defined in momentum space by (2.27). With that choice the derivative

of a field ϕ(x) on the lattice is given in coordinate representation by:

∆s,µϕ(x) =
1

2l
(ϕ(x+ l~nµ)− ϕ(x− l~nµ)) , (3.8)

where ~nµ is the unit vector in the µ direction and x is a point on the lattice whose coordi-

nates are integer multiples of l. In momentum space ∆s acts as a multiplicative operator:

∆s(pµ)ϕ̃(p) =
1

l
sin(lpµ)ϕ̃(p). (3.9)

With ∆ = ∆s the infinitesimal translations (3.4) become:

δεϕ̃A(p) = εµ
1

l
sin(lpµ)ϕ̃A(p), (3.10)

namely in coordinate representation:

δεϕA(x) = εµ
1

2l
(ϕA(x+ l~nµ)− ϕA(x− l~nµ)) , (3.11)

which in the continuum limit l→ 0 reproduces the ordinaty infinitesimal translation in the

continuum. It is apparent from (3.11) that an infinitesimal translation is represented on the

7This fact rules out, as possible choices for ∆(pµ), the difference operators over one lattice spacing ∆±(p)

given in (2.26).
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lattice by a difference over two lattice spacings. If we denote by a, as in the previous section,

the “effective” lattice spacing, namely the smallest lattice movement that corresponds to

a translation in the continuum, then we have from the previous equations that

l =
a

2
. (3.12)

If in the correspondence (3.6) we replace ∆(pµ) with ∆s(pµ) we obtain the follow-

ing map:

p̂µ =
1

l
sin(lpµ) =

2

a
sin
(apµ

2

)
. (3.13)

The correspondence (3.13) is not one-to-one: for |p̂µ| > 1
l there is no value of pµ satisfy-

ing (3.13) whereas for |p̂µ| < 1
l there are within the Brillouin zone − π

2l ≤ pµ ≤ 3π
2l two

distinct solutions. In fact since ∆s(pµ) is invariant under the transformation:

pµ →
π

l
− pµ, (3.14)

if pµ is a solution of (3.6) for a given p̂µ, then π
l − pµ is also a solution.

This implies that in d dimensions a constant field configuration in the continuum,

namely in momentum space a configuration with p̂µ = 0, has 2d images on the lattice.

They are labeled by the index A introduced in (2.7) and are given by pµ = p
(A)
µ where p

(A)
µ

are defined in (2.8). The corresponding field configurations ϕ(A)(xµ) are the same ones

introduced in the last section and given by (2.10). So the correspondence between p̂µ and

pµ given in (3.13) produces the same translationally invariant configurations labeled by A
as the correspondence (2.6) introduced in the last section, provided we set a = 2l in the

latter. There are however two profound differences between the two cases. In (3.13) the

relation a = 2l is fixed and the case a = l is ruled out from the start as ∆(p) has to vanish

an even number of times due to its perodicity and smoothness in the fundamental region.

So the doublers phenomenon is completely general and it applies to bosons as well as to

fermions8 making the balance between bosonic and fermionic degrees of freedom possible

in supersymmetric theories. Moreover, as we shall discuss shortly, with the correspon-

dence (3.13) the physical states associated to the doublers of a fermion have all the same

chirality, and not opposite chirality as in the traditional lattice formulation.

Before discussing this point let us observe that for |p̂µ| < 1
l there are 2d momentum

configurations on the lattice that correspond to a given momentum p̂µ in the continuum.

These configurations are related to each other by the symmetry transformations (3.14) as

a result of the invariance of sin(lpµ) under such transformations. In the following we shall

assume that the lattice derivative ∆(p) satisfies the same symmetries as sin(lpµ), namely

we shall add to the list of required properties of ∆(p) the symmetry

∆(p) = ∆
(π
l
− p
)
. (3.15)

This symmetry does not follow from a fundamental principle, but is required if one wants

the 2d doublers to be related by the symmetry transformation (3.14), as it is needed for

8In some cases however, as already seen in ref. [18] and [19], doublers of a propagating boson do not

propagate and play the role of auxiliary fields in extended supersymmetric theories.
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instance if one wants to identify them with different superfield components in an extended

supersymmetric theory [18, 19].

From (3.15) it also follows that ∆′(p) = d∆(p)
dp is antisymmetric with respect to (3.14),

namely:

∆′(p) = −∆′
(π
l
− p
)
, (3.16)

and this implies that the points ± π
2l are extremes of ∆(p):

∆′
(
± π

2l

)
= 0. (3.17)

We shall assume in the following that these are the only extremes of ∆(p), then we have:

−
∣∣∣∆( π

2l

)∣∣∣ ≤ ∆(p) ≤
∣∣∣∆( π

2l

)∣∣∣ . (3.18)

In order to see the second fundamental difference with respect to the conventional

approach, namely that all fermion doublers here have the same chirality, let us consider

again the Dirac operator on the lattice. This is given in eq. (2.34) for the special choice

∆(p) = ∆s(p), but in general it reads:

Dl(p) = γµ∆(pµ). (3.19)

In the case of the conventional lattice examined in the previous section, we considered

eq. (2.34) in the limit lp̂µ � 1 and using the relation (2.6) between pµ and p̂µ we found

eq. (2.35) where the sign (−1)kµ is the chirality changing signature. In the present approach

in order to express pµ in terms of the physical momentum p̂µ we have to use eq. (3.6) which

replaced into (3.19) gives:

Dl(p) = γµp̂µ. (3.20)

This means that the Dirac operator Dl(p), when expressed in terms of the continuum

momentum p̂µ, is identical to the Dirac operator in the continuum γµp̂µ irrespective of the

value of pµ. So all the 2d copies of the fermion produce the same Dirac equation in terms

of the physical momentum and have trivially the same chirality.

The main consequence of this fact is that the problem of the doublers can be avoided.

There are two options for that, which we shall denote as A and B and are explained below:

• A). Doublers identified. Since all the 2d copies of the fermionic fields on the

lattice field have now the same chirality they can be identified by requiring that the

transformation (3.14) is a symmetry of both bosonic and fermionic fields. Let ϕ̃A(p)

be the fields in the momentum representation of a one dimensional lattice theory

with lattice spacing a
2 .9 We can identify the states at p = 0 and p = 2π

a by imposing

the condition:

ϕ̃A

(
2π

a
− p
)

= ϕ̃A(p), (3.21)

9Here and in the following we use the effective lattice spacing a in preference of the lattice spacing l,

keeping in mind that the relation l = a
2

is valid all through.
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which in coordinate representation reads:

ϕ
(
−na

2

)
= (−1)n ϕ

(na
2

)
, (3.22)

where na
2 = nl = x is the lattice coordinate. After this identification the number of

degrees of freedom of the theory on the lattice coincides with the one of the continuum

theory and the doublers problem is avoided.

It is also interesting to note that in the supersymmetric Wess-Zumino in 1 and 2

dimensions with N = 2 the truncation condition (3.21) follows from imposing the

chiral condition on the superfields [19].

A more general identification can be used instead of (3.21) by imposing the condition:

ϕ̃A

(
2π

a
− p
)

= h(p)ϕ̃A(p), (3.23)

where h(p) is any periodic function satisfying for consistency the condition

h(p)h

(
2π

a
− p
)

= 1. (3.24)

Eq. (3.23) can then be rewritten as:√
h

(
2π

a
− p
)
ϕ̃A

(
2π

a
− p
)

=
√
h(p)ϕ̃A(p). (3.25)

According to (3.25) the more general condition (3.23) can always be reduced to the

simple form (3.21) by a rescaling of the fields in momentum space:

ϕ̃A(p)→
√
h(p)ϕ̃A(p). (3.26)

For this reason in the following we shall always refer to the symmetry condition (3.21)

without any substantial loss of generality.

In the case of higher dimensions the contraints (3.21) and (3.22) are applied separately

for each dimensions. So, for instance in d dimensions:

ϕ̃

(
p1, . . . ,

2π

a
− pj , . . . , pd

)
= ϕ̃(p1, . . . , pj , . . . , pd), (3.27)

or, in coordinate representation:

ϕ
(n1a

2
, . . . ,−nja

2
, . . . ,

nda

2

)
= (−1)njϕ

(n1a

2
, . . . ,

nja

2
, . . . ,

nda

2

)
. (3.28)

Notice that since the derivative operator ∆(p) is chosen to be invariant under (3.14)

the field symmetries (3.27) are not affected by derivation. Notice also that as a

result of (3.28) the value of the fields in the quadrant with nj ≥ 0 is sufficient to

determine the fields everywhere. To summarize: one degree of freedom on the d

dimensional cubic lattice with spacing a
2 corresponds to 2d degrees of freedom in the

continuum theory; however, since all these degrees of freedom have, in the case of

fermions, the same chirality they can be identified using eqs. (3.27) or (3.28) and the

correspondence between the lattice fields and the continuum fields can thus be made

to be a one-to-one correspondence.
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• B). Doublers as distinct degrees of freedom. The identification (3.23) discussed

above as option A is not always necessary. In some situations the 2d copies of the

lattice fields may be regarded as distinct degrees of freedom in the continuum, and

that may even be necessary to implement some continuum symmetries on the lattice.

An example was given in ref. [18] and [19], where it was shown that in theories with

extended supersymmetries the 2d doublers can be interpreted as different members of

the same supermultiplet. For instance in the D = 1, N = 2 supersymmetric quantum

mechanics the two bosonic and the two fermionic fields of the continuum theory are

represented on the lattice by a single bosonic and a single fermionic field with the

exact supersymmetry being represented on the lattice in a very economic way [18].

The situation of the D = 2, N = 2 superalgebra is apparently similar. In fact

it admits a representation in terms of a superfield with 8 bosonic and 8 fermionic

components which can be realized on the lattice in terms of just two bosonic and

two fermionic fields. However in order to write the lagrangian of the supersymmet-

ric Wess-Zumino model chiral conditions have to be applied to the original sixteen

component superfield to reduce it to a four component chiral superfield. On the lat-

tice this corresponds exactly to identifying the doublers as in (3.27), so that in the

end the component fields of a chiral superfield of the Wess-Zumino model are repre-

sented on the lattice by a single lattice field satisfying the “chiral conditions” (3.27)

and (3.28) [19].

3.2 Continuum limit and locality

As seen in the previous subsection the identification of the doublers leads to the non local

condition (3.22), generalized to higher dimensions in (3.28). We shall consider here for

simplicity only the one dimensional case, extension to higher dimensions is trivial. As

a result of (3.22) one expects non local interaction terms on the lattice, as the value of

the field on the site xn is identified, modulo a factor (−1)n, with the value of the field in

−xn. One may wonder how this is compatible with the locality in the continuum theory

which we expect to emerge from the lattice theory in the limit a→ 0. The explanation of

this seeming contradiction is in the fact that the relation between the continuum position,

labeled by a continuum variable ξ, and the lattice position, labeled by xn = an
2 , depends

on the momentum of the field configuration we are considering on the lattice. For states

at (or around) p = 0 the relation is the expected one, namely ξ = xn, but for the doublers,

namely for states at or around p = 2π
a the relation is ξ = −xn, that is with a space

reflection with respect to the p = 0 states. So it happens that a state at the lattice position

xn and its doubler at −xn share the same position ξ in the continuum limit, hence their

identification (3.22) does not involve any contradiction in the continuum limit.

Let us illustrate this point with a specific example.

For notation’s covenience we introduce the angular variable θ = ap
2 and similarly the

continuum variable θ̂ = ap̂
2 , which are respectively the lattice and the continuum momentum

expressed in units of 2
a .

In the continuum limit a→ 0 we have θ � 1.
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Consider now a wave packet centered around θ = 0 of the form:

ϕ̃0(θ) = e−Nθ
2+iθn0 . (3.29)

Here n0 is an integer and N � 1, so that ϕ̃0(θ) is effectively zero for θ > O( 1√
N

) and all

integrals over θ from −π to π may be safely replaced by integrals from −∞ to +∞.

Similarly we define a wave packet centered around θ = π, given by:

ϕ̃π(θ) = e−N(θ−π)2+iθn0 . (3.30)

The coordinate representation of these wave packets on the lattice may be easily ob-

tained by a Fourier transform which gives:

ϕ0(n) ∼ 1√
N
e−

1
4N

(n−n0)2
, ϕπ(n) ∼ (−1)n−no

1√
N
e−

1
4N

(n−n0)2
. (3.31)

As expected the two wave packets are expressed on the lattice by identical gaussians of

width
√
N and centered around n = n0, but with the alternate sign factor (−1)n−no in the

case of the doubler state ϕπ(n).

In writing the wave packets (3.29) and (3.30) no assumption has been made as to

what kind of lattice we are dealing with, so the equations above apply equally well to the

conventional lattice and to our new lattice approach.

However there is a difference between the conventional lattice and the new lattice, and

that is in the correspondence between the lattice and the continuum theory.

In the conventional lattice the relation between the lattice momentum and the mo-

mentum in the continuum is given by eq. (2.6) which gives

θ̂ = θ for θ ∼ 0 and θ̂ = θ − π for θ ∼ π . (3.32)

In terms of the continuum momentum θ̂ the wave packets (3.29) and (3.30) are then

identical (modulo a constant factor (−1)n0 in (3.30)) and their Fourier transform gives in

both cases a gaussian of width
√
N centered around ξ = an0

2 : the two wave packets with

the same position on the lattice have also the same position in the continuum.

In our “new lattice” approach the relation between the continuum and the lattice

momentum is different and is given by eq. (3.6). By using (3.7) and (3.15) one finds that

the relation between θ̂ and θ is now given by:

θ̂ = θ for θ ∼ 0 and θ̂ = π − θ for θ ∼ π. (3.33)

Compared to (3.32) there is a change of sign at θ ∼ π. As a result, if we write the wave

packets in the continuum coordinate representation (we shall denote with the capital Φ the

corresponding wave functions) we find:

Φ0(ξ) =

∫ +∞

−∞
dθ̂ϕ̃0(θ̂)e−iθ̂ξ ∼ 1√

N
e−

1
4N

(ξ−n0)2
(3.34)

and

Φπ(ξ) =

∫ +∞

−∞
dθ̂ϕ̃π(π − θ̂)e−iθ̂ξ ∼ (−1)n0

√
N

e−
1

4N
(ξ+n0)2

. (3.35)

– 21 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
9

It is clear from (3.34) and (3.35) that the wave packets (3.31) which are centered on

the lattice around the site n0 correspond to wave packets in the continuum theory centered

respectively around ξ = n0 and ξ = −n0.

This explains the apparently strange behaviour of translations when seen in the lattice

coordinate representation. According to (3.5) a translation amounts to a multiplication

of the wave packets by eiεθ̂ which in the continuum is obviously equivalent to shifting the

coordinate ξ by ε. The picture on the lattice is quite different because, as a result of the

minus sign in front of θ in the second formula of (3.33), the translation moves the wave

packets at θ = π in the opposite direction with respect to the ones at θ = 0. So the

two wave packets, originally in the same position are separated on the lattice by 2ε after

translation, while remaining at the same distance (2n0) in the continuum.

In order to understand in the context of this example the doublers identification dis-

cussed in the first part of this section let us consider now in place of ϕ̃π(θ) given in eq. (3.30)

the following wave packet

ϕ̃0(π − θ) = (−1)n0e−N(π−θ)2−iθn0 . (3.36)

This is also a doubler state peaked at θ = π obtained from ϕ̃0(θ) by the symmetry θ → π−θ.
By taking a Fourier transform of (3.36) we find in coordinate representation on the lattice

a gaussian centered at n = −n0, namely:

ϕ̃0(π − θ)→ (−1)n√
N

e−
1

4N
(n+n0)2

. (3.37)

However, if we take a Fourier transform with respect to the variable θ̂ we find that in the

continuum coordinate representation ϕ̃0(π − θ) is represented by a gaussian centered at

ξ = n0, identical to Φ0(ξ) given in (3.34). In conclusion ϕ̃0(θ) and ϕ̃0(π−θ) give rise in the

continuum to the same wave packets configurations centered at ξ = n0, in spite of being

located at lattice sites which are opposite with respect to the origin. The identification of

the corresponding degrees of freedom is then consistent with locality in the continuum limit.

In general, the doublers identification given in (3.21) may appear a non local condition

on the lattice (see eq. (3.22)) but it is consistent with locality when viewed in terms of

continuum variables.

Finally we want to remark that the transition from the θ = 0 to the θ = π region is

a smooth one on the lattice. A wave packet of the form (3.29) except centered around an

arbitrary momentum θ0 is still represented on the lattice by a gaussian of width
√
N and

centered at n = n0:

ϕθ0(n) ∼ eiθ0(n−n0) 1√
N
e−

1
4N

(n−n0)2
. (3.38)

In the neighborhood of θ0 the relation between θ̂ and θ is given by:

θ̂ − θ̂0 =
dθ̂

dθ

∣∣∣∣∣
θ=θ0

(θ − θ0) . (3.39)

A direct calculation using (3.39) shows that in the continuum coordinate representation the

wave packet is represented by a gaussian of width
√
N

dθ̂
dθ

∣∣∣
θ0

which becomes infinite at θ0 = π
2
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where dθ̂
dθ vanishes.10 So at θ0 = π

2 the wave packet becomes completely delocalized in the

continuum representation, and that is the value of θ at which the space reflexion of the

lattice coordinate relative to the continuum one occurs.

4 A non local product on the lattice: the star product

The main new feature of our approach is that the additive and conserved quantity on the

lattice is not the momentum itself, but some periodic function ∆(p) of the momentum that

plays the role of the derivative operator in the lattice theory and that corresponds to the

momentum of the continuum theory. An obvious consequence of this approach is that the

lattice formulation is not translational invariant and that the local product of two fields

is replaced by a non local product: the star product. This has been defined in eq. (3.1),

which we reproduce here for convenience, with the effective lattice spacing a at the place

of l in the integration limits:

ϕ̃1 ? ϕ2(p12) =
1

2π

∫ 3π
a

−π
a

dp1dp2V (p12; p1, p2)ϕ̃1(p1)ϕ̃2(p2)δ (∆(p12)−∆(p1)−∆(p2)) . (4.1)

In this section we shall discuss in detail the properties of the star product defined in (4.1).

4.1 Conditions for the associativity of the star product and consequences of

its violation

Let us begin with discussing the formal properties of the star product defined in (4.1).

Commutativity will be assumed by requiring that the integration volume is symmetric,

namely that it satisfies eq. (3.2).

Associativity of the star product requires

((ϕ̃3 ? ϕ̃2) ? ϕ̃1) (p) = (ϕ̃3 ? (ϕ̃2 ? ϕ̃1)) (p), (4.2)

and poses severe restrictions on both V (p12; p1, p2) and ∆(p).

In fact, let us consider for instance the r.h.s. of (4.2). With the definition (4.1) it can

be written explicitely as:

(ϕ̃3 ? (ϕ̃2 ? ϕ̃1)) (p) =

(
1

2π

)2 ∫ 3π
a

−π
a

dp1dp2dp3K (p; p3; p1, p2) ·

· δ (∆(p)−∆(p1)−∆(p2)−∆(p3)) ϕ̃1(p1)ϕ̃2(p2)ϕ̃3(p3), (4.3)

where K (p; p3; p1, p2) is given by:

K (p; p3; p1, p2) =

∫ 3π
a

−π
a

dp12V (p12; p1, p2) V (p; p12, p3) δ (∆(p12)−∆(p1)−∆(p2)) . (4.4)

For the star product to be associative it is necessary that the kernel K (p; p3; p1, p2) is

symmetric in the three momenta p1, p2 and p3. As discussed already in [51], this requires

10See eq. (3.17).
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in the first place that the function ∆(p) takes any value from −∞ to +∞ when p varies in

the Brillouin zone. In fact if ∆(p) is limited, namely, taking into account eq. (3.18), if

|∆(p)| ≤ |∆
(π
a

)
| <∞ − 2π

a
< p <

2π

a
, (4.5)

then due to the delta function in (4.4) we have:

K (p; p3; p1, p2) = 0 for |∆(p1) + ∆(p2)| > |∆
(π
a

)
|. (4.6)

Eq. (4.6) is not symmetric under exchanges of p1, p2 and p3 and that implies a violation of

associativity: ϕ̃1 ? (ϕ̃2 ? ϕ̃3) 6= (ϕ̃1 ? ϕ̃2) ? ϕ̃3. The only way to recover the symmetry is to

make sure that (4.6) is empty because the inequality on the right is never satisfied, which

implies |∆(πa )| = ∞. So if we assume that the points p = ±π
a are the only values where

the derivative of ∆(p) vanishes (see eq. (3.17)), associativity of the star product requires:

∆
(
−π
a

)
= −∞, ∆

(
+
π

a

)
= +∞. (4.7)

Eq. (4.7) is a necessary condition for the associativity of the star product, but it is

not sufficient. In fact associativity requires that the result of the integration at the r.h.s.

of (4.4) is symmetric in the three momenta of the component fields, and this poses severe

restrictions, difficult to be met, on the integration volume V (p; p1, p2). In order to discuss

this point let us first assume that (4.7) is satisfied and that given an arbitrary p̂ the equation

∆(p) = p̂ has one and only one solution with p in the interval (−π
a ,

π
a ) and, due to the

symmetry p → 2π
a − p, one and only one solution in the interval (πa ,

3π
a ). Let now q12 be

the solution of

∆(q12) = ∆(p1) + ∆(p2) − π

a
≤ q12 ≤

π

a
, (4.8)

then the integration in (4.4) can be performed and gives:

K(p; p3; p1, p2) (4.9)

=
1∣∣∣d∆(q12)
dq12

∣∣∣
(
V (q12; p1, p2)V (p; q12, p3) + V

(
2π

a
− q12; p1, p2

)
V

(
p;

2π

a
− q12, p3

))
.

The associativity condition is then given by

K(p; p3; p1, p2) = K(p; p2; p1, p3), (4.10)

or equivalently the same with different permutations of the momenta, with the kernel K

given by (4.9) and (4.8). This is a non trivial functional equation, whose most general

solution is unknown to us as yet. The most general case is the one labelled as B in

the previous section, in which the fields ϕ̃A(p) have no symmetry with respect to the

transformation p → 2π
a − p, and hence all the 2d doublers on the lattice correspond to

distinct degrees of freedom in the continuum. In this case also the integration volume

V (p; p1, p2) does not have any symmetry, and we do not know if any solution of (4.10)

exists at all. Indeed there is an almost trivial solution to (4.10), discussed below, that
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corresponds however to the case A of the previous section, namely to the case where all

doublers are identified. This solution is given by:

V (p; p1, p2) =

∣∣∣∣d∆(p)

dp

∣∣∣∣ f(p1)f(p2)

f(p)
, (4.11)

where f(p) has to be periodic but is otherwise arbitrary. The function f(p) amounts

to a momentum dependent rescaling of all fields and can always be absorbed by a field

redefinition. Let us relax for a moment the first associativity condition (4.7), then with

the volume element (4.11) the kernel K (p; p3; p1, p2) is given by (4.6) and by:

K (p; p3; p1, p2) = 2

∣∣∣∣d∆(p)

dp

∣∣∣∣ f(p1)f(p2)f(p3)

f(p)
for |∆(p1) + ∆(p2)| < |∆

(π
a

)
|. (4.12)

The first equation in (4.12) is symmetric in the momenta pi of the constituent fields;

moreover, if we reinstate eq. (4.7), namely |∆(πa )| =∞, the inequality in (4.12) is valid for

all values of pi and so the corresponding star product is associative. The final form of the

associative star product corresponding to (4.11) is then given by:

f(p) ϕ̃1?ϕ2(p) =
1

2π

∫ 3π
a

−π
a

dp1dp2

∣∣∣∣d∆(p)

dp

∣∣∣∣f(p1)ϕ̃1(p1) f(p2)ϕ̃2(p2)δ (∆(p)−∆(p1)−∆(p2)) ,

(4.13)

with

|∆
(
±π
a

)
| =∞. (4.14)

The products f(pi)ϕ̃i(pi) in (4.13) should be chosen symmetric under pi → 2π
a − pi:

f

(
2π

a
− pi

)
ϕ̃i

(
2π

a
− pi

)
= f(pi)ϕ̃i(pi), (4.15)

because the antisymmetric part of f(pi)ϕ̃i(pi) gives a vanishing contribution to the star

product. This follows from the symmetry of ∆(pi) under such transform, and can be

checked by splitting the integration interval (−π
a ,

3π
a ) in half, and performing the change

of variable p′i = 2π
a − pi on the integrals between π

a and 3π
a . On the other hand, due to

the symmetry of ∆(p) also f(p)ϕ̃1 ? ϕ2(p) satisfies the same condition, so that eq. (4.15) is

valid for all fields.11 Eq. (4.15) coincides with eq. (3.25) and can be reduced to (3.21) by

fields redefinition. So the associative integration volume (4.11) implies the identification of

the doublers, as discussed in the case A of the previous section. The symmetry (4.15) can

be used to reduce the integrals in (4.13) to integrals over the (−π
a ,

π
a ) interval:

f(p) ϕ̃1 ? ϕ2(p) =
2

π

∫ π
a

−π
a

dp1dp2
d∆(p)

dp
f(p1)ϕ̃1(p1) f(p2)ϕ̃2(p2)δ (∆(p)−∆(p1)−∆(p2)) ,

(4.16)

where we have assumed, as discussed earlier, that p = ±π
a are the only extremes of ∆(p)

and hence dropped the absolute value within the integral. The arbitrary function f(p)

11The same is true, with obvious generalization, in higher dimensions.
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defines the integration volume over the momentum p and it amounts to a rescaling of the

fields in momentum space. So different choices of f(p) define, modulo such rescaling, the

same star product.

The associative product defined in (4.16) is equivalent to the standard local product

of the continuum theory, provided the lattice fields ϕ̃(p) and the continuum fields Φ̃(p̂) are

identified in a suitable way. In fact if we define

ϕ̃(p) =
1

f(p)

d∆(p)

dp
Φ̃(∆(p)) − π

a
≤ p ≤ π

a
, (4.17)

the star product (4.16) becomes:

Φ̃1 ? Φ2(p̂) =
2

π

∫ ∆(π
a

)

−∆(π
a

)
dp̂1dp̂2Φ̃1(p̂1)Φ̃2(p̂2)δ (p̂− p̂1 − p̂2) , (4.18)

where, as in (3.6), we have put p̂ = ∆(p). If ∆(πa ) in (4.18) is finite, the star product

written in terms of the Φ̃ fields looks just like the ordinary product of the continuum

theory, written in momentum representation, but where a cutoff on the momenta has been

introduced. On the other hand if ∆(p) satisfies the conditions (4.7), namely it becomes ±∞
at the extremes ±π

a (an explicit example of ∆(p) satisfying this condition will be considered

and studied in the next section) the star product written in terms of Φ̃ is associative and

coincides with the standard local product written in momentum representation.

The fields Φi(p̂) in eq. (4.18), with −∞ ≤ p̂ ≤ ∞, can be interpreted as fields of a

continuum theory in the momentum representation. Eq. (4.17) is then a kind of “blocking

transformation” from the continuum to the lattice,12 in the sense that given a field config-

uration in the continuum it produces a corresponding lattice field configuration. If ∆(p) is

not limited, namely |∆(πa )| = ∞, this correspondence is one-to-one and the map between

lattice and continuum field configuration is invertible. In fact in that case ∆−1(p̂) exists

and is uniquely determined for any real p̂ with values in the (−π
a ,

π
a ) interval. Hence we

can write:

Φ̃(p̂) = f
(
∆−1(p̂)

) d∆−1(p̂)

dp̂
ϕ̃
(
∆−1(p̂)

)
− π

a
≤ ∆−1(p̂) ≤ π

a
. (4.19)

In this case the lattice fields and the continuum fields describe the same degrees of freedom,

and the lattice field amounts to a discrete relabeling of the continuum degrees of freedom.

On the other hand if ∆(p) is limited to a finite range of values, namely if |∆(πa )| <∞ such

relation is incomplete and the blocking transformation is not invertible because ∆−1(p̂) does

not exists for p̂ > |∆(πa )| and the corresponding degrees of freedom have no correspondence

on the lattice.

It would be important at this stage to establish if (4.11) is the only solution of (4.10),

namely the only integration volume compatible with the associativity of the star product.

We already mentioned that for case B, namely the case with independent doublers, the

question is still open as whether a solution exists at all. In the case A, namely when all

12A similar transformation within the context of conventional lattice theory is given in (2.40).
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doublers are identified and the fields satisfy eq. (3.21) modulo a rescaling of the fields, we

can produce, if not a rigorous proof, a solid argument based on an algebraic investigation

performed with the aid of Mathematica, that (4.11) is the only solution.

The argument goes as follows: suppose the fields satisfy, after a suitable rescaling, the

symmetry condition given in eq. (3.21), then also the integration volume V (q; p1, p2) must

satisfy the same symmetry in all its variables and eq. (4.9) simplifies to:

K(p; p3; p1, p2) = 2
1∣∣∣d∆(q12)
dq12

∣∣∣V (q12; p1, p2)V (p; q12, p3), (4.20)

where all variables may now be restricted to the interval (−π
a ,

π
a ). Given the one-to-one

correspondence between p in the above interval and p̂ = ∆(p) ranging from −∞ to +∞,

we can use p̂ as independent variable and define:

V(p̂1 + p̂2, p̂1, p̂2) =
1∣∣∣d∆(p)
dp

∣∣∣V (p; p1, p2), (4.21)

where p on the r.h.s. is given by ∆(p) = ∆(p1) + ∆(p2). The associativity condition (4.10)

in terms of V(p̂, p̂1, p̂2) reads:

V(p̂1 + p̂2, p̂1, p̂2)V(p̂, p̂1 + p̂2, p̂3) = V(p̂1 + p̂3, p̂1, p̂3)V(p̂, p̂1 + p̂3, p̂2), (4.22)

with p̂ = p̂1 + p̂2 + p̂3. The solution of (4.22) that corresponds to (4.11) is given by:

V(p̂1 + p̂2, p̂1, p̂2) =
f̂(p̂1)f̂(p̂2)

f̂(p̂1 + p̂2)
, (4.23)

where f̂(p̂) = f(p). The ansatz is that (4.23) is the most general solution of the associativity

condition (4.22). We do not have a rigorous proof, but the ansatz can be checked order

by order by expanding V(p̂1 + p̂2, p̂1, p̂2) in power series of p̂1 and p̂2 and determining

the restrictions on the coefficients of the expansion imposed by (4.22). The resulting

expansion matches exactly the one obtained by expanding (4.23) in powers series, the

residual arbitrariness of the coefficients corresponding exactly to the arbitrariness of the

function f̂(p̂) in (4.23). This has been checked with Mathematica up to the sixth order. In

conclusion, if the doublers are identified according to the case A of the last section, the only

associative star product coincides with the ordinary local product of the continuum theory

provided the lattice and the continuum degrees of freedom are related by the identity (4.17).

If the doublers on the other hand are kept as independent degrees of freedom (case B) no

associative star product has been found, but its existence has not been ruled out so far.

4.2 Some provisional conclusions on star product associativity and the

building of lattice theories

The star product was introduced to replace the local product on the lattice in a way that

preserves the Leibniz rule for the derivative operator. If the star product enjoyed the same

formal properties as the standard local product it would be possible to formulate a lattice
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theory starting from one in the continuum by simply replacing the product with the star

product and the derivative with the lattice derivative operator ∆(p).

We have seen that the only known case in which this is possible is the one discussed in

the last subsection, namely the star product with the integration volume given by (4.11)

and an unbound derivative operator ∆(p) satisfying (4.7). This however leads to a lattice

theory where the degrees of freedom are in one-to-one correspondence with the ones of the

continuum theory (see eqs. (4.17) and (4.19)), hence to a reformulation of the continuum

theory in lattice language, where the lattice spacing doesn’t act as a regulator but merely

as an arbitrary unit used to make momenta dimensionless.

The fact that a continuum theory (in fact any continuum theory) may be reformulated

on a lattice by replacing the product with a non local star product and the derivative by

a non local operator ∆(p) is in itself interesting, but it does not correspond to the original

purpose of the lattice regularization scheme.

On the other hand if we give up associativity we are faced with two different types of

problems. The first occurs in the interaction terms. If we insist in using the star product as

the building block, an ambiguity arises with terms in the Lagrangian higher than quadratic

in the fields. For instance in a ϕ4 interaction with identical fields, interaction terms of the

form (ϕ ? ϕ)?(ϕ ? ϕ) and ((ϕ ? ϕ) ? ϕ)?ϕ are essentially different if associativity is violated.

This problem can be overcome by defining the interaction terms in a symmetric way without

making use of the star product, for instance in the ϕ4 interaction by writing:

I4 = g

∫
dp1dp2dp3dp4

· V (p1, p2, p3, p4)ϕ̃(p1)ϕ̃(p2)ϕ̃(p3)ϕ̃(p4)δ (∆(p1) + ∆(p2) + ∆(p3) + ∆(p4)) , (4.24)

where V (p1, p2, p3, p4) is a suitable integration volume.

The second problem is more serious. The original idea of this approach is to obtain a

lattice theory directly from the continuum theory by simply replacing the derivative with

the lattice derivative operator ∆(p) and the product with the star product. If the lattice

derivative and the star product enjoy the same formal properties as the corresponding

objects in the continuum then all continuum symmetries would automatically be preserved

on the lattice.

Lack of associativity in the star product would then break all those symmetries that

rely upon it in the continuum. Supersymmetry is not among those. In fact supersymmetry

is a global symmetry: the parameters of the transformations are constants and do not carry

momentum hence supersymmetry transformations are local in momentum representation,

namely they do not involve any convolution in momentum space. As a consequence asso-

ciativity of the product does not enter in the proof of invariance under supersymmetry and

so exact supersymmetry is not affected by the lack of associativity of the star product. On

the other hand supersymmetry crucially depends on the validity of the Leibniz rule for the

derivative, which is why keeping the Leibniz rule is a key ingredient of our approach. This

is consistent with the results of refs. [18] and [19] where lattice actions with exact N = 2

supersymmetry were constructed for supersymmetric Wess Zumino models in D = 1 and

D = 2. The star product used in these papers was based on a lattice derivative operator
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of the form ∆(p) = 2
a sin ap

2 , and hence, according to the previous discussion, certainly non

associative. Nevertheless the resulting lattice theories had exact supersymmetry, even at

the quantum level [51].

The violation of associativity is instead fatal for gauge invariance. In fact gauge trans-

formations are represented in coordinate space by local products of the fields with the x

dependent paramenters of the gauge transformations. These products would consistently

become star products on the lattice, and, for instance, an infinitesimal gauge transforma-

tion of a charged U(1) field would take the form:

δαϕ(x) = i(α ? ϕ)(x). (4.25)

For the would be gauge invariant quantity (ϕ† ? ϕ)(x) this implies:

δα(ϕ† ? ϕ)(x) = −i
(

(ϕ† ? α) ? ϕ
)

(x) + i
(
ϕ† ? (α ? ϕ)

)
(x), (4.26)

and the r.h.s. does not vanish unless the star product is associative. As a consequence,

unless some new associative star product is found in the B case, the only star product

which can preserve gauge invariance on the lattice is the one given in (4.11) which coincides

with ordinary local product in the continuum modulo the field identification (4.17). This

merely corresponds to a relabeling of the degrees of freedom, although a non trivial one,

and does not involve any regularization procedure. Within this scheme the lattice constant

a is simply a dimensional quantity used to turn the compact momenta on the lattice

into dimensionless angular variables. If such dimensionless variables are used, the lattice

constant never appears and hence it does not play any role as regulator. The last result

can then be presented as a kind of “no go theorem”: within the scheme A of the previous

section (doublers identified) there is no lattice regularization (in the sense described above)

that preserves gauge invariance.

4.3 An associative star product

In the lattice formulation of the N = 2 Wess Zumino model in D = 1 and D = 2 with

exact supersymmetry given in refs. [18] and [19] we used the symmetric lattice difference

operator ∆s(pµ) given by (see eq. (2.27) with l = a
2 ):

∆s(pµ) =
2

a
sin

apµ
2
. (4.27)

This choice satisfies all the conditions discussed in section 3 and has the advantage of

being local in coordinate representation. However ∆s(pµ) does not satisfy the necessary

condition (4.7) for the associativity of the star product, so that the corresponding star

product is not associative irrespective of the choice of the integration volume. In order to

construct an associative star product we have to choose a lattice derivative operator ∆(pµ)

that satisfies eq. (4.7). Moreover we shall also maintain the requirements for ∆(pµ) already

stated in the previous section, namely that it should be an odd function of pµ, symmetric

under the transformation pµ → 2π
a − pµ and of course periodic with period 4π

a . We shall

also assume that its normalization is such that it satisfies eq. (3.7) for small values of pµ.

– 29 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
9

By putting all these pieces of information together one concludes that ∆(pµ) must

be expressed by a power series in sin
apµ

2 , with only odd powers and with singularities at

sin
apµ

2 = ±1 such that the equation

lim
p→±π

a

∆(p) = ±∞, (4.28)

is satisfied. Clearly the presence of only a finite number of powers of sin ap
2 in the expansion

of ∆(p) is not compatible with the condition (4.28), and the presence of arbitrarily large

powers of sin ap
2 in the expansion of ∆(p) means that ∆(p) defines on the lattice a non

local derivative, containing differences between arbitrarily far away points. This is the

main difference with the case ∆(p) = ∆s(p) considered in [18] and [19] where the lattice

derivative is the usual local finite difference operator.

There are in principle infinitely many choices of ∆(p) satisfying eq. (4.28) and all

the other conditions discussed above, all of them non local in coordinate representation.

However we shall restrict these choices by selecting the most local (or the least non-local)

form of ∆(p) compatible with (4.28). Consider the power expansion of ∆(p):

∆(p) =

∞∑
k=0

ck

(
sin

ap

2

)2k+1
, (4.29)

normalized with c0 = 2
a . Suppose that in proximity of sin ap

2 = 1 the function ∆(p) has a

singularity and behaves as

∆(p) ≈
(

1− sin
ap

2

)−α
, (4.30)

with α > 0 so that (4.28) is satisfied. Such asymptotic behaviour around the singular point

is determined by the large k asymptotic behaviour of ck according to the relation:

ck ≈ kα−1. (4.31)

It is clear from (4.31) that the fastest decrease of ck as k →∞ compatible with (4.28) is

obtained choosing α = 0, to be interpreted as a logarithmic behaviour of ∆(p) at sin ap
2 = 1.

By imposing the same condition at ∆(p) at sin ap
2 = −1 (but with a −∞ limiting value),

and using the proper normalization one is led to the following ansatz:

∆G(p) =
2

a
gd−1

(ap
2

)
, (4.32)

where gd−1(x) is the inverse of the Gudermannian function [52] and is given by:

gd−1(x) =
1

2
log

1 + sinx

1− sinx
, (4.33)

If we identify ∆G(p) with the conserved and additive momentum p̂ in the continuum,

eq. (4.32) provides a very natural map between the momentum on the lattice and the

momentum of the continuum theory:

ap̂

2
= gd−1

(ap
2

)
. (4.34)
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Figure 1. Plot of the Inverse Gudermannian function gd−1(x) in the fundamental interval (−π, π).

Notice that in the map described by (4.34) the momentum p̂ of the continuum theory

ranges from −∞ to +∞ as p goes from −π
a to π

a and it goes back to −∞ as p goes from
π
a to 3π

a , so that the map covers the real axis twice as the angular variable ap
2 covers a 2π

period (see figure 1).

The Gudermannian function and its inverse are particularly suitable to define a map

between a compact and a non-compact one dimensional manifold, as they naturally trans-

form hyperbolic functions into trigonometric functions. If

y = gd−1(x), (4.35)

then the following relations hold:

cosh y =
1

|cosx|
, tanh y = sinx, sinh y =

sinx

|cosx|
, (4.36)

and also

dy =
dx

cosx
, dx = ± dy

cosh y
, (4.37)

where in the last equation the plus sign holds when x is in the interval (−π
2 ,

π
2 ) and the

minus sign for x in (π2 ,
3π
2 ).

The expansion of ∆G(p) in powers of sin ap
2 can be easily derived from the expansion

of the logarithm, and reads:

a

2
∆G(p) = sin

ap

2
+

1

3

(
sin

ap

2

)3
+

1

5

(
sin

ap

2

)5
+

1

7

(
sin

ap

2

)7
+ · · · . (4.38)

A different and less trivial expansion in powers of eı
ap
2 can be written as:

a

2
∆G(p) = 2

[
sin

ap

2
− 1

3
sin

3ap

2
+

1

5
sin

5ap

2
− 1

7
sin

7ap

2
+ · · ·

]
(4.39)
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This expansion is interesting because it shows immediately how ∆G(p) acts on a field

in coordinate representation. In fact, if we denote by ∆Gϕ(x) the Fourier transform of

∆G(p)ϕ̃(p), eq. (4.39) gives:

∆Gϕ(x) =
2

a

∞∑
k=1

(−1)k+1

2k − 1

[
ϕ

(
x+

(2k − 1)a

2

)
− ϕ

(
x− (2k − 1)a

2

)]
. (4.40)

The expansion (4.40) has a similar structure to the one of the corresponding expansion for

the SLAC derivative, that acts however on a lattice with spacing a:

∆SLACϕ(x) =
1

a

∞∑
k=1

(−1)k+1

k
[ϕ(x+ ka)− ϕ(x− ka)] . (4.41)

Both ∆G and ∆SLAC reduce to the ordinary derivative in the continuum limit a→ 0 as they

both reduce to p for p� 1
a . This can be seen in the case of ∆G from the expansion (4.38)

where only the first term survives in that limit, all the others being proportional to higher

derivatives and higher orders of a. A naive continuum limit on (4.40) and (4.41) instead

gives an undetermined result. In fact in both cases each term, corresponding to a fixed

value of k, gives in the a→ 0 limit a contribution ±dϕ(x)
dx and the total result is

2
dϕ(x)

dx
[1− 1 + 1− 1 + 1− · · · ] . (4.42)

In the coordinate space both derivatives behave similar but the momentum representa-

tions have a fundamental difference. SLAC derivative does not satisfy eq. (4.7) and thus

associativity is broken while ∆G satisfies associativity for the star product.

The correct result of the infinite alternating series in (4.42) is 1
2 , but it can only be

obtained by resumming the series before taking the a→ 0 limit, that is going back to the

momentum space representation. In order to regularize the series at the r.h.s. of (4.40) we

shall introduce a new parameter z and define a regularized derivative operator ∆
(z)
G as:

∆
(z)
G ϕ(x) =

1+z2

a

∞∑
k=1

(−1)k−1z2(k−1)

2k−1

[
ϕ

(
x+

(2k−1)a

2

)
−ϕ

(
x− (2k−1)a

2

)]
. (4.43)

Clearly ∆
(z)
G ϕ(x) coincides with ∆Gϕ(x) for z = 1; for |z| < 1 the series involved in the

continuum limit a → 0 are convergent and the limit reproduces dϕ(x)
dx as expected. The

regularization given in (4.43) amounts in momentum representation in replacing ∆G(p)

with its regularized counterpart ∆
(z)
G (p) given by:

∆
(z)
G (p) =

2

a
gd−1(x, ẑ), (4.44)

where

ẑ =
2z

1 + z2
, (4.45)

and gd−1(x, ẑ) is a regularized inverse Gudermannian function given by:

gd−1(x, ẑ) =
1

2ẑ
log

1 + ẑ sinx

1− ẑ sinx
. (4.46)
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Figure 2. Plot of the smoothed inverse Gudermannian function gd−1(x, ẑ) at ẑ = 0.95, in the

fundamental interval (−π, π). The sine function and the inverse Gudermannian functions are also

plotted for comparison.

The function gd−1(x, ẑ) interpolates between the sine function (at ẑ = 0) and the inverse

Gudermannian function (at ẑ = 1). This is shown in figure 2 where gd−1(x, 0.95) is plotted

together with sin(x) and gd−1(x).

It is clear from (4.44) and (4.46) that an expansion of ∆
(z)
G (p) in powers of ẑ is also an

expansion in powers of sin ap
2 and it reduces to (4.38) in the limit ẑ → 1, while an expansion

in powers of z is an expansion in the base of sin nap
2 and it reduces to (4.39) for z = 1. For

z < 1 the regularized derivative operator ∆
(z)
G (p) is bounded by

|∆(z)
G (p)| ≤ 1

aẑ
log

1 + ẑ

1− ẑ
, (4.47)

so that its use in place of ∆G(p) in the definition of the star product would lead to a

violation of associativity. The momentum cutoff given by the r.h.s. of (4.47) can be made

however very large, indeed much larger than 1
a , by choosing z or equivalently ẑ sufficiently

close to 1 thus providing a natural ultraviolet cutoff independent of a. If the regularization

of ultraviolet divergences is done by a cutoff in the momenta the cutoff can be sent to

infinity keeping the value of the lattice constant a finite, namely preserving the lattice

structure of the theory. This will be discussed more in detail in section 6.

A similar regularisation could be introduced in the definition (4.41) of the SLAC deriva-

tive. In momentum representation this would correspond to a smoothing of the saw-tooth

function that would eliminate the discontinuity of the function but it would also reintro-

duce a second zero at p = π
a which is responsible for the appearance of the doublers. The

previous discussion ultimately shows that in coordinate space both ∆G and ∆SLAC are in-

trinsically non local, but as we shall see ∆G acts in a completely different framework where

the relation between the continuum and the lattice coordinates is not straightforward.
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An explicit form of the associative star product is obtained by inserting ∆G(p), given

by (4.32), into (4.1) and (4.11). The function f(p) in (4.11) corresponds simply to a rescal-

ing of the fields in momentum space and can be set equal to 1 by a field redefinition.

However it should be remarked that a rescaling of the fields in momentum space has non

trivial effects in coordinate representation where it corresponds to a non-local convolution.

Different choices of f(p) may correspond to very different pictures when the fields are rep-

resented on the lattice. As we shall see further in this section a special choice for f(p),

namely f(p) = 1√
|cos ap

2 |
, results into a more symmetric representation of the associative

star product in coordinate representation, and may be needed for a smooth continuum

(a → 0) limit in coordinate representation. For the moment, while working in the mo-

mentum representation, we choose for simplicity f(p) = 1 and write the associative star

product (4.13) with ∆ = ∆G as:∣∣∣cos
ap12

2

∣∣∣ ϕ̃1 ? ϕ2(p12) =
1

2π

∫ 3π
a

−π
a

dp1dp2ϕ̃1(p1)ϕ̃2(p2)δ (∆G(p12)−∆G(p1)−∆G(p2)) ,

(4.48)

where the cosine factor on the l.h.s. comes from the insertion of (4.37) into the integration

volume (4.11). This factor is essential for the associativity, so it cannot be absorbed into

the definition of the star product. Thanks to the symmetry of the fields and of the lattice

derivative operator ∆G under p→ 2π
a − p we can restrict the integration volume in (4.13)

to the interval (−π
a ,

π
a ) and write:

cos
ap12

2
ϕ̃1?ϕ2(p12) =

2

π

∫ π
a

−π
a

dp1dp2ϕ̃1(p1)ϕ̃2(p2)δ (∆G(p12)−∆G(p1)−∆G(p2)) , (4.49)

where we have assumed that also p12 is in the interval (−π
a ,

π
a ) so that no absolute value

is needed for the cosine factor. With the change of variable (4.34) the star product can be

written as an integral over the continuum momenta p̂i, and becomes:

Φ̃1 ? Φ2(p̂12) =
2

π

∫ ∞
−∞

dp̂1dp̂2Φ̃1(p̂1)Φ̃2(p̂2)δ (p̂12 − p̂1 − p̂2) , (4.50)

where

ϕ̃(p) = cosh
ap̂

2
Φ̃(p̂) or Φ̃(p̂) =

∣∣∣cos
ap

2

∣∣∣ ϕ̃(p), (4.51)

and the relation between p̂ and p is given by (4.34). This result is essentially the same

already obtained in subsection 4.1 (see eqs. (4.18) and (4.17)), with ∆ = ∆G and f(p) = 1.

Thanks to the associativity of the product, the star product of an arbitrary number of fields

does not depend on the sequence in which the single products are made and is given by∣∣∣cos
ap

2

∣∣∣ ˜(ϕ1?ϕ2?· · ·?ϕn)(p) =

(
1

2π

)n−1∫ ∫ 3π
a

−π
a

dp1dp2 · · ·dpnϕ̃1(p1)ϕ̃2(p2) · · · ϕ̃n(pn)·

· δ (∆G(p)−∆G(p1)−∆G(p2)− ·· ·−∆G(pn)) . (4.52)

The integration domain can be restricted to the interval
(
−π
a ,

π
a

)
, as in (4.49), using the

symmetry p→ 2π
a − p and then by using the field identification (4.51) can be expressed in
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terms of the continuum fields Φ̃i:

˜(Φ1 ? Φ2 ? · · · ? Φn)(p̂) = 2

(
1

π

)n−1 ∫ ∫ ∞
−∞

dp̂1dp̂2 · · · dp̂nΦ̃1(p̂1)Φ̃2(p̂2) · · · Φ̃n(p̂n)·

· δ (p̂− p̂1 − p̂2 − · · · − p̂n) . (4.53)

As in (4.49) this is just the convolution describing the ordinary local product of n fields

in momentum representation. Therefore the associative star product on the lattice is

completely equivalent to the ordinary product in the continuum provided the lattice and

continuum fields are identified via eqs. (4.51).

An n-point interaction term can be obtained from (4.52) by setting in it p = 0, namely:

In = ˜(ϕ1 ? ϕ2 ? · · · ? ϕn)(0) =

(
1

2π

)n−1 ∫ ∫ 3π
a

−π
a

dp1dp2 · · · dpnϕ̃1(p1)ϕ̃2(p2) · · · ϕ̃n(pn)·

· δ (∆G(p1) + ∆G(p2) + · · ·+ ∆G(pn)) . (4.54)

This corresponds exactly via (4.51) to setting p̂ = 0 in (4.53), giving:

In = ˜(Φ1 ? Φ2 ? · · · ? Φn)(0) = 2

(
1

π

)n−1 ∫ ∫ ∞
−∞

dp̂1dp̂2 · · · dp̂nΦ̃1(p̂1)Φ̃2(p̂2) · · · Φ̃n(p̂n)·

· δ (p̂1 + p̂2 + · · ·+ p̂n) . (4.55)

In conclusion, given any field theory in the continuum, one can write a corresponding theory

on the lattice simply by replacing in momentum representation the ordinary product with

the associative star product (4.13) and the derivative operator with ∆G(p). As the formal

properties of the star product and of the derivative operator on the lattice ∆G(p) are the

same as the ones of the corresponding entities in the continuum all continuum symmetries

are preserved on the lattice. The degrees of freedom on the lattice are obtained from

the ones in the continuum by the relation (4.51) which is invertible, which means that

the lattice theory has no less information as the original continuum theory, and does not

provide on the other hand any regulator.

4.4 Star product in coordinate representation: the locality issue

The star product of eq. (4.1) can be expressed in coordinate representation by taking the

discrete Fourier transform of the quantities involved, including the delta function at the

r.h.s. For the fields we shall use the following conventions:

ϕ̃(p) =
a

2

∑
n

ϕ
(na

2

)
e−i

na
2
p, (4.56)

ϕ
(na

2

)
=

1

2π

∫ 4π
a

0
dpϕ̃(p)eip

na
2 , (4.57)

where notations have been fixed so that in the continuum limit a → 0 the sum over n

becomes the integral over the space-time coordinate x = na
2 :

a

2

∑
n

→
∫
dx. (4.58)
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The integration volume V (p; p1, p2) in (4.1) can also be written as a discrete Fourier

transform:

V (p; p1, p2) =
a3

8

∑
m,m1,m2

Vm;m1,m2e
−ima

2
p+i

m1a
2
p1+i

m2a
2
p2 . (4.59)

By inserting (4.56) and (4.59) into (4.1) the star product can eventually be written in

coordinate representation as:

(ϕ1 ? ϕ2)
(na

2

)
=
a2

4

∑
n1,n2

Kn;n1,n2ϕ1

(n1a

2

)
ϕ2

(n2a

2

)
, (4.60)

where the kernel Kn;n1,n2 is given by:

Kn;n1,n2 =
a3

16π

∫ +∞

−∞
dξ

∑
m,m1,m2

Vm;m1,m2J∆ (ξ, xn−m) J∆ (ξ, xn1−m1) J∆ (ξ, xn2−m2) ,

(4.61)

where we have defined

xn =
na

2
, (4.62)

and the function J∆ (ξ, xn) is given by

J∆ (ξ, xn) =
1

2π

∫ 4π
a

0
dpeiξ∆(p)−ixnp. (4.63)

The locality properties of the star product are then closely related to the properties

of the function J∆ (ξ, xn). It is interesting to compare the star product (4.60) with the

product in the standard lattice formulation. In that case the conserved quantity ∆(p) is

the momentum p itself and the momentum is conserved modulo 2π
a . The parameter ξ is

then an integer multiple of a
2 , namely ξ = ma

2 , and the function J∆ (ξ, xn) is proportional

to δ(m− n). With a suitable choice of the integration volume, that is V (p; p1, p2) = 1, the

star product becomes then the usual local product of functions on the lattice.

The properties of J∆ (ξ, xn) obviously depend on the choice of the lattice derivative

function ∆(p). Here we shall examine the two most relevant and in a sense extreme cases:

the ultra-local symmetric lattice difference operator ∆s(p) given in eq. (4.27) and the non

local operator ∆G(p), given in (4.32), that appears in the associative star product (4.49).

Notice that in the first case, namely ∆(p) = ∆s(p) the function J∆s (ξ, xn) coincides with

a Bessel J function of order n:

J∆s (ξ, xn) = Jn

(
2ξ

a

)
, (4.64)

whose properties are well known and extensively studied.13 However we prefer to treat the

two cases in parallel to emphasize analogies and differences.

As a result of ∆(p) being symmetric under p→ 2π
a − p, the function J∆ (ξ, xn) can be

written as:

J∆ (ξ, xn) = J
(0)
∆ (ξ, xn) + (−1)nJ

(0)
∆ (ξ, x−n) , (4.65)

13Notice that in the continuum limit a→0 both the order n = 2xn
a

and the argument 2ξ
a

become very large.
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where

J
(0)
∆ (ξ, xn) =

1

2π

∫ π
a

−π
a

dp eiξ∆(p)−ixnp =
1

π

∫ π
a

0
dp cos (ξ∆(p)− xnp) , (4.66)

and the last step follows from ∆(p) being an odd function. This also implies

J∆ (ξ, xn) = (−1)nJ∆ (ξ, x−n) . (4.67)

The arguments ξ and xn in J∆(ξ, xn) are respectively the continuum and lattice ex-

pressed in term of some unspecified physical units. We are interested in the continuum

limit a → 0, namely in the limit where the ratio between a and any physical length goes

to zero while ξ and xn are kept constant, which of course require n→∞ as a goes to zero.

It is then convenient to replace xn with a variable η which will be treated as a continuum

variable and define in the continuum limit a distribution j
(0)
∆ (ξ, η) given by:

j
(0)
∆ (ξ, η) = lim

a→0
J

(0)
∆ (ξ, η). (4.68)

The continuum limit is performed on J
(0)
∆ (ξ, η) rather than on J∆(ξ, η) because according

to eq. (4.65) such limit exists separately for odd and even values of n, in agreement with the

fact that a function on the lattice defines, for each lattice direction, two different functions

in the continuum.

In order to define this limit properly let us introduce the large parameter N :

N =
2

a
, (4.69)

and the angular variable θ:

θ =
ap

2
. (4.70)

We can write then:

J
(0)
∆ (ξ, η) =

N

2π

∫ π
2

−π
2

dθeiNF∆(ξ,η,θ), (4.71)

where the function F∆(ξ, η, θ) can be easily derived from (4.66), and is given in the two

cases we are considering by:

F∆s(ξ, η, θ) = ξ sin θ − ηθ, and F∆G
(ξ, η, θ) = ξgd−1(θ)− ηθ. (4.72)

The continuum limit (4.68) is then the first term of the asymptotic expansion for large N

of J
(0)
∆ (ξ, η) and it can be obtained from (4.71) by using the standard saddle point method.

The saddle points are the solutions of ∂F∆(ξ,η,θ)
∂θ = 0 and the ones corresponding to the

two functions in (4.72), which we shall respectively denote as θs and θG, are then given by:

cos θs =
η

ξ
and cos θG =

ξ

η
. (4.73)

This result is interesting: for ξ/η > 1 the saddle point θs is real and θG imaginary while

the opposite happens for ξ/η < 1. On the other hand a real value of θ corresponds to

a real value of the function F∆(ξ, η, θ) and hence for large N an oscillating behaviour of

J
(0)
∆ (ξ, η) as a function of ξ/η, whereas an imaginary value of θ and hence of F∆(ξ, η, θ)

leads to an exponential decay of J
(0)
∆ (ξ, η) as ξ/η moves away from 1. This corresponds

to the well known behaviour of the Bessel function JNη(Nξ) which for large N is rapidly
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Figure 3. Plot of J
(0)
∆G

(ξ, η) versus ξ at N = 100 and η = 1.
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Figure 4. Plot of J
(0)
∆s

(ξ, η) versus ξ at N = 100 and η = 1.

oscillating when the argument is larger than the order Nη, namely when ξ/η > 1. The new

and rather unexpected result is that with the choice ∆(p) = ∆G(p), which as we have seen

is needed to have an associative star product, the situation is reversed and the oscillating

behavior occurs for ξ/η < 1 as if the roles of ξ and η had been exchanged.

This can be visualized by plotting with Mathematica J
(0)
∆G

(ξ, η) and J
(0)
∆s

(ξ, η) for

N = 100, η fixed and set to 1, and ξ ranging from −1 to +2. The plots are shown re-

spectively in figure 3 and figure 4.

It is also interesting to compare the plot of J
(0)
∆s

(ξ, η) at N = 100 as a function of ξ

at η = 1, with the one of J
(0)
∆G

(ξ, η) at N = 100 as a function of η at ξ = 1. The latter
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Figure 5. Plot of J
(0)
∆G

(ξ, η) versus η at N = 100 and ξ = 1.

is reproduced in figure 5: the behaviour is very similar and the two curves are essentially

indistiguishable in the proximity of 1.

Analitically the leading term of the asymptotic behaviour for large N of J
(0)
∆ (ξ, η) can

be obtained from the standard formula of the steepest descent method:∫ B

A
X(z)eρf(z)dz =

√
2π

ρ

∑
i

eρf(zi)

[−f ′′(zi)]1/2
(X(zi) +O(1/ρ)) , (4.74)

where the sum is over the saddle points zi. For the cases in consideration the results can

be summarized by the following equations:

J
(0)
∆s

(ξ,η) =

√
2N

π

cos
[
N
(√

ξ2−η2−ηarccos(η/ξ)
)
−π/4

]
(ξ2−η2)1/4

(1+O(1/N)) ξ/η > 1, (4.75)

J
(0)
∆s

(ξ,η) =

√
N

2π

e
−N

(
η cosh−1(η/ξ)−

√
η2−ξ2

)
(η2−ξ2)1/4

(1+O(1/N)) ξ/η < 1, (4.76)

J
(0)
∆G

(ξ,η) =

√
2Nξ

πη

cos

[
N

(
ξ
2

log
1+
√

1−(ξ/η)2

1−
√

1−(ξ/η)2
−ηarccos(ξ/η)

)
+π/4

]
(η2−ξ2)1/4

(1+O(1/N)) ξ/η < 1,

(4.77)

J
(0)
∆G

(ξ,η) =

√
Nξ

2πη

ξ1/2e−N(η cosh−1(ξ/η)−ξarccos(η/ξ))

(ξ2−η2)1/4
(1+O(1/N)) ξ/η > 1. (4.78)

A plot of the functions given in eq. (4.75)–(4.78) shows that, except for a small interval

around ξ/η = 1, they overlap exactly at N = 100 and η = 1 with the ones given in figure 3

and figure 4. The asymptotic expansion at ξ/η = 1 cannot be obtained directly from (4.74)

because in that case f ′′(z) vanishes at the saddle point and the corresponding gaussian

integral cannot be perfomed.
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We notice however from (4.73) that for ξ/η = 1 the saddlepoint is θ = 0, and that

therefore the first terms of the expansion in powers of θ of F∆(ξ, η, θ) will retain all the

information of the leading term in the asymptotic expansion of J
(0)
∆ (ξ, η) at ξ/η = 1. More

precisely, consider the expansions:

F∆s(ξ,η,θ) = (ξ−η)θ− ξ
6
θ3+O(θ5), and F∆G

(ξ,θ) = (ξ−η)θ+
ξ

6
θ3+O(θ5), (4.79)

and notice that they differ only for the sign of the θ3 term. We can write then:

J
(0)
∆s,G

(ξ, η) =
N

π

∫ π
2

0
dθ cos

[
N(ξ − η)θ ∓ Nξ

6
θ3 +NO(θ5)

]
, (4.80)

where the minus and plus sign in front of the cubic term refer respectively to ∆s and ∆G.

With the substitution z =
(
Nξ
2

)1/3
θ the integral above becomes:

J
(0)
∆s,G

(ξ,η) =
N2/3

π

(
ξ

2

)−1/3

·
∫ π

2 (Nξ2 )
1/3

0
dz cos

[
z3

3
∓(ξ−η)N2/3

(
2

ξ

)1/3

z+NO

[(
2

Nξ

)5/3

z5

]]
. (4.81)

Consider now in (4.81) the limit N → ∞ and ξ/η → 1, but with (ξ − η)N2/3 kept finite.

Then all terms in the cosine vanish except for the linear and the cubic term, and the

integral becomes proportional to an Airy function:

J
(0)
∆s,G

(ξ, η) ≈N→∞ N2/3

(
ξ

2

)−1/3

Ai
(
∓21/3ξ−1/3N2/3(ξ − η)

)
. (4.82)

If we choose |η − ξ|N2/3 very large, namely N2/3 � |η − ξ|−1 � 1, then we can use

in (4.82) the well known asymptotic formulas for the Airy functions. Consider the case

with ∆ = ∆G, which corresponds to the plus sign at the r.h.s. of (4.82), then for ξ < η the

argument of the Airy function is large and negative and using the asymptotic formulas for

the Airy function one gets:

J
(0)
∆G

(ξ, η) ≈ 21/4ξ−1/4N1/2

√
π (η − ξ)1/4

cos

[
23/2

3
Nξ−1/2 (η − ξ)3/2 − π

4

]
ξ/η < 1. (4.83)

For positive arguments of the Airy function, which for J
(0)
∆G

implies ξ/η > 1, the asymptotic

formulas give an exponentially vanishing behaviour, namely:

J
(0)
∆G

(ξ, η) ≈ ξ−1/4N1/2

23/4
√
π (ξ − η)1/4

e−N
23/2

3
ξ−1/2(ξ−η)3/2

ξ/η > 1. (4.84)

The formulas for J
(0)
∆s

can be obtained from (4.83) and (4.84) by simply exchanging

ξ and η everywhere. Equations (4.83) and (4.84) are valid in the region defined by the

inequality N2/3 � (1 − η/ξ)−1 � 1. This region can also be reached from the domain
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of validity of (4.75)–(4.78) by taking the limit where |1 − η/ξ| � 1. In fact by taking in

eqs. (4.77) and (4.78) the limit |1 − η/ξ| → 0, and keeping in that limit only the leading

terms one reproduces exactly eqs. (4.83) and (4.84).

By using the asymptotic formulas from (4.75) to (4.82) we show in appendix A that

provided the test function χ(ξ) satisfies some weak smoothness condition the large N limit

of J
(0)
∆G

gives: ∫ +∞

−∞
dξ j

(0)
∆G

(ξ, η)χ(ξ) = lim
N→∞

∫ +∞

−∞
dξ J

(0)
∆G

(ξ, η)χ(ξ) = χ(η), (4.85)

namely, for the distribution j
(0)
∆G

(ξ, η):

j
(0)
∆G

(ξ, η) = δ(ξ − η). (4.86)

The exponential damping nature and the oscillating nature of J
(0)
∆G

(ξ, η) in the both sides

of η = 1 or ξ = 1 in figure 3 and figure 5 are effective enough to make the non-local nature

of the lattice formulation into local in the continuum limit.

The continuum limit a → 0 of J∆(ξ, η) can be obtained from the one of J
(0)
∆ (ξ, η)

using (4.65); however due to the (−1)n factor in (4.65) the limit has to be done separately

for even and odd values of n. This is consistent with the fact that in one dimension

a lattice field describes two degrees of freedom in the continuum. So if we define the

complete distribution

j∆(ξ, η) = lim
a→0

J∆(ξ, η), (4.87)

we have:

j∆G
(ξ, η) = δ(ξ − η)± δ(ξ + η), (4.88)

where the + and − signs apply respectively to the sublattices defined by even and odd

values of n. For ∆(p) = ∆s(p) the limit (4.85) was proved by Dondi and Nicolai in their

poineering paper on lattice supersymmetry [11] on the condition that the Fourier transform

of test function χ(ξ) in (4.85) satisfies the integrability condition:∫ +∞

−∞
dk |χ̃(k)| <∞. (4.89)

The same result could be obtained following the same path used in appendix A for the

case ∆ = ∆G.

It is important to recognize at this stage that the non-local nature existing in the star

product and the inverse Gudermannian derivative operator does not sacrifice the locality

of the product in the continuum limit.

Finally, as an example and application of the limiting procedure described above, we

calculate the continuum a → 0 limit of the n-point interaction term In given in (4.54).

By using the Fourier transforms of the fields and of the δ-function, the interaction term

becomes:

In =

∫
dξ
(a

2

)n ∑
r1,r2,··· ,rn

J∆G
(ξ, xr1) · · · J∆G

(ξ, xrn) ϕ(xr1)ϕ(xr2) · · ·ϕ(xrn). (4.90)
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This is a local n-point interaction term in the continuum coordinates ξ, namely:

In =

∫
dξ [Φ(ξ)]n, (4.91)

where the continuum field Φ(ξ) is given by:

Φ(ξ) =
a

2

∑
r

J∆G
(ξ, xr)ϕ(xr). (4.92)

We consider now the continuum limit a → 0 of the r.h.s. of (4.92). The discrete variable

xr = ra
2 may be replaced in the a → 0 limit by a continuum variable η. In doing that

however odd and even values of r must be treated separately. In fact the field ϕ(xr)

satisfies the symmetry condition (3.22) and its odd and even part have separate smooth

continuum limits which define two distinct continuum functions ϕe(ηi) and ϕo(ηi)

ri even : ϕ(xri)
a→0
=⇒ ϕe(ηi) ; ri odd : ϕ(xri)

a→0
=⇒ ϕo(ηi), (4.93)

which are respectively even and odd functions of η:

ϕe(−ηi) = ϕe(ηi), ϕo(−ηi) = −ϕo(ηi). (4.94)

The sum over r at the r.h.s. of (4.92) can be split into the sum over the even and the

sum over the odd values of r, which can be calculated using (4.93), (4.94) and (4.88). The

result is:

Φ(ξ) =
a

2

∑
ri

J
(0)
∆G

(ξ, xri)ϕ(xri)
a→0
=⇒

∫
dη δ(η − ξ) ϕ+(η) = ϕ+(ξ), (4.95)

where

ϕ+(ξ) = ϕe(ξ) + ϕo(ξ). (4.96)

In conclusion: locality of the interaction on the lattice is recovered in the continuum limit.

4.5 The choice of the function f(p) and the continuum limit

The associative star product discussed at the beginning of this section (see eqs. (4.13)

and (4.16)) is not uniquely determined by the lattice derivative operator ∆(p) as it also

depends on an arbitrary function f(p), which corresponds to a rescaling of the fields ϕ̃(p)

in momentum representation. A rescaling in momentum space defines a non trivial and

non-local transformation in coordinate representation, so that different choices of the func-

tion f(p) may correspond to very different representations in coordinate space. In this

subsection we are going to discuss different choices of f(p) from the point of view of the

coordinate representation, and discover that strong restrictions of f(p) are required for the

continuum limit to be well defined in coordinate space.

Let us consider the associative star product (4.16) which is written in momentum

representation as a convolution over the reduced interval (−π
a ,

π
a ), after making use of the

symmetry of the fields under pi → 2π
a −pi. The derivative operator ∆(p) is not specified, but

we shall assume that |∆(±π
a )| = ∞ in order for the product to be associative: eventually
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we shall restrict ourselves to the most interesting case ∆(p) = ∆G(p). The associative

star product (4.16) is equivalent to the usual local product (4.18) of the continuum theory

provided the lattice fields ϕ̃i(p) are related to the continuum fields Φ̃i(∆(p)) according

to eq. (4.17).

We shall now write eq. (4.17) in coordinate representation. Let ϕ(xn) be the lattice

field in coordinate space, namely the Fourier transform of ϕ̃(p) over the 4π
a period:

ϕ(xn) =
1

2π

∫ 3π
a

−π
a

dp ϕ̃(p)eixnp. (4.97)

Thanks to the symmetry (3.21) we can write:

ϕ(xn) = ϕ0(xn) + (−1)nϕ0(−xn), (4.98)

where

ϕ0(xn) =
1

2π

∫ π
a

−π
a

dp ϕ̃(p)eixnp. (4.99)

Notice from (4.98) that the ϕ0(xn) determines ϕ(xn) completely and, unlike ϕ(xn), it has

a smooth dependence on n. In the continuum limit we replace the discrete variable xn
with a continuum variable ξ and ϕ0(xn) becomes a continuum function ϕ0(ξ). One can

see from (4.98) that ϕ0(ξ) coincides with the sum of the even and the odd part of ϕ(ξ),

namely it coincides with ϕ+(ξ) defined in (4.96). It is clear from (4.99) that ϕ0(xn) may

be regarded as the Fourier transform of a function ϕ̃0(p) which coincides with ϕ̃(p) in the

interval (−π
a ,

π
a ) and vanishes in (πa ,

3π
a ). So in the interval (−π

a ,
π
a ) equation (4.99) can be

inverted and gives:

ϕ̃(p) =
a

2

∑
n

ϕ0(xn)e−i
na
2
p, − π

a
≤ p ≤ π

a
. (4.100)

Let us denote now by Φ(ξ) the Fourier transform14 of Φ̃(∆(p)). Then by taking the

Fourier transform of (4.17) and using (4.100) we obtain:

Φ(ξ) =
a

2

∑
n

J
(0)
∆,f (ξ, xn)ϕ0(xn), (4.101)

where the function J
(0)
∆,f (ξ, xn) is defined as:

J
(0)
∆,f (ξ, xn) =

1

2π

∫ π
a

−π
a

dpf(p) e−ixnp+iξ∆(p). (4.102)

The function J
(0)
∆,f (ξ, xn) is a generalization of the function J

(0)
∆ (ξ, xn) defined in (4.66) to

which it reduces if one sets f(p) = 1. Eq. (4.101) can be inverted by replacing ϕ̃(p) at

the r.h.s. of (4.99) with its expression given in (4.17) and finally expressing Φ̃(∆(p)) as a

Fourier transform of Φ(ξ).

14Remember the assumption that ∆(p) goes from −∞ to +∞ as p goes through the interval (−π
a
, π
a

).
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The result is:

ϕ0(xn) =

∫ ∞
−∞

dξ J̄
(0)
∆,f (xn, ξ) Φ(ξ), (4.103)

where the function J̄
(0)
∆,f (xn, ξ),

15 is defined as:

J̄
(0)
∆,f (xn, ξ) =

1

2π

∫ π
a

−π
a

dp
1

f(p)

d∆

dp
eixnp−iξ∆(p) =

1

2π

∫ ∞
−∞

dp̂

f(p)
eixn∆−1(p̂)−iξp̂. (4.104)

Let us consider now the case ∆ = ∆G. If we choose f(p) = 1, eq. (4.101) coincides

with the first half of eq. (4.95) and hence it admits a smooth continuum limit as given in

the second part of the same equation.

However some problems arise with the inverse relation (4.103). If fact the function

J̄
(0)
∆,f (xn, ξ) becomes:

J̄
(0)
∆G,f=1(xn, ξ) =

1

2π

∫ π
a

−π
a

dp
1

cos(ap2 )
eixnp−iξ∆G(p) =

1

2π

∫ +∞

−∞
dp̂ eixnp−iξp̂, (4.105)

where in the last term we have set p̂ = ∆G(p) and chosen p̂ as integration variable.16 The

integrals in (4.105) do not converge at the integration limits, and rather than a function

eq. (4.105) defines a distribution; notice in fact that for xn = 0 the r.h.s. is just the

integral representation of δ(ξ) and that p is constant (±π
a ) for p̂ → ±∞. The continuum

limit a → 0 of J̄
(0)
∆G,f=1(xn, ξ) can be calculated following the same procedure used in

the previous subsection for J
(0)
∆G

(ξ, xn), namely by the saddle point method. The discrete

variable xn is replaced by the continuum variable η and eq. (4.71) takes now the form:

J̄
(0)
∆G,f(p)=1(η, ξ) =

N

2π

∫ π
2

−π
2

dθ

cos(θ)
eiNF∆G

(ξ,η,θ), (4.106)

where F∆G
(ξ, η, θ) is given in eq. (4.72). Eq. (4.106) differs from (4.71) for the factor

1
cos(θ) in the integration volume. This factor is the term X(z) in the steepest descent

formula (4.74) and according to the second equation in (4.73) it produces in the N → ∞
limit an overall factor η

ξ . As a consequence the asymptotic formulas for J̄
(0)
∆G,f(p)=1(η, ξ)

are the same as the ones given in (4.77) and in (4.78) for J
(0)
∆G

(ξ, η), but multiplied by a

factor η
ξ . So while J

(0)
∆G

(ξ, η) vanishes like
√
ξ as ξ → 0, J̄

(0)
∆G,f(p)=1(η, ξ) diverges like 1√

ξ
in

the same limit.

This implies that the contribution coming from ξ = 0 cannot be neglected in the

continuum limit. In fact, one can follow step by step for J̄
(0)
∆G,f(p)=1(η, ξ) the derivation of

such limit as given in the appendix for J
(0)
∆G

(ξ, η). We find that eq. (A.15) is modified now

by the extra factor η
ξ so that the contribution at ξ = 0 is divergent as the factor

√
2ξ
πNη is

replaced by
√

2η
πNξ .

15Notice the inverted arguments
16In the last integral p is regarded as a function of p̂, namely: p = 2

a
gd( ap̂

2
).
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A vanishing contribution at ξ = 0 can be obtained in this case only by imposing a

rather ad hoc restriction on the test function χ(ξ), namely by requiring that

lim
ξ→0

χ(ξ)√
ξ

= finite. (4.107)

It is natural at this point to ask the question if a choice of the rescaling function

f(p) exists that makes both J̄
(0)
∆G,f=1(xn, ξ) and J

(0)
∆G,f=1(ξ, xn) well defined at ξ = 0 so

that both (4.101) and (4.103) have a smooth continuum limit without making any ad hoc

assumption on the test function (namely on Φ(ξ) in the case of eq. (4.103)). Such a choice

does indeed exists as it is rather obvious from the previous discussion. In fact if we choose

f(p) = f√(p) ≡ 1√
cos(ap2 )

, (4.108)

the functions J̄
(0)
∆G,f=f√(η, ξ) and J

(0)
∆G,f=f√(ξ, η) coincide17 and are given by:

J̄
(0)
∆G,f=f√(η, ξ) = J

(0)
∆G,f=f√(ξ, η) =

N

2π

∫ π
2

−π
2

dθ√
cos(θ)

eiN(ξgd−1(θ)−ηθ). (4.109)

The integral on the r.h.s. is convergent and the factor 1√
cos(θ)

in the integral produces an

extra factor
√

η
ξ in the large N expansion. This cancels exactly the factor

√
ξ
η that appears

in front of the large N expansion in eq. (4.77) and in eq. (4.78). With this choice of f(p)

the derivation of the continuum limit given in the appendix runs smoothly. The crucial

point is the contribution from ξ = 0 given in (A.15). With the new choice of f(p) the factor√
ξ
η is exactly canceled by the factor

√
η
ξ coming from the 1√

cos(θ)
factor in the integration

measure, but the contribution at ξ = 0 still vanishes because the function F ′(ξ, η) at the

denominator in (A.15) becomes infinite like log(ξ) as ξ goes to zero.

In conclusion the choice of f(p) given in (4.108) is the only one for which both

J̄
(0)
∆G,f

(η, ξ) and J
(0)
∆G,f

(ξ, η) reduce to a δ(ξ − η) in the large N limit, with any other

choice one of the two functions gives a divergent contribution at ξ = 0 in that limit and

correspondingly requires a vanishing test function at ξ = 0 (as for instance in eq. (4.107))

for the limit to be finite.

Another remarkable property of the choice f(p) =
√

d∆(p)
dp , which reduces to (4.108)

for ∆ = ∆G, is that the star product becomes completely symmetric in coordinate repre-

sentation. In fact from (4.16), using (4.99) and (4.100), a straightforward calculation gives:

(ϕ1 ? ϕ2)(0)(xn) =
a2

4

∑
n1,n2

Kn,n1,n2ϕ
(0)
1 (xn1)ϕ

(0)
2 (xn2), (4.110)

where the kernel Kn,n1,n2 is completely symmetric in the three indices and is given by

Kn,n1,n2 =

∫ +∞

−∞
dξ J

(0)

∆,
√

∆′
(ξ, xn) J

(0)

∆,
√

∆′
(ξ, xn1) J

(0)

∆,
√

∆′
(ξ, xn2), (4.111)

17For a generic ∆ this happens with the choice f(p) =
√

d∆(p)
dp

.

– 45 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
9

with

J
(0)

∆,
√

∆′
(ξ, xn) =

1

2π

∫ π
a

−π
a

dp

√
d∆

dp
eixnp−iξ∆(p) =

1

π

∫ π
a

0
dp

√
d∆

dp
cos [ixnp− iξ∆(p)] .

(4.112)

5 Lattice actions from blocking transformations

Given a field theory in the continuum it is possible to define a corresponding theory on the

lattice by using “blocking transformations” that associate a field configuration on the lattice

to any field configuration in the continuum. Although the term “blocking transformations”

is normally used to denote transformations that map field configurations on a lattice onto

field configuration on another coarser lattice we extend here the terminology to denote

continuum to lattice transformations. This was already done for instance in ref. [16] to

which we refer for the general set up.

The explicit form of these continuum-to-lattice blocking transformations is suggested

by the correspondence between the continuum and the lattice momentum which, as we

have seen, plays a fundamental role in defining the type of lattice theory we are dealing

with. Indeed we have already seen in section 2 that in the framework of the conventional

lattice the relation (2.6) between the lattice momentum pµ and the continuum momentum

p̂µ naturally induces a map, given in momentum representation by eq. (2.40), from the

fields of the continuum theory Φ̃A(p̂) onto the fields ϕ̃A(p) of the theory on the lattice. In

this section we shall apply this procedure to the new approach to lattice theory described

in the present paper.

5.1 New lattice via blocking transformations

Let us denote by ΦA(ξ) the set of fields (bosonic and/or fermionic) of a field theory in the

continuum and by Φ̃A(p̂) their Fourier transforms, namely their representation in momen-

tum space. In a d-dimensional theory ξ and p̂ denote a set of d coordinates (respectively

momenta) ξµ (resp. p̂µ) and the label A may include, besides internal symmetry indices,

also spinor and vector indices.

Let us also denote by ϕA(xn) the corresponding fields on the lattice, with xn repre-

senting a set of coordinates xµn = anµ

2 where nµ are d integers labeling the lattice sites. The

discrete Fourier transform of ϕA(xn) will be denoted by ϕ̃A(p) and provides the momen-

tum representation of the lattice fields. The fields ϕ̃A(p) are periodic with period 4π
a in all

components pµ of the momentum.

In order for the correspondence between continuum and lattice fields to be a one to one

correspondence we shall also assume that ϕ̃A(p) is invariant under any of the d symmetry

transformations pµ → 2π
a − pµ, namely we shall assume that eq. (3.27) and (3.28) hold for

any of the field species labeled by the index A. Therefore in momentum representation all

the independent degrees of freedom of the theory on the lattice are contained, for any value

of µ, in the domain −π
a ≤ pµ ≤

π
a , and in coordinate representation they are all contained

in the d-dimensional quadrant defined by nµ ≥ 0 for all µ.
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In our approach the correspondence between the lattice momenta pµ and the momenta

p̂µ in the continuum is given by eq. (3.6), which results from the identification of the mo-

menta p̂µ in the continuum with the corresponding derivative operator ∆(pµ) on the lattice.

The blocking transformation induced by this correspondence has already been con-

sidered in the one dimensional case and it is given by eq. (4.17). This can be directly

generalized to arbitrary dimensions in the following way:

F (p) ϕ̃A(p) =

d∏
µ=1

d∆(pµ)

dpµ
Φ̃A(∆(p)) − π

a
≤ pµ ≤

π

a
, (5.1)

where the function F (p) corresponds to an arbitrary rescaling of the lattice fields ϕ̃A(p) in

momentum space.

A simpler way of writing (5.1) is obtained by introducing the differentials dpµ and dp̂µ,

namely:

ϕ̃A(p) F (p)

d∏
µ=1

dpµ = Φ̃A(p̂)

d∏
µ=1

dp̂µ − π

a
≤ pµ ≤

π

a
, (5.2)

where p̂µ = ∆(pµ). Notice that if the l.h.s. of (5.2) is to be integrated over a 4π
a period

the product F (p) ϕ̃A(p) must be symmetric under pµ → 2π
a − pµ or else the integral would

vanish. Since we assumed that the fields ϕ̃A(p) satisfy eq. (3.27), for consistency we shall

assume that the latter is also satisfied by F (p), although in principle it would be enough to

require the invariance under (3.27) of their product. Eq. (5.2) also shows that F (p) can be

interpreted as a function defining the integration volume in the lattice momentum space.

The blocking transformation (5.1) has been defined in the domain −π
a ≤ pµ ≤ π

a , but

it can be extended, using the symmetry of the fields under pµ → 2π
a − pµ, to the whole

4π
a interval in each variable. However since ∆(pµ) is symmetric under pµ → 2π

a − pµ, its

derivative with respect to pµ appearing at the r.h.s. of (5.1) is antisymmetric. So the

extension of (5.1) to the 4π
a interval requires that the absolute value of the derivatives

appears on the r.h.s, giving:

F (p) ϕ̃A(p) =

∣∣∣∣∣∣
d∏

µ=1

d∆(pµ)

dpµ

∣∣∣∣∣∣ Φ̃A(∆(p)) − π

a
≤ pµ ≤

3π

a
. (5.3)

We remarked in section 3 that due to the symmetry ∆(pµ) = ∆(2π
a − pµ) the derivative

d∆(pµ)
dpµ

vanishes at pµ = ±π
a . It follows then from (5.3) that either ϕ̃A(p) or F (p) vanish

whenever any of the momentum components pµ takes the value ±π
a , and if pµ = ±π

a are the

only points where
d∆(pµ)
dpµ

vanishes, namely they are the only extremes of ∆(p), the range

of variation of p̂µ = ∆(pµ) as pµ varies in the 4π
a period will be limited by eq. (3.18) with

2l = a. This means that in the blocking transformation (5.3) the lattice fields ϕ̃A(p) are

not affected by the value of the continuum fields Φ̃A(p̂) with p̂µ outside the interval defined

in (3.18) and the blocking effectively applies a cutoff on the momentum. The actual value

of the cutoff depends on the choice of ∆(p). For instance if we choose ∆(p) ≡ ∆
(z)
G (p) (see

eq. (4.44)) we have:

p̂(cutoff) =
1

aẑ
log

1 + ẑ

1− ẑ
, (5.4)
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which can range from 2
a for ẑ = 0,18 to ∞ for ẑ = 1. Only when p̂(cutoff) = ∞ the

blocking transformation is invertible and the continuum field configuration can be entirely

reconstructed from the one on the lattice.

The local product of fields in a one dimensional continuum theory is represented in

momentum space by the convolution (2.16), which can be trivially generalized to arbitrary

dimensions. The blocking transformation (5.3) maps the local product in the continuum

onto a star product on the lattice, which is the direct generalization to d dimensions of the

associative star product (4.13) introduced in the previous section. This is given by:

˜ϕA1 ? ϕA2(p) =

(
1

2π

)d ∫ 3π
a

−π
a

dDp1d
Dp2

D∏
µ=1

∣∣∣∣d∆(pµ)

dpµ

∣∣∣∣ F (p1)F (p2)

F (p)
·

· ϕ̃A1(p1)ϕ̃A2(p2) δD (∆(p)−∆(p1)−∆(p2)) . (5.5)

It should be noticed however that for the reasons already given in the previous section the

D-dimensional star product defined in (5.5) is associative only if ∆(p) ranges from −∞ to

+∞.

The blocking transformation (5.1) can also be written in coordinate representation. In

analogy with the one dimensional case (4.99) we introduce a field ϕ0,A(xn) defined as:

ϕ0,A(xn) =

(
1

2π

)D ∫ π
a

−π
a

dDp ϕ̃A(p)eix
µ
npµ . (5.6)

Thanks to the symmetry of ϕ̃A(p) under pµ → 2π
a − pµ the field ϕ0,A(xn) determines the

lattice field ϕA(xn) completely in spite of the integration domain in (5.6) being half period

in each momentum variable. In fact the expression of ϕA(xn) in terms of ϕ0,A(xn) is a

trivial generalizazion of (4.98) to the D-dimensional case. From (5.6) and the blocking

transformation (5.1) we obtain with some algebra:

ϕ0,A(xn) =

∫ ∞
−∞

d∏
µ=1

dξµJ̄
(d)
∆,F (xn, ξ)ΦA(ξ), (5.7)

where the function J̄
(d)
∆,F (xn, ξ) is given by:

J̄
(d)
∆,F (xn, ξ) =

1

(2π)d

∫ π
a

−π
a

d∏
µ=1

dpµ
d∆(pµ)

dpµ

eix
ν
npν−iξν∆(pν)

F (p)
. (5.8)

The form of J̄
(d)
∆,F (xn, ξ) simplifies if we assume that the function F (p) is factorized as

a product of single variable functions:

F (p) =

D∏
µ=1

f(pµ). (5.9)

18Note that ∆
(0)
G (p) = 2

a
sin ap

2
.
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With this choice of F (p) the function J̄
(d)
∆,F (xn, ξ) also factorizes and is given by:

J̄
(d)
∆,F (xn, ξ) =

d∏
µ=1

J̄
(0)
∆,f (xµn, ξ

µ), (5.10)

where J̄
(0)
∆,f (xµn, ξµ) is the function introduced in (4.104).

We shall study now how different symmetries of the continuum theory are mapped

onto the lattice by the blocking transformation (5.3). Let us consider first a symmetry

which is local in the momentum representation, for instance translational invariance. In

the continuum this is given by:

δ̂εΦ̃A(p̂) = iεp̂ Φ̃A(p̂). (5.11)

By inserting (5.11) into the blocking transformation (5.3) we find that the corresponding

variation on the lattice field configuration is given by:

δϕ̃A(p) = iε∆(p)ϕ̃A(p). (5.12)

The fact that the variation δϕ̃A(p) induced on the lattice fields by the symmetry

transformations (5.11) can be expressed in term of the lattice fields themselves, as shown

in eq. (5.12), is a non trivial property that depends on the type of blocking transformation

and on the type of symmetry. This point was investigated in ref. [16] where the general

condition for this to happen was studied in detail and given in eq. (13) of that paper.

In the present case the locality of both the blocking transformation and of the symmetry

transformations in momentum space assure that this condition is satisfied. The same

applies to supersymmetry transformations: the lattice realization of the D = N = 2 chiral

supersymmetry studied in ref. [19] can be viewed in the same way.

The case of gauge transformations is entirely different. An infinitesimal Abelian gauge

transformation in momentum space is given by:

δ̂gΦ̃(p̂) = i

∫ ∞
−∞

dD q̂1d
D q̂2 α̃(q̂1) Φ̃(q̂2) δD(p̂− q̂1 − q̂2). (5.13)

where α̃(q̂) is the Fourier transform of the infinitesimal gauge local parameter α(x).

The gauge transformation (5.13) would induce on the corresponding lattice variable the

transformation δgϕ̃(p) given by:

δgϕ̃(p) =
1

F (p)

∣∣∣∣∣∣
d∏

µ=1

d∆(pµ)

dpµ

∣∣∣∣∣∣ δ̂gΦ̃(p̂). (5.14)

However the r.h.s. of (5.14) cannot be expressed in terms of the lattice degrees of

freedom. In fact the integral on the r.h.s. of (5.13) contains fields Φ̃(q̂2) with arbitrary

large momenta which for a generic ∆(p) have no correspondence on the lattice. Only with

a choice of ∆(p) that ranges from −∞ to +∞, such as ∆G(p), the r.h.s. of (5.14) can be

expressed in terms of the lattice degrees of freedom, and gauge transformations can be

consistently defined on the lattice.
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5.2 Lattice actions from blocking transformations

Given a classical action in the continuum it is possible, by using the blocking transforma-

tion (5.3) with a specific choice of ∆(p) and of the function F (p), to derive an effective

action for the lattice degrees of freedom. A general discussion of this procedure is found in

ref. [16] to which we refer the reader for more details.

Let Scl[Φ̃] be the classical action expressed in terms of the fields Φ̃A(p). The simplest

way to construct an effective lattice action S∆(ϕ̃) in terms of the lattice fields ϕ̃A(p) is to

impose the blocking transformation (5.3) by a functional delta function and write:

e−S∆(ϕ̃) =

∫
DΦ̃A

∏
µ

3π
a∏

pµ=−π
a

∏
A

δ

Φ̃A(∆(p))− F (p)∣∣∣∏d
µ=1

d∆(pµ)
dpµ

∣∣∣ ϕ̃A(p)

 e−Scl(Φ̃). (5.15)

We can make use of the symmetry ∆( 2π
a − p) = ∆(p) to reduce the p-dependence in (5.15)

to the fundamental region19 −π
a ≤ pµ ≤

π
a . Let A denote a subset of the possible values of

the space-time index µ, as in (2.7) and define:

(TAp)µ =

{
pµ if µ 6∈ A
2π
a − pµ if µ ∈ A

. (5.16)

Then eq. (5.15) can be rewritten as:

e−S∆(ϕ̃) =
∏
µ

π
a∏

pµ=−π
a

∏
A

∏
A6=∅

δ

 F (TAp)∏d
µ=1

d∆(pµ)
dpµ

ϕ̃A(TAp)−
F (p)∏d

µ=1
d∆(pµ)
dpµ

ϕ̃A(p)

 e−Ŝ∆(ϕ̃),

(5.17)

where

e−Ŝ∆(ϕ̃) =

∫
DΦ̃A

∏
µ

π
a∏

pµ=−π
a

∏
A

δ

Φ̃A(∆(p))− F (p)∏d
µ=1

d∆(pµ)
dpµ

ϕ̃A(p)

 e−Scl(Φ̃). (5.18)

The delta functions in (5.17) enforce the symmetry of the product F (p)ϕ̃(p) under pµ →
2π
a − pµ which can be expressed in the notation of (5.16) as F (TAp) ϕ̃(TAp) = F (p) ϕ̃(p)

and determine the dependence of the lattice fields ϕ̃A(p) from pµ when π
a < pµ <

3π
a for at

least one value of µ. The action Ŝ∆(ϕ̃) instead only depends on the fields ϕ̃A(p) with all

momentum components pµ in the interval −π
a < pµ <

π
a .

A key ingredient in (5.18) is the derivative operator ∆(p). Let us consider the choice

∆(p) = ∆
(z)
G (p), where ∆

(z)
G (p) is the regularized derivative operator defined in (4.44),

which interpolates between ∆G(p) and ∆0(p) = 2
a sin ap

2 . For z < 1 the derivative operator

∆
(z)
G (p) is bounded by ∆

(z)
G (p) ≤ p̂(cutoff), where p̂(cutoff) is given in (5.4). Therefore if for

some µ we have p̂µ > p̂(cutoff), the field Φ̃A(p̂) has no lattice correspondent and the r.h.s.

19We assume here that p = ±π
a

are the only extremes of ∆(p) so that d∆(p)
dp
≥ 0 in −π

a
≤ p ≤ π

a
.
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of (5.18) can be written as:

e
−Ŝ

∆
(z)
G

(ϕ̃)
=

∫ ∏
|p̂µ|≤p̂(cutoff)

DΦ̃A(p̂)
∏
µ

π
a∏

pµ=−π
a

∏
A

δ

Φ̃A(∆
(z)
G (p))− F (p)∏d

µ=1
d∆

(z)
G (pµ)
dpµ

ϕ̃A(p)

 ·
·
∫ ∏
∃µ:|p̂µ|>p̂(cutoff)

DΦ̃A(p̂)e−Scl(Φ̃). (5.19)

Eq. (5.19) shows that in order to calculate Ŝ
∆

(z)
G

(ϕ̃) one should first perform the func-

tional integral over the classical fields Φ̃A(p̂) with |p̂µ| ≥ p̂(cutoff) for some µ, then by

using the delta functions do the functional integral over the remaining fields Φ̃A(p̂) with

|p̂µ| ≤ p̂(cutoff) for all values of µ, which amounts to replacing in Scl(Φ̃) the classical field

Φ̃A(p̂) with F (p)∏d
µ=1

d∆
(z)
G

(pµ)

dpµ

ϕ̃A(p) where the components of p are all in the interval (−π
a ,

π
a )

and p̂ = ∆
(z)
G (p).

No approximation is involved in the functional integral at the r.h.s. of (5.19), so the

correlation functions obtained from the lattice theory are directly related to the ones of

the continuum theory. In fact if we define the normalized generating functional Z
∆

(z)
G

(j̃)

on the lattice as

Z
∆

(z)
G

(j̃) =

∫ ∏
|pµ|≤πa

Dϕ̃A(p)e
−Ŝ

∆
(z)
G

(ϕ̃)+
∫
|pµ|≤πa

dp j̃A(−p)ϕ̃A(p)

∫ ∏
|pµ|≤πa

Dϕ̃A(p)e
−Ŝ

∆
(z)
G

(ϕ̃)
, (5.20)

we insert (5.19) in the r.h.s. of (5.20) and we perform the functional integral over ϕ̃A(p)

using the delta functions we obtain:

Z
∆

(z)
G

(j̃) = Z
(cl)

p̃(cutoff)(J̃), (5.21)

where Z
(cl)

p̃(cutoff)(J̃) is the normalized generating functional for the continuum theory, but

including only source terms with momenta |p̂µ| ≤ p̃(cutoff):

Z
(cl)

p̃(cutoff)(J̃) =

∫
DΦ̃A(p̂)e

−Scl(Φ̃)+
∫
|p̂µ|≤p̃(cutoff) dp̂µJ̃A(−p̂)Φ̃A(p̂)∫

DΦ̃A(p̂)e−Scl(Φ̃)
, (5.22)

and the relation between j̃ and J̃ in (5.21) is given by:

J̃A(∆
(z)
G (p)) =

j̃A(p)

F (p)
. (5.23)

Except for some very special case, like for instance quadratic actions, the functional

integral over the classical fields with |pµ| > p̃(cutoff) in eq. (5.19) cannot be done explicitely.

However an explicit lattice action can be written if one starts from a truncated continuum

theory obtained from the original one by imposing the condition

Φ̃A(p̂) = 0 if |p̂µ| > p̃(cutoff) for any µ. (5.24)
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With this truncation the inner functional integral in (5.19) is trivial and the last can be

done explicitely because of the delta functions. The result is a lattice action that can be

obtained from the one in the continuum by first applying (5.24), then by replacing any

derivative p̃µ with its lattice equivalent ∆
(z)
G (pµ) and finally the continuum fields Φ̃A(p̂)

and the differentials dp̃µ with the corresponding lattice quantities according to the blocking

transformation (5.2).

Unlike the lattice theory obtained from (5.19), the lattice theory obtained after the

truncation (5.24) is not equivalent to the theory in the continuum, but it is expected to

reproduce the results of the continuum theory in the limit a→ 0 (although this should be

checked case by case).

Gauge invariance is broken by the truncation (5.24). As already remarked earlier

in the paper gauge transformations in momentum space are given by convolutions that

involve arbitrarily high momenta, hence any truncation in the momentum spoils gauge

invariance. So gauge invariance is broken in the lattice theory obtained via the blocking

transformation (5.2) after truncating the continuum theory according to (5.24).

On the contrary supersymmetry transformations are local in momentum space, and the

truncation (5.24) is supersymmetric invariant. So in supersymmetric non-gauge theories

the lattice actions obtained by the combined application of (5.24) and (5.2) have exact su-

persymmetry on the lattice. This is the case of the D = N = 2 Wess Zumino model whose

supersymmetric lattice action has already been written in ref. [19]. In that paper the action

was derived by first writing exact supersymmetry transformations on the lattice for a gen-

eral N = D = 2 superfield and then imposing chiral conditions on the lattice. The end re-

sult however is the same as we would have obtained by applying directly eqs. (5.24) and (5.2)

to the action in the continuum. More of this will be discussed in the following section.

As already remarked earlier on, gauge theories require a choice of the derivative oper-

ator ∆(p) that spans (twice) the whole real axis as p goes over a 4π
a period. As discussed

earlier the best choice in this respect is ∆G(p) defined in (4.32) which is obtained from

the regularized difference operator ∆
(z)
G (p) by taking z → 1. In this limit p̂(cutoff) becomes

infinite and the second functional integral at the r.h.s. of (5.19) becomes 1 so that (5.19)

takes the form:

e−Ŝ∆G
(ϕ̃) =

∫
DΦ̃A(p̂)

∏
µ

π
a∏

pµ=−π
a

∏
A

δ

(
Φ̃A(∆G(p))− F (p)

d∏
ν=1

cos
apν
2
ϕ̃A(p)

)
e−Scl(Φ̃).

(5.25)

With the choice p̂µ = ∆G(pµ) the star product (5.5) is associative, the blocking trans-

formation (5.1) becomes invertible, and as a consequence also (5.25) can be inverted (mod-

ulo a constant proportionality factor), and the action in the continuum can be completely

reconstructed from the lattice one:

e−Scl(Φ̃) =

∫
Dϕ̃A(p)

∏
µ

π
a∏

pµ=−π
a

∏
A

δ

(
Φ̃A(∆G(p))− F (p)

d∏
ν=1

cos
apν
2
ϕ̃A(p)

)
e−Ŝ∆G

(ϕ̃).

(5.26)
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The generating functional of the correlation functions on the lattice Z∆G
(j̃) is obtained

from (5.20) by setting z = 1:

Z∆G
(j̃) =

∫ ∏
|pµ|≤πa

Dϕ̃A(p)e
−Ŝ∆G

(ϕ̃)+
∫
|pµ|≤πa

dp j̃A(−p)ϕ̃A(p)∫ ∏
|pµ|≤πa

Dϕ̃A(p)e−Ŝ∆G
(ϕ̃)

, (5.27)

and its relation with the corresponding functional in the continuum theory is:

Z∆G
(j̃) = Z(cl)(J̃), (5.28)

with

J̃A(∆G(p)) =
j̃A(p)

F (p)
. (5.29)

Notice that in the generating functional Z(cl)(J̃) there is now no restriction on the mo-

menta of the sources J̃A(p̂), so that the lattice theory contains the full information on the

correlation functions of the continuum theory.

6 Regularization and renormalization in the new lattice: two examples

In this section we present two simple examples of field theories formulated in our lattice ap-

proach: the massless supersymmetric non interacting Wess-Zumino model and the bosonic

theory with Φ4 interaction in four dimensions.

In the first example we shall show that supersymmetry is not affected and give an

explicit realization of the action in coordinate representation. In the second example we

shall mostly concentrate on the problem of regularization and renormalization of the theory.

In the standard lattice theory the lattice constant a acts as a regulator for the ultra-

violet divergences that plague the continuum theory. On the other hand we have seen in

the last section that in our approach the lattice action can be obtained from the one in

the continuum via a blocking transformation which is invertible if the derivative operator

is the one given in (4.44) with ẑ = 1. This means that there is no loss of information

going from the continuum to the lattice formulation, and that in spite of the introduction

of the length scale a, the lattice theory is completely equivalent to the original continuum

one, and hence contains the same ultraviolet divergences. On the other hand, if a different

value of ẑ is used in (4.44), the lattice theory is mapped onto a continuum theory whith

a cutoff (5.4) in the momenta which depends on the adimensional parameter ẑ. So while

the lattice constant a sets a scale for the length the role of regulator of the ultraviolet di-

vergences is not played by the lattice constant by itself but rather by a combination of the

lattice constant and of the paramenter ẑ which is related to the locality of the derivative

operator. This will be discussed in the present section. Moreover we shall show that by

making the interaction in the Φ4 theory slightly non-local, a different regulator with similar

properties can be introduced leading to a regularization scheme similar to the momentum

cutoff. One loop renormalization is explicitely checked.
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6.1 Non interacting supersymmetric Wess-Zumino model in four dimension

As a first application we shall consider the simplest supersymmetric theory in four dimen-

sions, namely the massless non interacting Wess-Zumino model [54]. This is given by just

the kinetic terms of a single left handed two component Weyl fermion Ψ and a complex

scalar boson Φ:

S =

∫
d4x

(
iΨ†σ̄µ∂µΨ− ∂µΦ?∂µΦ

)
, (6.1)

where in our notations σi = −σ̄i are the Pauli matrices and σ0 = σ̄0 is the identity matrix.

The action (6.1) is invariant on shell under the supersymmetry transformations:

δεΦ = εΨ, δεΦ
? = ε†Ψ† (6.2)

δεΨα = −i(σµε†)α∂µΦ, δεΨ
†
α̇ = i(εσµ)α̇∂µΦ?, (6.3)

where εα is a Grassmann odd Weyl spinor parameter.20

The action (6.1) can now be written in momentum representation:

S =
1

(2π)4

∫
d4p̂1d

4p̂2 δ
4 (p̂1 + p̂2)

[
−Ψ̃†(p̂1)σ̄µp̂

µ
2 Ψ̃(p̂2) + p̂1µΦ̃(p̂1)p̂µ2 Φ̃†(p̂2)

]
, (6.4)

where Φ̃†(p̂) is the Fourier transform of Φ?(x).21

The corresponding lattice action is obtained by replacing the fields Φ̃(p̂) and Ψ̃(p̂) with

the lattice fields ϕ̃(p) and ψ̃(p) periodic with period 4π
a in the components pµ of the lattice

momentum and invariant under the symmetry pµ → 2π
a − pµ for each value of µ. The

derivative operator i∂µ, namely p̂µ in momentum representation, is replaced on the lattice

by the lattice derivative ∆(pµ) discussed in the previous sections. In the remaining part of

this section we shall choose ∆(pµ) = ∆
(z)
G (pµ) where ∆

(z)
G (pµ) is the regularized operator

defined in (4.44) and discussed there.

Following the prescriptions above we can write the lattice action as:

S
(z)
V =

1

(4π)4

∫ 3π
a

−π
a

d4p1 d
4p2 v(p1, p2)δ4

(
∆

(z)
G (p1) + ∆

(z)
G (p2)

)
·

·
[
−ψ̃†(p1)σ̄µ∆

(z)
G (p2µ)ψ̃(p2) + ∆

(z)
G (p1µ)ϕ̃(p1)∆

(z)
G (pµ2 )ϕ̃†(p2)

]
, (6.5)

where v(p1, p2) defines the volume of integration in the momentum space and will be

specified below. Let us consider now the delta functions in eq. (6.5). Their argument

vanish for either p1µ + p2µ = 0 or p1µ − p2µ = 2π
a modulo 4π

a , so we have:

δ2
(

∆
(z)
G (p1µ) + ∆

(z)
G (p2µ)

)
=

∏
µ

[
δ (p1µ + p2µ) + δ

(
p1µ − p2µ − 2π

a

)]√∏
µ

∣∣∣∣d∆
(z)
G (p1µ)
dp1µ

d∆
(z)
G (p2µ)
dp2µ

∣∣∣∣
, (6.6)

where the square root in the denominator is the result of a symmetrization with respect to

p1 and p2.

20In our notations spinors without (resp. with) a dagger always carry undotted (resp. dotted) indices,

and are right (resp. left) handed.
21Note that Φ̃†(p̂) = Φ̃?(−p̂).
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Eq. (6.6) can now be inserted into the action (6.5) and the integration volume v(p1, p2)

can be chosen in such a way to simplify the quadratic action as much as possible. If

we choose

v(p1, p2) =

√√√√∏
µ

∣∣∣∣∣d∆
(z)
G (p1µ)

dp1µ

d∆
(z)
G (p2µ)

dp2µ

∣∣∣∣∣. (6.7)

the lattice action, which we shall now simply denote as S(z), becomes:

S(z) =
1

(4π)4

∫ 3π
a

−π
a

d4p1 d
4p2

∏
µ

[
δ (p1µ + p2µ) + δ

(
p1µ − p2µ −

2π

a

)]
·

·
[
−ψ̃†(p1)σ̄µ∆

(z)
G (p2µ)ψ̃(p2) + ∆

(z)
G (p1µ)ϕ̃(p1)∆

(z)
G (pµ2 )ϕ̃†(p2)

]
. (6.8)

With the choice of v(p1, p2) given in (6.7) the non-locality of Slatt in coordinate repre-

sentation is entirely due to the non-locality of the lattice derivative ∆
(z)
G (pµ) (which is in

fact local for z = 0 and very non-local in the limit z → 1) and to the symmetry pµ → 2π
a −pµ

which couples the points of coordinates
anµ

2 and
−anµ

2 in the µ direction. Any other choice

of v(p1, p2) would introduce extra dependence on the lattice momenta, and hence extra

non-locality in coordinate representation. So we can say that the integration volume (6.7)

gives the most local action in this context.

We shall now make use of the fact that all fields are invariant under pµ → 2π
a − pµ

(separately for each µ) and that the sum of delta functions is also invariant under such

symmetry. As a result, each momentum integration over the 4π
a interval (−π

a ,
3π
a ) is equal

to twice the integral over the 2π
a interval (−π

a ,
π
a ) and the action (6.8) can be written as:

S(z) =
1

π4

∫ π
a

−π
a

d4p1 d
4p2

∏
µ

δ (p1µ + p2µ) ·

·
[
−ψ̃†(p1)σ̄µ∆

(z)
G (p2µ)ψ̃(p2) + ∆

(z)
G (p1µ)ϕ̃(p1)∆

(z)
G (pµ2 )ϕ̃†(p2)

]
. (6.9)

A more direct relation between the lattice action (6.9) and the action in the contin-

uum (6.4) can be obtained by setting in (6.9) p̂µ = ∆
(z)
G (pµ) and by using p̂µ, which can

be identified with the momentum of a theory in the continuum, as independent integration

variable. With a few algebraic manipulations (essentially by tracing our steps back from

lattice to continuum) we find:

S(z) =
1

(2π)4

∫
|p̂µ|≤p̂(cutoff)

d4p̂1d
4p̂2 δ

4 (p̂1 + p̂2)
[
−Ψ̃†(p̂1)σ̄µp̂

µ
2 Ψ̃(p̂2) + p̂1µΦ̃(p̂1)p̂µ2 Φ̃†(p̂2)

]
,

(6.10)

with

Ψ̃(∆
(z)
G (pµ)) =

2ψ̃(p)∏
µ

√
d∆

(z)
G (pµ)
dpµ

, Φ̃(∆
(z)
G (pµ)) =

2ϕ̃(p)∏
µ

√
d∆

(z)
G (pµ)
dpµ

. (6.11)

Eq. (6.11) coincides with the blocking transformation (5.1), but with a specific choice

of the function F (p), namely with F (p) of the factorized form (5.9) and f(p) given by:

f(p) =

√√√√∣∣∣∣∣d∆
(z)
G (p)

dp

∣∣∣∣∣ =

√√√√∣∣∣∣∣ cos ap2
1− ẑ2 sin2 ap

2

∣∣∣∣∣. (6.12)
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For z → 1, namely for ∆
(z)
G (p) → ∆G(p) this choice of f(p) coincides with the one given

in (4.108) that guarantees a smooth continuum limit in coordinate representation.

The action (6.10) is the action of a free theory in the continuum where a cutoff on the

components of the momenta has been introduced. It is important to notice that in (6.10)

the dependence on the lattice constant a and the parameter ẑ, which was explicit in (6.9),

is all contained in the value of p̂(cutoff) which is given in (5.4). As a consequence lattice

actions (6.9) with different values of the lattice constant a and of the parameter ẑ but

corresponding to the same value of the cutoff p̂(cutoff) according to eq. (5.4) are physically

equivalent, as they correspond to the same continuum theory (6.10).

This means that it is possible via a (proper) blocking transformation to map exactly

the action (6.10) with a given lattice constant a and regulator parameter ẑ onto the same

action with a different constant a′ and regulator parameter ẑ′ provided the value of the

cutoff p̂(cutoff) is the same in the two cases.

In order to give a specific example let us start from a lattice with lattice spacing a and

a local derivative

∆(pµ) =
2

a
sin

apµ
2
, (6.13)

that corresponds to ∆
(z)
G (p) with z = ẑ = 0. The momentum cutoff is in this case 2

a .

Consider now a lattice with a lattice spacing a′ which is the double of the original one:

a′ = 2a. We can determine the value of the regulator parameter ẑ′ for which the value

of the momentum cutoff p̂(cutoff) calculated from (5.4) is the same in the two cases. This

leads to the following equation:
1

ẑ′
log

1 + ẑ′

1− ẑ′
= 4, (6.14)

whose solution has the numerical value ẑ′ = 0.9575 . . . which corresponds to a value of z

in eq. (4.43) equal to 0.74316. . . .22

Let us denote by pµ and p′µ the components of the momentum on the two lattices.

Then the lattice derivatives in the two cases are given by (6.13) and by:

∆′(p′µ) =
1

2aẑ′
log

1 + ẑ′ sin ap′µ
1− ẑ′ sin ap′µ

, (6.15)

where in the last equation we have made use of the fact that a′ = 2a. Notice in particular

that the periodicity in p′µ is 4π
a′ = 2π

a . The two derivative operators ∆(pµ) and ∆′(p′µ) are

to be identified as they both represent the momentum p̂µ of the continuum theory. So we

can write:
2

a
sin

apµ
2

=
1

2aẑ′
log

1 + ẑ′ sin ap′µ
1− ẑ′ sin ap′µ

= p̂µ. (6.16)

Eq. (6.16) establishes a relation between the lattice momenta pµ and p′µ and it is consistent

because thanks to (6.14) the range of variation of ∆(pµ) and ∆′(p′µ) coincide. Let us denote

22It is interesting that one could also choose a′ < a, for instance a′ = a
2
. In order to keep the value of

the cutoff unchanged this requires ẑ′ imaginary: for a′ = a
2

one finds for instance ẑ′ = 2.3311 . . . i which

corresponds to z′ = 0.2827i. A purely imaginary value of z in eq. (4.43) leads to a series with all positive

signs so that the contributions of far away terms (i.e. large k) are enhanced.
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with ϕ̃o(p) and ψ̃o(p) the lattice fields of the theory with lattice spacing a and ẑ = 0 and

with ϕ̃′o(p
′), and ψ̃′o(p

′) the lattice fields of the theory with lattice spacing a′ = 2a and ẑ′

given by (6.14). The blocking transformations (6.11) can be written in both cases and give

for the bosonic fields:23

Φ̃(p̂) =
2ϕ̃o(p)∏
µ

√
cos

apµ
2

=
2ϕ̃′o(p

′)∏
µ

√
cos ap′µ

1−ẑ′2 sin2 ap′µ

, (6.17)

where the relation between p̂,p and p′ is given in (6.16).

The last equality in (6.17) together with the similar one for the fermionic fields defines

a blocking transformation that maps exactly the free theory defined by the action (6.9)

with ẑ = 0 and lattice constant a into one defined by the same action but with a lattice

constant a′ = 2a and with the parameter ẑ′ given by (6.14) and numerically close to the

limiting value of 1: ẑ′ = 0.9575 . . ..

The conventional continuum action is reached by letting p̂(cutoff) → ∞. This can be

obtained in two ways, namely by either keeping ẑ′ fixed (for instance ẑ′ = 0) and taking

the limit where the lattice spacing a goes to zero, or by keeping the lattice spacing fixed

and taking the limit ẑ′ → 1.

The first case corresponds to the standard continuum limit of a lattice theory, and

the lattice structure disappears in the limit; the second case is specific to our approach:

the lattice constant remains finite in the limit and the resulting theory is still defined on

a lattice in spite of being equivalent to the continuum theory. The lattice derivative in

this limit is given by ∆G(p) and the equivalence to the continuum theory is related to the

existence of an invertible blocking transformation, as discussed in the previous section.

The action S(z), defined in (6.8), can be expressed in coordinate representation. In

order to do that let us notice that both the bosonic and the fermionic terms in (6.8) are of

the form:

I =
1

(4π)4

∫ 3π
a

−π
a

d4p1 d
4p2

∏
µ

[
δ (p1µ+p2µ)+δ

(
p1µ−p2µ−

2π

a

)]
H̃1(p1)H̃2(p2), (6.18)

where H̃1(p1) and H̃2(p2) are both invariant under piµ → 2π
a − piµ By expressing H̃i(pi)

in terms of their Fourier transform as in (4.56) and performing the integration over the

momenta we easily obtain:

I =
1

16

∑
nµ

H1(xn)H2(xn)+
∑
µ

(−1)n
µ

H1(xn)H2(Pµxn)+
∑
µ 6=ν

(−1)n
µ+nνH1(xn)H2(PµPνxn)

+
∑

µ 6=ν 6=ρ

(−1)n
µ+nν+nρH1(xn)H2(PµPνPρxn)+

∑
µ 6=ν 6=ρ 6=σ

(−1)
∑
ρn

ρ

H1(xn)H2(PµPνPρPσxn)

 ,
(6.19)

23Analogous equations are found for the fermionic fields.
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where xn denotes the coordinate of the lattice site with components xµn = anµ

2 and Pµ is an

operator that changes the sign of nµ. Since H2(xn) satisfies the symmetry (3.28), namely

H2(Pµxn) = (−1)n
µ
H2(xn), eq. (6.19) can be rewritten in the apparently local form:

I =
∑
nµ

H1(xn)H2(xn). (6.20)

Thanks to the same symmetry (see eq. (3.28)) the sum can be restricted to a single quadrant

of the lattice coordinate space, namely:

I = 16
∑
nµ>0

H1(xn)H2(xn) + boundary terms, (6.21)

where the boundary terms are the ones with one or more nµ set to zero. They have the

same form as the r.h.s. of (6.21) but with the coefficient in front equal to 2d0 where d0 is

the dimensionality of the boundary.

All the previous forms of I (eqs. (6.19), (6.20) and (6.21)) can be used to write the ac-

tion S(z) in coordinate representation by simply replacing H1 and H2 with the corrsponding

quantities in the bosonic and fermionic term of the Lagrangian. If we consider for simplicity

the form (6.20) we get:

S(z) =
∑
nµ

[
iψ†(xn)σ̄µ∆

(z)
Gµψ(xn)−∆

(z)µ
G ϕ?(xn)∆

(z)
Gµϕ(xn)

]
, (6.22)

where the operator ∆
(z)
Gµ is defined in (4.43) with the index µ denoting that it acts only

on the µ component of xn. It is easy to check that the action (6.22) is invariant under

supersymmetry transformations obtained from (6.2) and (6.3) by replacing the quantities

of the continuum theory with the corresponding one on the lattice:

δεϕ(xn) = εψ(xn), δεϕ
?(xn) = ε†ψ†(xn) (6.23)

δεψα(xn) = −i(σµε†)α∆
(z)
Gµϕ(xn), δεψ

†
α̇ = i(εσµ)α̇∆

(z)
Gµϕ

?(xn). (6.24)

The prescription adopted in this section for constructing the lattice action can be

applied in any number of dimensions and extended to interacting theories. Supersymmetry,

when present in the original theory, is exactly preserved on the lattice.

Ward-Takahashi identities for lower dimensional (D=1,2) N=2 Wess-Zumino models

with interactions for ∆
(z=0)
Gµ were investigated to check quantum level consistencies of the

exact supersymmetry [51]. It was shown that the identities are perfectly consistent up to

two loops. These consistencies are based on the typical features of the formulation that the

lattice version of fermion and boson propagators have a simple relation without doublers

as in the continuum theory. We expect that the vacuum energy exactly vanishes due to

exact fermion boson cancellation.

6.2 Φ4 theory in four dimensions

As a second example we consider in this subsection the four dimensional action of a real

scalar field with a quartic interaction. We shall work in momentum representation, in
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which the Euclidean action can be written in the continuum theory as:

Sc =

∫
d4p̂1d

4p̂2 δ
(4)(p̂1 + p̂2)

[
−p̂µ1 Φ̃(p̂1)p̂2µΦ̃(p̂2) +m2

0Φ̃(p̂1)Φ̃(p̂2)
]

+ λ0

∫ 4∏
i=1

d4p̂i δ
(4)(p̂1 + p̂2 + p̂3 + p̂4) Φ̃(p̂1)Φ̃(p̂2)Φ̃(p̂3)Φ̃(p̂4), (6.25)

where as usual p̂µ and Φ̃(p̂) are the momenta and the fields in the continuum, whereas

the corresponding lattice quantities will be denoted by pµ and ϕ̃(p). Following the same

prescription used in the Wess-Zumino case of the previous subsection (see the discussion

following eq. (6.4)) we can write the action on the lattice as:

Sl = −
∫ 3π

a

−π
a

d4p1d
4p2 vk(p1, p2) δ(4)

(
∆

(z)
G (pµ1 ) + ∆

(z)
G (pµ2 )

)
∆

(z)
G (pµ1 )∆

(z)
G (p2µ) ϕ̃(p1)ϕ̃(p2)

+m2
0

∫ 3π
a

−π
a

d4p1d
4p2 vm(p1, p2) δ(4)

(
∆

(z)
G (pµ1 ) + ∆

(z)
G (pµ2 )

)
ϕ̃(p1)ϕ̃(p2)

+ λ0

∫ 3π
a

−π
a

4∏
i=1

d4pivi(p1, p2, p3, p4)δ(4)

(
4∑
i=1

∆
(z)
G (pi)

)
ϕ̃(p1)ϕ̃(p2)ϕ̃(p3)ϕ̃(p4), (6.26)

where the functions vk, vm and vi define respectively the integration volumes in momentum

space for the kinetic, mass and interaction term. These functions are not determined

by our continuum-lattice correspondence, and we shall fix them here by requiring that

the lattice action (6.26) is derived from the one in the continuum (6.25) by the blocking

transformation (6.11) already used in the Wess-Zumino model. An alternative choice for

the integration volumes, which is not associated to any blocking transformation and that

leads to a different regularization scheme will be considered later in the section.

In our case the blocking transformation (6.11) reduces simply to:

Φ̃(∆
(z)
G (pµ)) =

2ϕ̃(p)∏
µ

√
d∆

(z)
G (pµ)
dpµ

. (6.27)

By replacing (6.27) into the continuum action (6.25) we obtain24 the lattice action (6.26)

with the following integration volumes:

vk(p1, p2) = vm(p1, p2) = 2−8

[∏
µ

∣∣∣∣∣d∆
(z)
G (p1µ)

dp1µ

d∆
(z)
G (p2µ)

dp2µ

∣∣∣∣∣
]1/2

, (6.28)

and

vi(p1, p2, p3, p4) = 2−16

[∏
µ

∣∣∣∣∣d∆
(z)
G (p1µ)

dp1µ

d∆
(z)
G (p2µ)

dp2µ

d∆
(z)
G (p3µ)

dp3µ

d∆
(z)
G (p4µ)

dp4µ

∣∣∣∣∣
]1/2

. (6.29)

24Notice that the blocking transformation is invertible only for z = 1, so for z < 1 continuum fields with

momenta higher than |∆(z)
G (π

a
)| have no correspondence on the lattice.
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The one used here is a very specific form of blocking transformation: in section 5 a more

general form of blocking transformation was introduced (see eq. (5.1)) that contains an

arbitrary function F (p). The function F (p) is the multi-dimensional analogue of the ar-

bitrary function f(p) that appears in the definition of the associative star product (4.17)

in the one dimensional case. Different choices of F (p) correspond to different rescalings of

the field ϕ̃(p) in momentum space and they are essentially equivalent. The choice of the

square root in (6.27) however has a double advantage: it corresponds to the simplest form

of the kinetic term (see eq. (6.8)), and to a definition of the associative star product that

has a smooth limit a→ 0 in coordinate representation as discussed in section 4.

By replacing (6.28) and (6.29) into (6.26) we obtain the lattice action:

S(z) =

∫ π
a

−π
a

d4p1d
4p2

4∏
µ=1

δ(p1µ + p2µ)
[
−∆

(z)
G (p1µ)∆

(z)
G (p2µ) +m2

0

]
ϕ̃(p1)ϕ̃(p2)+

+ λ0

∫ π
a

−π
a

d4piδ
(4)

(
4∑
i=1

∆
(z)
G (pi)

)√√√√ 4∏
µ,i=1

d∆
(z)
G (piµ)

dpiµ
ϕ̃(p1)ϕ̃(p2)ϕ̃(p3)ϕ̃(p4), (6.30)

where it should be noticed that
d∆

(z)
G (pµ)
dpµ

can be written explicitely and is given by

d∆
(z)
G (pµ)

dpµ
=

cos
apµ

2

1− z2 sin2 apµ
2

z→1−→ 1

cos
apµ

2

. (6.31)

The Feynman diagrams generated by the perturbative expansion of (6.30) can easily be

constructed, and for z < 1 they are all finite. On the other hand we can see from (6.31)

that in the limit z → 1 a divergence arises at the extremes of integration, i.e. at |pµ| = π
a ,

due to the vanishing of the cosine at the denominator. This is better understood by going

back to the continuum notation, namely by using p̂iµ = ∆
(z)
G (piµ) as independent momenta

and Φ(p̂i), defined in (6.27), as fundamental fields. The action S(z) then reads:

S(z) =

∫ p̂(cutoff)

−p̂(cutoff)

d4p̂1d
4p̂2 δ

(4)(p̂1 + p̂2)
[
−p̂µ1 Φ̃(p̂1)p̂2µΦ̃(p̂2) +m2

0Φ̃(p̂1)Φ̃(p̂2)
]

+ λ0

∫ p̂(cutoff)

−p̂(cutoff)

4∏
i=1

d4p̂i δ
(4)(p̂1 + p̂2 + p̂3 + p̂4) Φ̃(p̂1)Φ̃(p̂2)Φ̃(p̂3)Φ̃(p̂4), (6.32)

where p̂(cutoff) is given in (5.4) and is a function of the lattice spacing a and of the

parameter z.

The action (6.32) is the original action (6.25) of the continuum theory, regularized by

the introduction of a cutoff p̂(cutoff) on each momentum component and the Feynman dia-

grams of the regularized continuum theory (6.32) and of the lattice theory (6.30) coincide,

modulo the momentum dependent rescaling of the external lines determined by the block-

ing transformation (6.27). That is, correlation functions calculated from (6.30) and (6.32)

are related by:

〈ϕ̃(p1)ϕ̃(p2) . . . ϕ̃(pn)〉 = 2−n
n∏
j=1

∏
µ

√
d∆

(z)
G (pjµ)

dpjµ
〈Φ̃(p̂1)Φ̃(p̂2) . . . Φ̃(p̂n)〉, (6.33)

with p̂µ = ∆
(z)
G (pµ).

– 60 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
9

However in the continuum theory the external momenta p̂µ are not restricted and

the momentum cutoff on the intermediate states violates unitarity, whereas in the lattice

action (6.30) external and intermediate states all have pµ in the fundamental region and

unitarity is not violated.25

On the other hand the action (6.32) depends on z and on the lattice spacing a only

through the cutoff p̂(cutoff), so that all pairs (a, z) that correspond to the same value of

p̂(cutoff) describe the same physical system. More precisely, if (a, z) and (a′, z′) are two pairs

corresponding to the same value of p̂(cutoff) and we denote the fields of the corresponding

actions by ϕ̃(p) and ϕ̃′(p′) then we have from (6.33):

〈ϕ̃(p1)ϕ̃(p2) . . . ϕ̃(pn)〉∏n
j=1

∏
µ

√
d∆

(z)
G (pjµ)
dpjµ

=
〈ϕ̃′(p′1)ϕ̃′(p′2) . . . ϕ̃′(p′n)〉∏n

j=1

∏
µ

√
d∆
′(z′)
G (p′jµ)

dp′jµ

, (6.34)

where the primed quantities contain a′ in place of a and the relation between pµ and p′µ is

given by:

∆
(z)
G (pµ) = ∆

′(z′)
G (p′µ). (6.35)

Eq. (6.34) provides a non trivial relation between correlation functions of two lattice theo-

ries defined by (6.30) with the same momentum cutoff p̂(cutoff) but with different values of

the lattice spacing a and of the parameter z.

In the limit where the cutoff is sent to infinity the ultraviolet divergences appear and

the theory needs to be renormalized by absorbing the divergences into the bare mass and

coupling constant. The Φ4 theory in four dimensions is a textbook example of renormal-

izable theory, and the introduction of a cutoff on the momenta in the loop integrations

is a standard regularization procedure. The exact correspondence between the Feynman

diagrams of the lattice theory (6.30) and of the regularized continuum theory guarantees

that also in the lattice theory the divergences arising in the p̂(cutoff) → ∞ limit can be

removed by exactly the same renormalization procedure used in the continuum theory.

In conventional lattice theories the momentum cutoff is directly related to the inverse

of the lattice constant, and the limit where the cutoff is sent to infinity coincides with the

limit where the lattice constant a is sent to zero, namely with the continuum limit.

The novel feature of our approach is that this limit can be reached in different ways:

in fact p̂(cutoff) →∞ can be obtained either by letting a→ 0 or by letting z → 1. The first

possibility corresponds to the standard continuum limit of a lattice theory; in fact if we

set for instance z = 0 the derivative on the lattice is the local symmetric finite difference

operator, the cutoff is simply p̂(cutoff) = 2
a and the continuum theory is reached as usual

by letting the lattice spacing go to zero. The second possibility is more interesting: we

keep the lattice spacing fixed at an arbitrary value and let the parameter z go to one.

The lattice structure of the theory is then preserved in the limit but the derivative on the

lattice becomes non-local and at the limiting value z = 1 it is the one defined in eq. (4.40)

in terms of the inverse Gudermannian function. Correlation functions of the renormalized

25This is of course true also for standard lattice theories, which can be regarded as a sofisticated way of

introducing a momentum cutoff without violating unitarity but breaking space-time symmetries.
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continuum theory and correlation functions of the renormalized lattice theory are then

related in the z → 1 limit at fixed a by eq. (6.33) which at z = 1 reads:

〈ϕ̃(p1)ϕ̃(p2) . . . ϕ̃(pn)〉R = 2−n
n∏
j=1

∏
µ

√
cosh p̂jµ〈Φ̃(p̂1)Φ̃(p̂2) . . . Φ̃(p̂n)〉R, (6.36)

with p̂µ = 2
agd−1

(ap
2

)
.

6.3 Φ4 theory in four dimensions: a more general lattice action

In this subsection we shall consider for the integration volumes in the action (6.26) a

choice which is more general than the one obtained by simply replacing (6.28) and (6.29)

into (6.26). We shall keep for the integration volume vk(p1, p2) of the kinetic term the

expression given in (6.28), so that the kinetic term has its simplest form, as in (6.30). This

amounts to fixing the arbitrary rescaling of the lattice fields in momentum representation.

Instead we shall introduce in the definition of vm(p1, p2) and vi(p1, p2, p3, p4) a new param-

eter α, by replacing the square root in eq. (6.28) and (6.29) with an arbitrary power α:

vm(p1, p2) = 2−8

[∏
µ

∣∣∣∣∣d∆
(z)
G (p1µ)

dp1µ

d∆
(z)
G (p2µ)

dp2µ

∣∣∣∣∣
]α

vi(p1, p2, p3, p4) = 2−16

[∏
µ

∣∣∣∣∣d∆
(z)
G (p1µ)

dp1µ

d∆
(z)
G (p2µ)

dp2µ

d∆
(z)
G (p3µ)

dp3µ

d∆
(z)
G (p4µ)

dp4µ

∣∣∣∣∣
]α
. (6.37)

Notice that the power α is the same for vm(p1, p2) and vi(p1, p2, p3, p4): as we shall see

that this is needed for a consistent renormalizability if α is used as a regulator.

The action obtained by inserting the integration volumes (6.37) into (6.26) does not

follow from the continuum theory via a blocking transformation; so the correspondence,

and in the z = 1 limit the equivalence, between lattice and continuum theory that we

discussed in the previous subsection is lost.

The continuum theory is reached in the limit z → 1 and α→ 1/2. In the last subsection

we had α set to 1/2 and we let z act as a regulator for the ultraviolet divergences. In the

remaining part of this subsection we shall instead set z = 1 and use the parameter α to

regularize the ultraviolet divergences of the continuum theory. The corresponding action

S(α) is obtained from (6.26) by using (6.37) and, for the kinetic term only, (6.28) and by

keeping (6.31) into account for the z → 1 limit. The result is:

Sα =

∫ π
a

−π
a

d4p1d
4p2

4∏
µ=1

δ(p1µ+p2µ)

−∆G(p1µ)∆G(p2µ)+m2
0

(∏
µ

cos
ap1µ

2

)1−2α
ϕ̃(p1)ϕ̃(p2)

+λ0

∫ π
a

−π
a

4∏
i=1

d4pi

4∏
µ=1

δ

(
4∑
i=1

∆G(piµ)

) 4∏
i,µ=1

cos
apiµ

2

−α ϕ̃(p1)ϕ̃(p2)ϕ̃(p3)ϕ̃(p4),

(6.38)

– 62 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
9

where in each term the integration over the momentum components piµ has been reduced

to the interval (−π
a ,

π
a ) by using the symmetry of the action under piµ → 2π

a −piµ. This pro-

duces a factor 2d for each momentum integration, thus canceling the powers of 2 introduced

in (6.28) and (6.37).

Notice also that cos
apµ

2 is positive in the interval (−π
a ,

π
a ) so that the absolute values

in (6.28) and (6.37) can now be dropped.

It is convenient also in this case to go back to the continuum representation, namely to

use p̂iµ = ∆G(piµ) as independent momenta and Φ(p̂i), defined in (6.27), as fundamental

fields. With this change of variables we find:

S(α) =

∫ ∞
−∞

d4p̂1d
4p̂2 δ

(4)(p̂1 + p̂2)

−p̂µ1 p̂2µ +
m2

0(∏
µ cosh

ap̂1µ

2

)1−2α

 Φ̃(p̂1)Φ̃(p̂2)

+ λ0

∫ ∞
−∞

4∏
i=1

d4p̂i δ
(4)(p̂1 + p̂2 + p̂3 + p̂4)

Φ̃(p̂1)Φ̃(p̂2)Φ̃(p̂3)Φ̃(p̂4)(∏
µ

∏4
i=1 cosh

ap̂iµ
2

)1/2−α . (6.39)

The kinetic term in (6.39) is the same as in the standard continuum theory, but the mass

and the interaction terms are modified by the presence of the hyperbolic cosine factors

which provide a smooth cutoff in the momenta: in fact for α < 1/2 each hyperbolic cosine

denominator becomes very large for

p̂iµ �
1

a(1/2− α)
. (6.40)

The quantity on the r.h.s. is an effective cutoff in the momenta; this cutoff becomes very

large either in the standard continuum limit a→ 0 or in the limit where α→ 1/2 keeping

a fixed. Because of this cutoff all Feynman diagrams in the perturbative expansion of ei-

ther (6.38) or (6.39) are finite, and the corresponding correlation functions are proportional

in analogy to (6.36):

〈ϕ̃(p1)ϕ̃(p2) . . . ϕ̃(pn)〉α = 2−n
n∏
j=1

∏
µ

√
cosh p̂jµ〈Φ̃(p̂1)Φ̃(p̂2) . . . Φ̃(p̂n)〉α. (6.41)

Ultraviolet divergences appear as singularities in α at α = 1/2 in the Feynman diagrams

which are ultraviolet divergent in the continuum limit. As in the case of the standard

momentum cutoff regularization we expect that these singularities can be absorbed by a

redefinition of the mass and of the coupling constant. We are going to check this explicitely

at the one loop level.

We shall work in the continuum representation of action (6.39) which is more directly

related to the continuum theory at α = 1/2.

At one loop level the ultraviolet divergent diagrams are the one loop mass renormal-

ization diagram, shown in figure 6, and the one-loop coupling renormalization diagrams

illustrated in figure 7.
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Figure 6. One-loop correction to the propagator.

(a) (b) (c)

Figure 7. One-loop corrections to the four point vertex.

The building blocks of the Feynmann diagrams are the full propagator D(α)(p1, p2),

namely the propagator including the contributions of the mass term insertions, and the

four point vertex V4(p1, p2, p3, p4). They are given respectively by:

D(α)(p̂1, p̂2) =

∏
µ δ (p̂1µ + p̂2µ)∑

µ p̂
µ
1 p̂1µ +

(∏
µ cosh

ap̂1µ

2

)2α−1
m2

0

, (6.42)

and

V4(p̂1, p̂2, p̂3, p̂4) = λ0 δ
(4) (p̂1 + p̂2 + p̂3 + p̂4)

(∏
µ

4∏
i=1

cosh
ap̂iµ

2

)α−1/2

. (6.43)

Let us consider first the mass renormalization diagram, which we shall denote as

V
(1loop)

2 (p̂1, p̂2).

Using (6.42) and (6.43) we have:

V
(1loop)

2 (p̂1, p̂2) = λ0 δ
(4) (p̂1 + p̂2)

(∏
µ

cosh
ap̂1µ

2

)2α−1

Iα, (6.44)
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where

Iα =

∫ ∞
−∞

d4p̂

(∏
µ cosh

ap̂µ
2

)2α−1

∑
µ p̂µp̂µ +m2

0

(∏
µ cosh

ap̂µ
2

)2α−1 . (6.45)

For α = 1/2 the integral Iα is divergent and coincides with the corresponding loop

integral of the continuum theory, so the introduction of the parameter α may be regarded

as a way to regularize the ultraviolet divergences of the original continuum theory.

The singularity structure of Iα at α = 1/2 is what one would expect from a momentum

cutoff regularization with a cutoff Λ = 1
a(1/2−α) . In fact a direct (although non trivial)

calculation gives:

Iα = b2

(
1

a(1/2− α)

)2

+ b0 m
2
0 log(1/2− α) + regular terms, (6.46)

where b2 and b0 are numbers that can be calculated.

The crucial point to observe at this stage is that the mass renormalization diagram

V
(1loop)

2 (p̂1, p̂2) given in (6.44) and the diagram corresponding to a single mass insertion,

which coincides with the mass term in (6.39), have the same form. This is not a trivial

result, and in fact it requires that the power α is the same in the mass and interaction

term as we assumed from the beginning.

As a result, if one includes the one loop corrections, the two point function is still given

by (6.42) but with m2
0 simply replaced by m2

0 + λ0Iα:

D
(α)
1loop(p̂1, p̂2) =

∏
µ δ (p̂1µ + p̂2µ)∑

µ p̂
µ
1 p̂1µ +

(∏
µ cosh

ap̂1µ

2

)2α−1 (
m2

0 + λ0Iα
) . (6.47)

Renormalization of the mass at one loop now follows by writing the bare mass as the

sum of a renormalized mass m2
R plus a counterterm δm2

0:

m2
0 = m2

R + δm2
0, (6.48)

where the α dependence of the counterterm can be tuned to cancel the singularities of λ0Iα.

Let us consider next the first of the diagrams of figure 7 which provide the one loop

coupling constant renormalization. It will suffice to consider the first one, as the others are

obtained just by crossing symmetry. This is given by:

V 1loop
4 (p̂1, p̂2; p̂3, p̂4) = λ2

0 δ
(4) (p̂1 + p̂2 + p̂3 + p̂4)

(∏
µ

4∏
i=1

cosh
ap̂iµ

2

)α−1/2

Iα(p̂1 + p̂2),

(6.49)

where

Iα(p̂1 + p̂2) =

∫ ∞
−∞

d4p d4p′
∏
µ

(
cosh

ap̂iµ
2

)2α−1 δ(4) (p̂1 + p̂2 + p̂+ p̂′)

Σ(p)Σ(p′)
, (6.50)

with

Σ(p) =
∑
µ

p̂µp̂µ +

(∏
µ

cosh
ap̂µ
2

)2α−1

m2
0. (6.51)
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Again for α = 1/2 the integral Iα(p̂1 + p̂2) is the same as the corresponding one of the

continuum theory and is logarithmically divergent, but it is convergent for α < 1/2. Its

singularity at α = 1/2 is, as expected, a logarithmic one:

Iα(p̂) = c0 log(1/2− α) + regular terms, (6.52)

where c0 does not depend on the momentum p̂µ. In fact it can be easily checked that

the partial derivatives of Iα(p) with respect to pµ produce integrals that are convergent at

α = 1/2, so that the singular part is pµ independent.

By putting (6.43) and (6.49) together one finds that the one loop corrections to the

coupling constant amount to the following replacement:

λ0 −→ λ0 + λ2
0 (Iα(p̂1 + p̂2) + Iα(p̂1 + p̂3) + Iα(p̂3 + p̂2)) . (6.53)

The integrals on the r.h.s. depend on the outside momenta as well as on α. However

we have seen that the part of Iα(p) which is singular at α = 1/2 does not depend on pµ.

The singularities of the one loop integrals at the r.h.s. of (6.53) can then be absorbed, at

one loop level, into a redefinition of the coupling constant λ0, and a renormalized coupling

constant λR can be consistently defined.

Renormalization beyond one loop follows here the same pattern as in the standard

momentum cutoff regularization. We shall not discuss the details here.

7 Conclusion and discussions

In this paper we propose a new and unconventional approach to lattice theories. Although

originally motivated and developed in quest of exact supersymmetry on the lattice, it is

quite general and it solves some long standing problems of conventional lattice theories,

such as the chiral fermion problem and the associated doubling problem, and the problem

of the violation of the Leibniz rule for the derivative operator on the lattice. These were

indeed the main obstacles on the path of having exact supersymmetry on the lattice and

in fact exact lattice supersymmetry is naturally implemented in this approach. In the

case of some extended supersymmetries different members of the same supermultiplet may

be identified with doublers on the lattice and supersymmetry has a simpler and more

economical formulation on the lattice than in the continuum.

All these successes however come at a price. Locality is lost on the lattice: the star

product defined in section 4 is non local and in general it is not associative, although it

becomes local in the continuum limit. That induces a violation of gauge invariance, except

in the very special case in which associativity is satisfied. This particular case is most

interesting also for another reason: the degrees of freedom of the theory on the lattice

are in one-to-one correspondence with the ones in the continuum, so that the blocking

transformation from the continuum to the lattice is completely invertible and does not

involve any loss of information. In other words the lattice theory is in this case just a

reshuffling of the degrees of freedom of the continuum theory. It is non local on the lattice,

but its non locality is only a lattice artifact as the theory is completely equivalent to the

local continuum theory. For the same reason one expects causality to be exactly preserved.
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As a consequence in that case all symmetries, including gauge invariance, are exactly

preserved in the lattice formulation. However, for the same reason, the lattice spacing a

does not act as a regulator and the theory on the lattice has the same ultraviolet divergences

as the continuum one.

In the case of non-gauge theories, like the ones discussed in section 6, a regulator

can be naturally introduced by replacing for instance the lattice derivative ∆G(p) with its

regularized version ∆
(z)
G (p) defined in eq. (4.44). The parameter z can be used as a regulator

while keeping a fixed, namely while preserving the lattice structure. The renormalization

procedure can then be carried on in analogy with the continuum and a renormalized lattice

theory can be defined.

The continuum-lattice duality introduced at the classical level by the reversible block-

ing transformation can in this case be extended to the quantum level, and the lattice actions

obtained in this way may be regarded as perfect actions [53, 55], with no lattice artifact in

spite of finiteness of a.

The z regulator however breaks the associativity of the star product, and hence in gauge

theories it violates gauge invariance. This means that a lattice theory formally exactly

equivalent to a gauge theory in the continuum can be defined but cannot be regularized,

at least at the present stage of our knowledge, in a gauge invariant way while keeping

the lattice structure. This poses severe limitations to practical applications of the present

formalism to gauge theories.

Finite lattices, which you would want for lattice computer simulations, also present a

problem. Consider lattice fields that satisfy a periodic boundary condition in coordinate

space, say in one dimension:

ϕ
(na

2

)
= ϕ

(na
2

+Na
)
. (7.1)

This is compatible with (3.22) provided N is even. In momentum representation eq. (7.1)

implies that momentum components on the lattice are quantized and are integer multiples

of 2π
Na , which in turn means that the momentum conservation can never be satisfied since

the conserved momentum p̂ = ∆(p) is not a rational function of the lattice momentum

p. A way out to this problem may involve tricks like replacing the delta function of

momentum conservation with a gaussian whose width goes like 1
N in such a way to always

allow an overlap between the continuum and the lattice momentum conservation. This

may be useful for simulations, but at the price of introducing a breaking of order 1
N in

some relevant symmetries, for instance in all symmetries that, like supersymmetry, rely on

the exactness of the Leibniz rule.

In spite of these limitations there are some possible interesting developments which

we have not fully investigated yet. We shall briefly discuss here what seems to be a

promising one.

The lattice action was obtained from the continuum action in (5.15) by implementing

the blocking transformation (5.3) by means of a functional delta function. This is only a

limiting case of a more general procedure where the delta function is replaced by a gaussian

whose width may be related to the lattice spacing and sent eventually to zero. The effect
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of this gaussian smearing, particularly on the symmetries of the lattice fields, has been

extensively studied [16].

To illustrate this point consider for instance a blocking transformation from the con-

tinuum to the lattice where the lattice fields are defined as the avarage of the continuum

fields over an hypercube of size a. Chiral invariance is well defined on the lattice, and the

lattice action of a free fermion obtained by implementing the blocking transformation with

a functional delta function is chiral invariant. However the fermion propagator becomes

non-local decaying like |r|1−d at large distances [56, 57], thus avoiding contradiction with

the Nielsen-Ninomiya theorem. The gaussian term breaks chirality, but in a controlled way,

and the remnant of the original symmetry is expressed by the Ginsparg-Wilson relation.

The breaking of the chiral symmetry allows the fermion propagator to become local, with

an exponential decay in the distance |r|.
The new feature of our approach is that the blocking transformation introduced in the

previous sections, being invertible, does not destroy any of the symmetries present in the

original continuum theory and at the classical level such symmetries, including gauge sym-

metries, are also symmetries of the lattice theory resulting from the blocking transformation

with a delta function kernel. The gaussian kernel will in general break the symmetries, but

in the controlled way described in the general formula of ref. [16], thus providing a kind

of generalization of the Ginsparg-Wilson relation to other symmetries, including perhaps

gauge symmetries. Locality of the lattice theory may well be also restored,26 while it is not

clear if the width of the gaussian can be used a regulator for the ultraviolet divergences.

Acknowledgments

We thank P.H. Damgaard, I. Kanamori, H.B. Nielsen and Hiroshi Suzuki, for useful dis-

cussions over long years of our investigations and M. Panero for carefully reading the

manuscript. We also wish to thank JSPS and INFN for supporting our long standing

collaboration.

A The large N limit of J∆(ξ, η)

In this appendix we give the proof of eq. (4.85), namely of the identity:

lim
N→∞

∫ +∞

−∞
dξ J

(0)
∆s,G

(ξ, η)χ(ξ) = χ(η), (A.1)

for any function χ(ξ) continuous and bounded on the real axis. We shall give the details

of the proof only for the case ∆ = ∆G; for ∆ = ∆s the proof works along the same lines.

We shall divide the integration domain in eq. (A.1) into four intervals corresponding to

the domains in which the three eqs. (4.77), (4.78) and (4.82) hold, plus the domain ξ < 0.

For ξ < 0 the saddle points given by eq. (4.73) are outside the interval of integration

(−π/2, π/2), and their contribution to J
(0)
∆G

(ξ, η) in (4.71) is vanishing in the large N limit.

26Some preliminary calculations show that in spite of the non locality of the derivative operator ∆G(p),

at least the free fermion propagator becomes local with the gaussian smearing.
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We shall now divide the region ξ > 0 into three intervals, namely:

(a) Da ≡
[
0, η −

(
Λ
N

)2/3
η1/3

]
(b) Db ≡

[
η −

(
Λ
N

)2/3
η1/3, η +

(
Λ′

N

)2/3
η1/3

]
(c) Dc ≡

[
η +

(
Λ′

N

)2/3
η1/3,∞

]
where both Λ and Λ′ are chosen to satisfy the strong inequalities 1 � Λ(Λ′)� N . Let us

consider first the interval (b), where |ξ − η| � 1 and hence the large N limit (4.82) holds.

Let us define:

I(b)[χ] = lim
N→∞

∫
Db
dξ J

(0)
∆G

(ξ, η)χ(ξ). (A.2)

Replacing the limit with the expression given in (4.82) we get:

I(b)[χ] = 21/3N2/3η−1/3

∫ η+(Λ′/N)2/3η1/3

η−(Λ/N)2/3η1/3

dξ Ai
(

21/3(ξ − η)N2/3η−1/3
)
χ(ξ). (A.3)

With the substitution ξ = η + xη1/3

21/3N2/3 this becomes:

I(b)[χ] =

∫ 21/3Λ′2/3

−21/3Λ2/3

dxAi(x)χ

(
η +

xη1/3

21/3N2/3

)
. (A.4)

We show now that given an arbitrarily small positive real number ε we can find Λ and N

such that

I(b)[χ]− χ(η) < ε. (A.5)

The Airy function Ai(x) is normalized in such a way that its integral over the real axis is

1, so we can write:

I(b)[χ]−χ(η) =

∫ 21/3Λ′2/3

−21/3Λ2/3

dxAi(x)

[
χ

(
η+

xη1/3

21/3N2/3

)
−χ(η)

]
−χ(η)

∫
DΛ

dxAi(x), (A.6)

with

DΛ ≡
[
−∞,−21/3Λ2/3

]
∪
[
21/3Λ′2/3,∞

]
. (A.7)

We shall assume that the test function χ(η) is bounded and continuous on the real axis.

Consider now the second term at the r.h.s. of (A.6). Given the boundedness of χ(η)

and the convergence of the integral over the Airy function it is possible to find a Λ and Λ′

large enough to have: ∣∣∣∣χ(η)

∫
DΛ

dxAi(x)

∣∣∣∣ < ε

2
. (A.8)

The continuity of χ(η) ensures that in the first term at the r.h.s. of (A.6), for any given Λ

and Λ′ we can choose N large enough to have:∣∣∣∣∣χ
(
η +

xη1/3

21/3N2/3

)
− χ(η)

∣∣∣∣∣ < ε

2 21/3
(
Λ2/3 + Λ′2/3

) , ∀x : −21/3Λ2/3 ≤ x ≤ 21/3Λ′2/3.

(A.9)
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In this way, taking into account that |Ai(x)| < 1, we find that also the absolute value of the

first term at the r.h.s. of (A.6) can be reduced to be smaller that ε
2 , end eq. (A.5) is proved.

Let us consider now the interval Da and define I(a)[χ] as in eq. (A.2). In Da J (0)
∆G

(ξ, η)

is represented in the large N limit by eq. (4.77), so by replacing (4.77) into I(a)[χ] we find

an expression of the form:

I(a)[χ] = lim
N→∞

√
2N

π

∫
Da
dξ cos [NF (ξ, η) + π/4]ψ(ξ, η), (A.10)

where

F (ξ, η) =
ξ

2
log

1 +
√

1− (ξ/η)2

1−
√

1− (ξ/η)2
− η arccos(ξ/η), (A.11)

and

ψ(ξ, η) =

√
ξ

η

χ(ξ)

(η2 − ξ2)1/4
. (A.12)

In order to find the leading term of (A.10) in the large N limit let us make a change of

variable in the integral, defining:

t = NF (ξ, η) + π/4. (A.13)

By partial integration we get:

I(a)[χ] = lim
N→∞

√
2N

π

 ψ(ξ, η)

NF ′(ξ, η)
sin(t)

∣∣∣∣ξ=η−( Λ
N )

2/3
η1/3

ξ=0

−
∫
Da
dt sin(t)

d

dt

(
ψ(ξ, η)

NF ′(ξ, η)

) ,

(A.14)

where F ′(ξ, η) is the partial derivative with respect to ξ. By repeating the partial integra-

tion we find that each term has an extra 1/N factor, so that the first term in the curly

bracket in eq. (A.14) is the leading term in the large N asymptotic expansion. So, by

replacing (A.13) and (A.12) back into (A.14) we get:

I(a)[χ] =

√
2ξ

πNη

χ(ξ)

(η2 − ξ2)1/4 F ′(ξ, η)
sin(NF (ξ, η) + π/4)

∣∣∣∣∣
ξ=η−( Λ

N )
2/3

η1/3

ξ=0

. (A.15)

The integration limit ξ = 0 gives a vanishing contribution because of the
√
ξ term and

because F ′(ξ, η) becomes infinite as ξ goes to zero. At the other limit of integration

η − ξ → 0 as N → ∞, so we can replace F (ξ, η) and F ′(ξ, η) with the first term of their

asymptotic expansion in η − ξ, namely:

F (ξ, η) = −23/2

3
η−1/2 (η − ξ)3/2 +O

(
(η − ξ)5/2

)
, (A.16)

F ′(ξ, η) =
√

2η−1/2 (η − ξ)1/2 +O
(

(η − ξ)3/2
)
. (A.17)

By inserting (A.16) and (A.17) into (A.15) we get:

I(a)[χ] =
χ(η)

21/4
√
πΛ

sin

(
−23/2

3
Λ +

π

4

)
+ terms vanishing as N →∞. (A.18)
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Given the boundedness of χ(η) it is then always possible to find a Λ large enough that∣∣I(a)[χ]
∣∣ < ε, (A.19)

for any given ε, however small. If two different values of Λ are obtained to satisfy (A.8)

and (A.19) the largest of the two should be taken, in order to satisfy both at the same time.

The large N limit of I(c)[χ] follows the same lines, with an exponential replacing the

cosine. We have:

I(c)[χ] = lim
N→∞

√
2N

π

∫
Dc
dξe−NFc(ξ,η)ψc(ξ, η), (A.20)

where

Fc(ξ, η) = ξ arccos

(
η

ξ

)
− η cosh−1

(
ξ

η

)
, (A.21)

and

ψc(ξ, η) =

√
ξ

η

χ(ξ)

(ξ2 − η2)1/4
. (A.22)

By doing in (A.20) the change of variable

t = NFc(ξ, η), (A.23)

and doing a partial integration as in the previous case we find that the large N limit of

I(c)[χ] is given by:

I(c)[χ] = −

√
2ξ

πNη

χ(ξ)

(ξ2 − η2)1/4 F ′c(ξ, η)
e−NFc(ξ,η)

∣∣∣∣∣
ξ=∞

ξ=η+
(

Λ′
N

)2/3
η1/3

. (A.24)

The integration limit ξ = ∞ gives a vanishing contribution because in the exponential

Fc(ξ, η) goes to +∞ as ξ goes to ∞. At the other limit of integration we can replace

Fc(ξ, η) and F ′c(ξ, η) with the first term of their asymptotic expansion in η − ξ, namely:

Fc(ξ, η) = −23/2

3
η−1/2 (ξ − η)3/2 +O

(
(ξ − η)5/2

)
, (A.25)

F ′c(ξ, η) =
√

2η−1/2 (ξ − η)1/2 +O
(

(ξ − η)3/2
)
. (A.26)

By inserting (A.25) and (A.26) into (A.24) we get:

I(c)[χ] =
χ(η)

21/4
√
πΛ′

e−
23/2

3
Λ′ + terms vanishing as N →∞, (A.27)

which becomes smaller than any prescribed ε for sufficiently large Λ′.
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